CSE/STAT 416

Assessing Performance

Hunter Schafer University of Washington March 31, 2021

Logistics

- Check EdStem for any announcements or clarifications on assignments
- Jupyter Notebooks on EdStem.
- Section tomorrow will give you practice writing some of the code for HW1
- Learning Reflection spec and HW1 released
 - Remember there is a HW0 that introduces tools for the course that you should complete, but it's not worth points or anything.

Linear Regression Model

Assume the data is produced by a line.

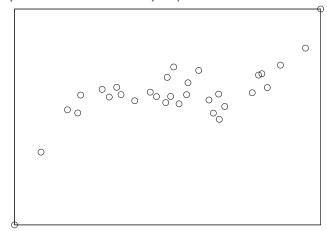
$$y_i = w_0 + w_1 x_i + \epsilon_i$$

 w_0, w_1 are the **parameters** of our model that need to be learned

- w_0 is the intercept (\$ of the land with no house)
- w_1 is the slope (\$ increase per increase in sq. ft)

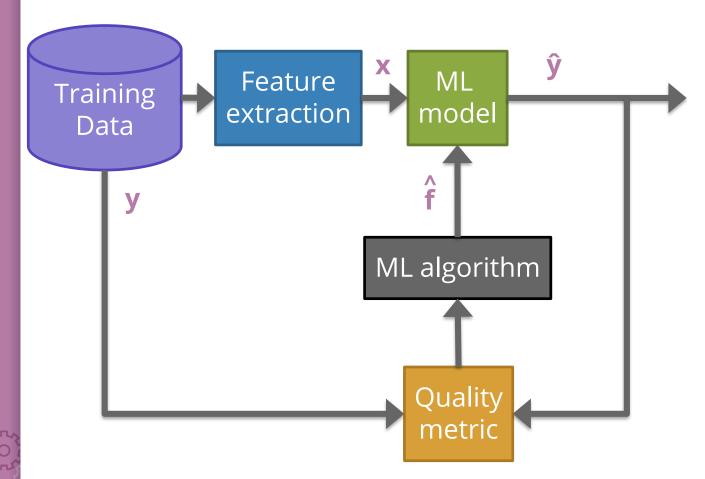
Learn estimates of these parameters \widehat{w}_0 , \widehat{w}_1 and use them to predict new value for any input x!

$$\hat{y} = \widehat{w}_0 + \widehat{w}_1 x$$



Why don't we add ϵ ?

ML Pipeline



Notation

Important: Distinction is the difference between a data input and a feature.

- Data inputs are columns of the raw data
- Features are the values (possibly transformed) for the model (done after our feature extraction h(x))

Data Input: $x_i = (x_i[1], x_i[2], ..., x_i[d])$

Output: y_i

- x_i is the i^{th} row
- $x_i[j]$ is the i^{th} row's j^{th} data input
- $h_j(x_i)$ is the j^{th} feature of the i^{th} row

Linear Regression Recap

Dataset

 $\{(x_i, y_i)\}_{i=1}^n$ where $x \in \mathbb{R}^d$, $y \in \mathbb{R}$

Feature Extraction

 $h(x) \colon \mathbb{R}^d \to \mathbb{R}^D$ $h(x) = (h_0(x), h_1(x), \dots, h_D(x))$

Regression Model

 $y = f(x) + \epsilon$ $= \sum_{j=0}^{D} w_j h_j(x) + \epsilon$ $= w^T h(x) + \epsilon$

