CSE 416: Introduction to Machine Learning
Assignment #8

Instructor: Pemi Nguyen

due: Friday, May 27, 2022, 11:59 pm.

Instructions:

e Answers: Please provide detailed yet concise explanations for your work.

e Turn-in: Do not write your name on your pages (your Gradescope account will identify you
to us) and do not include a copy of the exercise’s question in what you turn in. You must
use Gradescope| to upload your written homework solutions. You will submit a single PDF
file containing your solutions to all the exercises in the homework. You must follow the
Gradescope prompts that have you link exercise numbers to your pages. We do not accept
handwritten solutions, so please typeset them, such as Microsoft Word or LaTeX editor.

. In lectures, we have learned two methods to represent document embeddings: bags-of-
words and TF-IDF by representing each document as a vector. Now, we’re exploring a
lower-level way of representing each word as a vector.

A word embedding is a mapping from words, to vector representations of the words. Ideally,
the geometry of the vectors will capture the semantic and syntactic meaning of the words.
For example, words similar in meaning should have representations which are close to each
other in the vector space. A good word embedding provides a means for mapping text into
vectors, from which you can then apply all the usual learning algorithms that take, as input,
a set of vectors.

Word embeddings have taken NLP (natural language processing) by storm in the last few
years, and have become the backbone for numerous NLP tasks such as question answering
and machine translation.
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https://gradescope.com/help#help-center-section-student-workflow

In this Colab link, you’re going to explore an example of pretrained word embebeddings
called GLoVe and see how they capture semantic and syntactic concepts through two tasks:

e get_similar_tokens (Finding k similar words to a particular word): Using k-NN
algorithm and cosine similarity metric, we find top k& words that are similar to a word
w by querying from a corpus all k£ word vectors that are most similar to it.

e get_analogy: Solving word analogy tasks For example, consider an analogy question
like:

king is to queen as man is to ...

where the goal is to fill in the blank space. This can be solved by finding the word
whose embedding that is most similar to the vector:

Wking — Wqueen + Wman

Man

/// Woman

Y

Use the above Colab with GLoVe embedddings of 50 dimensions to:

(a) (I point) Find top 6 words that are synonyms of the word hungry.

(b) (I point) Find top 4 words that are antonyms of the word good. (Hint: Find a possible
antonym of good by yourself and find the remaining ones that are similar to it.)

(¢) (I point) Find top 5 words that can fill out the blank:
boat is to plane as captain is to ...

(d) (2 points) Find two examples of your own where the embedding does not give correct
analogies (an example is provided in the Colab file).

(e) (2 points) (Extra credit): There is a dataset in the file analogy _task.txt, which tests the
ability of word embeddings to answer analogy questions. Find and report the accuracy
of the word embedding approach for solving the analogy task. Comment on the results
and which analogies seemed especially difficult for this approach.

Note:


https://colab.research.google.com/drive/1W3evcoclWmCQ47TQOZFBotdTj7YNncir
https://homes.cs.washington.edu/~jrl/teaching/cse490Zwi21/homeworks/data/analogy_task.txt

e You don’t have to understand most of the code (but it will be helpful if you're inter-
ested). Just run the Colab and pass in suitable parameters to the given functions for
each question.

e The above code contains more lower-level implementations to load a pretrained word
embedding and use kNN algorithm with cosine similarity to find similar words and
solve analogy tasks. This [alternative Colab link contains more high-level implementa-
tions of these two tasks, with a faster runtime. For example, for the previous Colab,
you can’t load GLoVe embeddings of 300 dimensions, but this current one guarantees
a more compact implementation that allowed you to load much larger embeddings.

2. Let’s train our own word embedding.

We create a word co-occurrence matrix M of the 10,000 most frequent words from a
Wikipedia corpus with 1.5 billion words. Entry M;; of the matrix denotes the number of
times in the corpus that the i-th and j-th words occur within 5 words of each other.

Optional: The file co_occur.csv.gz contains the symmetric co-occurence matrix M. The file
dictionary.txt contains the dictionary for interpreting this matrix: The i-th row of the dictio-
nary is the word corresponding to the i-th row and column of M. The dictionary is sorted
according to the word frequencies. Therefore the first word in the dictionary “the” is the most
common word in the corpus and the first row and column of M contain the co-occurrence
counts of “the” with every other word in the dictionary.

(a) (2 points) Let u; be the word embedding for “woman” and let u, be the word embedding
for “man.” Denote v = u; — u,.
Project the embedding of the following words onto v: boy, girl, brother, sister, king,

queen, he, she, john, mary, all, tree. Following is a plot of the projections of the
embeddings of these words marked on a line:


https://colab.research.google.com/drive/11oSLbyc0_Az3zz0ZIv8TniRzPLiCvO7c
https://homes.cs.washington.edu/~jrl/teaching/cse490Zwi21/homeworks/data/co_occur.csv.gz
https://homes.cs.washington.edu/~jrl/teaching/cse490Zwi21/homeworks/data/dictionary.txt
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What do you observe based on the values of the projections? Why might it be the case?
Explain in no more than 5 sentences.

(b) (3 points) We’re presenting a similar plot of the projections of the embeddings of the
following words onto u: math, matrix, history, nurse, doctor, pilot, teacher, engineer,
science, arts, literature, bob, alice.
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What do you observe? Why do you think this is the case? Do you see a potential
problem with this? (For example, suppose LinkedIn used such word embeddings to
extract information from candidates’ resumes to improve their “search for qualified job
candidates” option. What might be the result of this?) Relate to what we have learned
about machine learning biases.

(c) (Extra credit) (2 points) Compare two ways to embed a document: using a document
vector through the TF-IDF approach and using an embedding matrix where each word
is a vector through the above approach. In your opinion, what is one possible advantage
and one possible disadvantage of the word embedding approach?

(d) (Extra credit) (2 points) Propose one method of mitigating the problem discussed in
part b. There are many acceptable answers, and this is an ongoing area of research,
so be creative and do not worry about making your answer overly rigorous. [Hint: If
you need inspiration, see the original paper that surfaced this issue and discussed some
approaches to “debiasing” word embeddings.]
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https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