Quality Metric

 $RSS(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$

Predictor

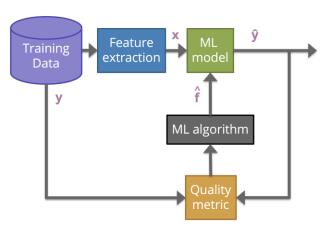
 $\widehat{w} = \min_{w} RSS(w)$

ML Algorithm

Optimized using Gradient Descent

Prediction

$$\hat{y} = \widehat{w}^T h(x)$$

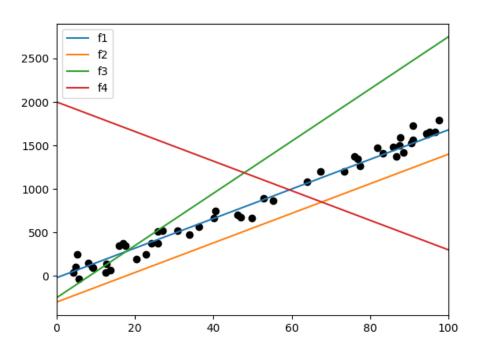


Think &

1 min

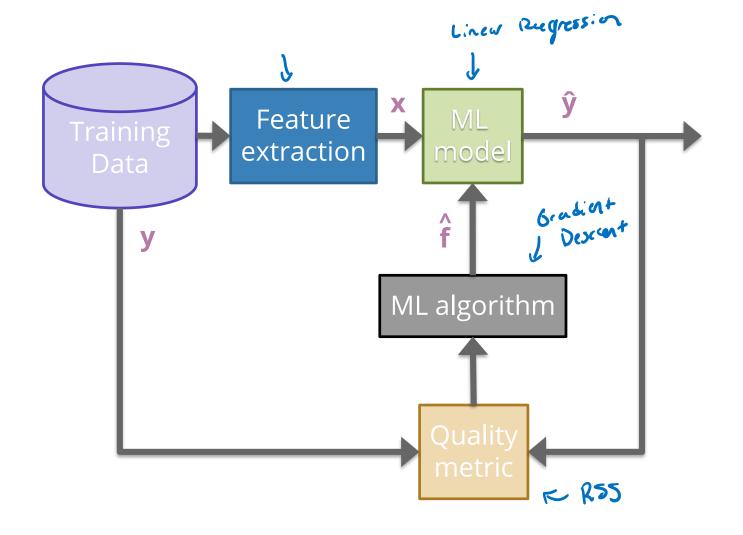
pollev.com/cs416

Sort the following lines by their RSS on the data, from smallest to largest. (estimate, don't actually compute)



Pre-Lecture Video 1

Feature Extraction

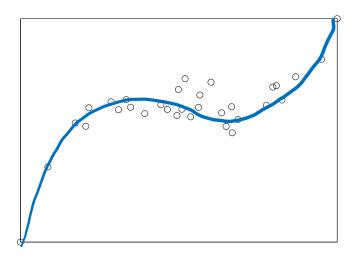


Higher Order Features

This data doesn't look exactly linear, why are we fitting a line instead of some higher-degree polynomial?

We can! We just have to use a slightly different model!

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \epsilon_i$$



Polynomial Regression

Model

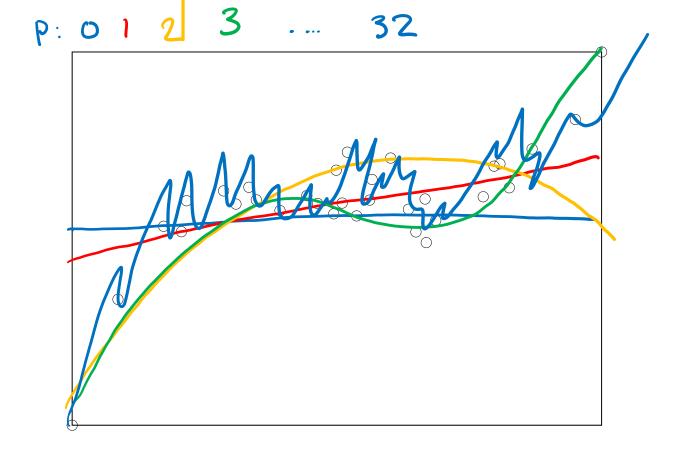
$$y_i = w_0 + w_1 x_i + w_2 x_i^p + \dots + w_p x_i^p + \epsilon_i$$

Just like linear regression, but uses more features!

	Feature	Value	Parameter
1	0	1 (constant)	w_0
أ	1	x	w_1
	2	x^2	w_2
	p	x^p	w_p

How do you train it? Gradient descent (with more parameters)

Polynomial Regression



Features

Features are the values we select or compute from the data inputs to put into our model. **Feature extraction** is the process of turning the data into features.

Model

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + \dots + w_{D}h_{D}(x_{i}) + \epsilon_{i}$$

$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \epsilon_{i}$$

Feature	Value	Parameter
0	$h_0(x)$ often 1 (constant)	w_0
1	$h_1(x) = x$	w_1
2	$h_2(x) = x_i^2$	w_2
	= xi3 · log(xi)	
D	$h_D(x)$: e^{x} :	w_{D}

Adding Other Inputs

Generally we are given a data table of values we might look at that include more than one value per house.

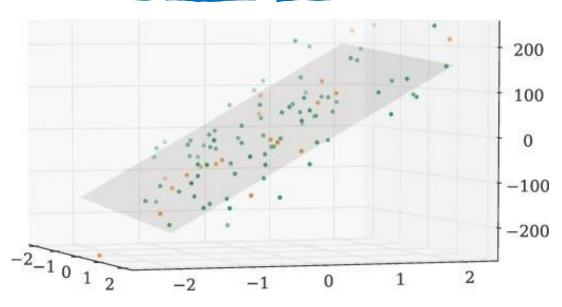
- Each row is a single house.
- Each column (except Value) is a data input.

sq. ft.	# bathrooms	owner's age	 value
1400	3	47	 70,800
700	3	19	 65,000
1250	2	36	 100,000

More Inputs - Visually

Adding more features to the model allows for more complex relationships to be learned

$$y_i = w_0 + w_1(sq.ft.) + w_2(\# bathrooms) + \epsilon_i$$



Coefficients tell us the rate of change **if all other features are constant**

Notation

Important: Distinction is the difference between a data input and a feature.

- Data inputs are columns of the raw data
- Features are the values (possibly transformed) for the model (done after our feature extraction h(x))

Data Input: $x_i = (x_i[1], x_i[2], ..., x_i[d])$

Output: y_i

- x_i is the i^{th} row
- $x_i[j]$ is the i^{th} row's j^{th} data input
- $h_j(x_i)$ is the j^{th} feature of the i^{th} row

Features

You can use anything you want as features and include as many of them as you want!

Generally, more features means a more complex model. This might not always be a good thing!

Choosing good features is a bit of an art.

Feature	Value	Parameter
0	1 (constant)	w_0
1	$h_1(x) \dots x[1] = \text{sq. ft.}$	w_1
2	$h_2(x) \dots x[2] = \# \text{ bath}$	w_2
D	$h_D(x)$ like $\log(x[7]) * x[2]$	w_{D}

Linear Regression Recap

Dataset

 $\{(x_i, y_i)\}_{i=1}^n$ where $x \in \mathbb{R}^d$, $y \in \mathbb{R}$

Feature Extraction

 $h(x): \mathbb{R}^d \to \mathbb{R}^D$ $h(x) = (h_0(x), h_1(x), \dots, h_D(x))$

Regression Model

 $y = f(x) + \epsilon$ $= \sum_{j=0}^{D} w_j h_j(x) + \epsilon$ $= w^T h(x) + \epsilon$

Quality Metric

 $RSS(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$

Predictor

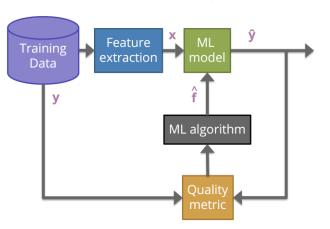
 $\widehat{w} = \min_{w} RSS(w)$

ML Algorithm

Optimized using Gradient Descent

Prediction

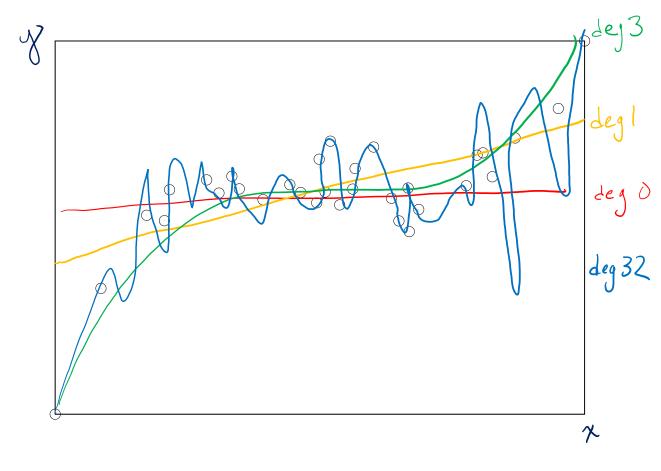
$$\hat{y} = \widehat{w}^T h(x)$$



Pre-Lecture Video 2

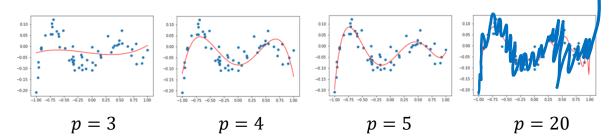
Assessing Performance

Polynomial Regression



Polynomial Regression

Consider using different degree polynomials on the same dataset



Which one has a lower RSS on this dataset?

It seems like minimizing the RSS is not the whole story here...

Performance

Why do we train ML models?

We generally want them to do well on **future** data

If we choose the model that minimizes RSS on the data it learned from, we are just choosing the model that can **memorize**, not the one that **generalizes** well.

Just because you can get 100% on a practice exam you've studied for hours, it doesn't mean you will also get 100% on the real test that you haven't seen before.

Key Idea: Assessing yourself based on something you learned from generally overestimates how well you will do in the future!

Future Performance

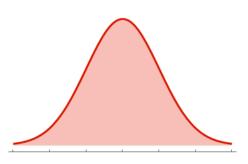
General Loss Function
$$L(y, \hat{f}(x))$$

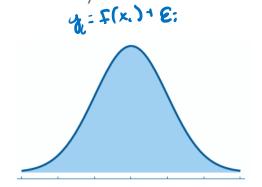
Ly $L(y, \hat{f}(x)) = (y - \hat{f}(x))^2$
What we care about is how well the modern

What we care about is how well the model will do in the future.

How do we measure this? **True error**

To do this, we need to understand uncertainty in the world





Price | Sq. Ft.

Sq. Ft.

E[L(y, $\hat{f}(x)$)] = $\sum_{x \in X} \sum_{g \in Y} L(y, \hat{f}(x)) p(x,y)$ all possible (x,y) pais

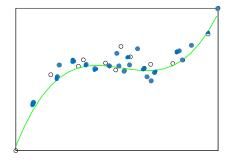
Model Assessment

How can we figure out how well a model will do on future data if we don't have any future data?

 Estimate it! We can hide data from the model to test it later as an estimate how it will do on future data

We will randomly split our dataset into a train set and a test set

- The train set is to train the model
- The test set is to estimate the performance in the future



Test Error

What we really care about is the **true error**, but we can't know that without having an infinite amount of data!

We will use the **test set** to estimate the true error

Call the error on the test set the **test error**

$$\underline{RSS_{test}}(w) = \sum_{i \in Test} (y_i - f_{\widehat{w}}(x_i))^2$$

If the test set is large enough, this can approximate the true error

Train/Test Split

If we use the test set to estimate future, how big should it be?

This comes at a cost of reducing the size of the training set though (in the absence of being able to just get more data)

In practice people generally do train:test as either

- 80:20
- 90:10

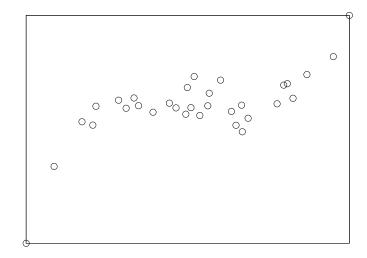
Important: Never train your model on data in the test set!

Model Complexity

Train Error

What happens to training error as we increase model complexity?

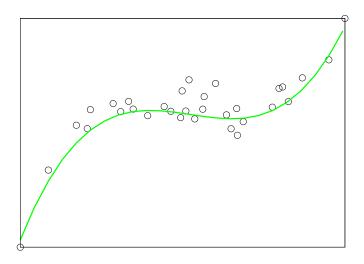
- Start with the simplest model (a constant function)
- End with a very high degree polynomial



True Error

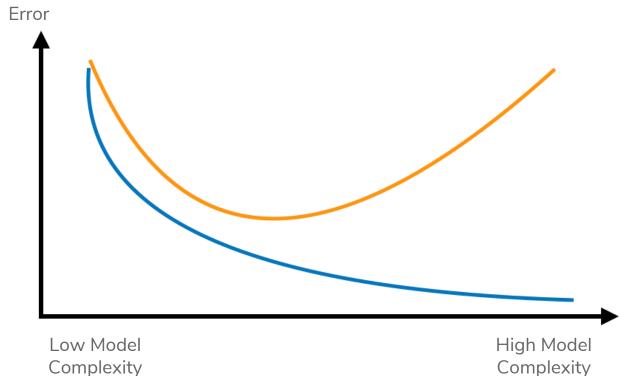
What happens to true error as we increase model complexity?

- Start with the simplest model (a constant function)
- End with a very high degree polynomial



Train/True Error

Compare what happens to train and true error as a function of model complexity

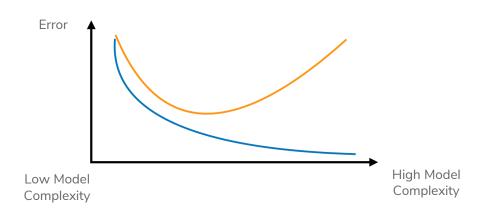


Overfitting

Overfitting happens when we too closely match the training data and fail to generalize.

Overfitting happens when, you train a predictor \widehat{w} , but there exists another predictor w' from that model that has the following properties

- $error_{true}(w') < error_{true}(\widehat{w})$
- $error_{train}(w') > error_{train}(\widehat{w})$



Bias-Variance Tradeoff

Underfitting / Overfitting

The ability to overfit/underfit is a knob we can turn based on the model complexity.

- More complex => easier to overfit
- Less complex => easier to underfit

In a bit, we will talk about how to chose the "just right", but now we want to look at this phenomena of overfitting/underfitting from another perspective.

Underfitting / Overfitting are a result of certain types of errors

Signal vs. Noise

Learning from data relies on balancing two aspects of our data

- Signal
- Noise

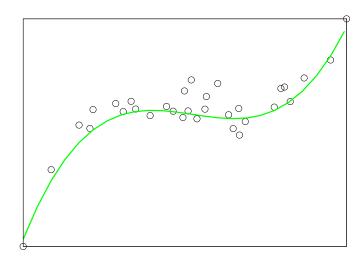
Complex models make it easier to fit too closely to the noise

Simple models have trouble picking up the signal

the signal and th and the noise and the noise and the noise and the no. why most noise a predictions fail to but some don't n and the noise and the noise and the nate silver noise nnise and the not

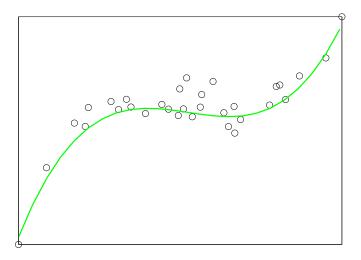
Bias

A model that is too simple fails to fit the signal. In some sense, this signifies a fundamental limitation of the model we are using to fail to fit the signal. We call this type of error **bias**.



Variance

A model that is too complicated for the task overly fits to the noise. The flexibility of the complicated model makes it capable of memorizing answers rather than learning general patterns. This contributes to the error as **variance**.



Bias-Variance Tradeoff

It turns out that bias and variance live on a spectrum, increasing one tends to decrease the other

- Simple models: High bias + Low variance
- Complex models: Low bias + High variance

In the case for squared error with regression

$$Error = Bias^2 + Variance + Noise$$

Noise comes from the regression model (ϵ_i) and is impossible to avoid!

🍧 Brain Break

Bias-Variance Tradeoff

Visually, this looks like the following! $Error = Bias^2 + Variance + Noise$

Low Model

Complexity

Dataset Size

So far our entire discussion of error assumes a fixed amount of data. What happens to our error as we get more data?

Choosing Complexity

Choosing Complexity

So far we have talked about the affect of using different complexities on our error. Now, how do we choose the right one?

Poll Everywhere

- Goal: Get you actively participating in your learning
- Typical Activity
 - Question is posed
 - Think (1 min): Think about the question on your own
 - Pair (2 min): Talk with your neighbor to discuss question
 - If you arrive at different conclusions, discuss your logic and figure out why you differ!
 - If you arrived at the same conclusion, discuss why the other answers might be wrong!
 - **Share** (1 min): We discuss the conclusions as a class
- During each of the Think and Pair stages, you will respond to the question via a Poll Everywhere poll
 - The poll will only be open for the last **15** seconds of each of the stage
 - Not worth any points, just here to help you learn!

Think &

1 min

pollev.com/cs416

Suppose I wanted to figure out the right degree polynomial for my dataset (we'll try p from 1 to 20). What procedure should I use to do this? Pick the best option

For each possible degree polynomial p:

- Train a model with degree p on the training set, pick p that has the lowest test error
- Train a model with degree p on the training set, pick p that has the highest test error
- Train a model with degree p on the test set, pick p that has the lowest test error
- Train a model with degree p on the test set, pick p that has the highest test error
- None of the above

Think &

2 min

pollev.com/cs416

Suppose I wanted to figure out the right degree polynomial for my dataset (we'll try p from 1 to 20). What procedure should I use to do this? Pick the best option

For each possible degree polynomial p:

- Train a model with degree p on the training set, pick p that has the lowest test error
- Train a model with degree p on the training set, pick p that has the highest test error
- Train a model with degree p on the test set, pick p that has the lowest test error
- Train a model with degree p on the test set, pick p that has the highest test error
- None of the above

Choosing Complexity

We can't just choose the model that has the lowest **train** error because that will favor models that overfit!

It then seems like our only other choice is to choose the model that has the lowest **test** error (since that is our approximation of the true error)

- This is almost right, but now we don't have a good estimate of the true error anymore.
- We didn't technically train the model on the test set (that's good), but we chose **which model** to use based on the performance of the test set.
 - It's no longer a stand in for "the unknown" since we probed it many times to figure out which model would be best.

Choosing Complexity

We will talk about two ways to pick the model complexity without ruining our test set.

- Using a validation set
- Doing cross validation

Validation Set

So far we have divided our dataset into train and test

Train	Test
-------	------

We can't use Test to choose our model complexity, so instead, break up Train into ANOTHER dataset

Train	Validation	Test
-------	------------	------

Validation Set

The process generally goes

```
train, validation, test = split_data(dataset)
for each model complexity p:
    model = train_model(model_p, train)
    val_err = error(model, validation)
    keep track of p with smallest val_err
return best p + error(model, test)
```


Validation Set

Pros

Easy to describe and implement

Pretty fast

Only requires training a model and predicting on the validation set for each complexity of interest

Cons

Have to sacrifice even more training data! ³

Cross Validation

In the pre-lecture videos for next week, we will introduce another way to perform validation called **cross-validation**.

We leave the slides here for reference, but we will cover this in Monday's class.

Cross-Validation

Clever idea: Use many small validation sets without losing too much training data.

Still need to break off our test set like before. After doing so, break the training set into k chunks.

Train	Test
-------	------

Chunk1	Chunk2	Chunk3	Chunk4	Test
--------	--------	--------	--------	------

For a given model complexity, train it k times. Each time use all but one chunk and use that left out chunk to determine the validation error.

Cross-Validation

The process generally goes

```
chunk 1, ..., chunk k, test = split data(dataset)
for each model complexity p:
    for \mathbf{i} in [1, k]:
       model = train model(model p, chunks - i)
       val err = error(model, chunk i)
    avg val err = average val err over chunks
    keep track of p with smallest avg val err
return model trained on train with best p +
error(model, test)
```


Cross-Validation

Pros

Don't have to actually get rid of any training data!

Cons

Can be a bit slow. For each model complexity, trains k models!

For best results, need to make k really big

- Theoretical best estimator is to use k = n
 - Called "Leave One Out Cross Validation"
- In practice, people use k = 5 to 10

Recap

Theme: Assess the performance of our models

Ideas:

- Model complexity
- Train vs. Test vs. True error
- Overfitting and Underfitting
- Bias-Variance Tradeoff
- Error as a function of train set size
- Choosing best model complexity
 - Validation set
 - Cross Validation

