
CSE/STAT 416
Deep Learning

Hunter Schafer
University of Washington
May 24, 2021

Deep
Learning

A lot of the buzz about ML recently has come from recent
advancements in deep learning.

When people talk about “deep learning” they are generally talking
about a class of models called neural networks that are a loose
approximation of how our brains work.

2

Recall:
Linear
Classifier

Remember the linear classifier based on score

3

w
0

 +
 w

1
x[

1
]

+
w

2
x[

2]
 +

 …
 +

 w
d

x[
d

]
=

0Score(x) > 0 Score(x) < 0

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]

Perceptron Graphical representation of this same classifier

This is called a perceptron 4

x[1]

x[2]

x[d]

Σ

…

1 w
0

w
1

w2

w d

෍

𝑗=1

𝑑

𝑤𝑗𝑥 𝑗 = 𝑤0 + 𝑤1𝑥 1 + …+ 𝑤𝑑𝑥[𝑑]

𝑔 𝑆𝑐𝑜𝑟𝑒 𝑥 =
1, 𝑖𝑓 ෍

𝑗=1

𝑑

𝑤𝑗𝑥[𝑗] > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Input Output

Learnable

What can a perceptrons represent?

5

𝑥1 𝑥2 𝑦

0 0 0

0 1 1

1 0 1

1 1 1

𝑥1 𝑥2 𝑦

0 0 0

0 1 0

1 0 0

1 1 1

XOR The perceptron can learn most boolean functions, but XOR always
has to ruin the fun.

This data is not linearly separable, therefore can’t be learned with
the perceptron

6

Neural
Network

Idea: Combine these perceptrons in layers to learn more complex
functions.

7

XOR
Notice that we can represent

𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥[2] 𝑂𝑅 (! 𝑥 1 𝐴𝑁𝐷 𝑥 2)

8

v[1]

-0.5

1

-1

v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1
-0.5

1

1

XOR This is a 2-layer neural network

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2

= 𝑔(−0.5 + 𝑥 1 − 𝑥 2)

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

= 𝑔(−0.5 − 𝑥 1 + 𝑥 2)

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2

= 𝑔(−0.5 + 𝑣 1 + 𝑣 2)

9

v[1]

-0.5

1

-1

v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1
-0.5

1

1

Neural
Network

Two layer neural network (alt. one hidden-layer neural network)

Single

𝑜𝑢𝑡 𝑥 = 𝑔 𝑤0 +෍

𝑗

𝑤𝑗𝑥 𝑗

1-hidden layer

𝑜𝑢𝑡 𝑥 = 𝑔 𝑤0 + ෍

𝑘

𝑤𝑘𝑔 𝑤0
(𝑘)

+෍

𝑗

𝑤𝑗
𝑘
𝑥 𝑗

10

Power of 2-
layer NN

A surprising fact is that a 2-layer network can represent any
function, if we allow enough nodes in hidden layer.

For this example, consider regression function with one input.

See more here:
http://neuralnetworksanddeeplearning.com/chap4.html 11

x

v[1]

v[2]

Σ

http://neuralnetworksanddeeplearning.com/chap4.html

Class
Session

12

Activation
Function

Before, we were using the sign activation function.

▪ This is not generally used in practice.
- Not differentiable
- No notion of confidence

Generally, people use different sigmoid functions as activation
functions. For example, the logistic function

13

x[1]

x[2]

x[d]

Σ

…

1 w
0

w
1

w2

w d g =
1

1 + e− Score(x)

dX

j = 0

wj x[j]

Sigmoid
Functions

14

Neural
Networks

Generally layers and layers of linear models and non-linearities
(activation functions).

Have been around for about 50 years

▪ Fell in “disfavor” in the 90s when simpler models were doing
well

In the last few years, have had a huge resurgence

▪ Impressive accuracy on several benchmark problems

▪ Have risen in popularity due to huge datasets, GPUs, and
improvements to

15

Overfitting
NNs

Are NNs likely to overfit? YES.

▪ Consequence of being able to fit any function!

How to avoid overfitting?

▪ Get more training data

▪ Few hidden nodes / better topology
- Rule of thumb: 3-layer NNs outperform 2-layer NNs,

but going deeper only helps if you are very careful
(different story next time with convolutional neural
networks)

▪ Regularization
- Dropout

▪ Early stopping

16

Application
to Computer
Vision

17

Image
Features

Features in computer vision are local detectors

▪ Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)
18

Face!

Eye

Eye

Nose

Mouth

The Past A popular approach to computer vision was to make hand-crafted
features for object detection

Relies on coming up with these features by hand (yuck!)

19

Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created
features

NN to the
Rescue

Neural Networks implicitly find these low level features for us!

Each layer learns more and more complex features

20

Layer 1 Layer 2 Layer 3 Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

Brain BreakBrain BreakBrain Break

21

Classification
or
Regression

You can use neural networks for classification and regression!

Regression

The output layer will generally have one node that is the output
(outputs a single number)

Classification

The output layer will have one node per class. Usually take the
node with the highest score as the prediction for an example. Can
also use the logistic function to turn scores into probabilities!

22

Learning
Coefficients

So the idea of neural networks might make sense, but how do we
actually go about learning the coefficients in the layers?

First we need to define a quality metric or cost function

▪ For regression, generally use RSS or RMSE

▪ For classification, generally use something call the Cross
Entropy loss.

Can we use gradient descent here? Actually yes!

▪ How do we take the derivative of a network?

▪ Are there convergence guarantees?

23

Backpropagation What does gradient descent do in general? Have the model make
predictions and update the model in a special way such that the
new weights have lower error.

To do gradient descent with neural networks, we generally use
the backpropagation algorithm.

1. Do a forward pass of the data through the network to get
predictions

2. Compare predictions to true values

3. Backpropagate errors so the weights make better predictions

24

Training NN It’s pretty expensive to do this update for the entire dataset at
once, so it’s common to break it up into small batches to process
individually.

However, processing each batch only once isn’t enough. You
generally have to repeatedly update the model parameters. We
call an iteration that goes over every batch once an epoch.

25

for i in range(num_epochs):
for batch in batches(training_data):
preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare
model.backprop(diffs) # Backpropagation

Brain BreakBrain BreakBrain Break

26

Training NN Neural Networks have MANY hyperparameters

▪ How many hidden layers and hidden neurons?

▪ What activation function?

▪ What is the learning rate for gradient descent?

▪ What is the batch size?

▪ How many epochs to train?

▪ And much much more!

How do you decide these values should be?

The most frustrating thing is that we don’t have a great grasp on
how these things impact performance, so you generally have to
try them all.

27

¯_(ツ)_/¯

Hyperparameter
Optimization

28

Hyperparameter
Optimization

29

Hyperparameter
Optimization

30

Hyperparameter
Optimization

Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

31

Hyperparameter
Optimization

In general, hyperparameter optimization is a non-convex
optimization problem where we know very little about how the
function behaves.

Your time is valuable and compute time is cheap. Write your code
to be modular so you can use compute time to try a range of
values.

Tools for different purposes

▪ Very few evaluations: use random search (and pray)

▪ Few evaluations and long-run computations: See last slide

▪ Moderate number of evaluations: Bayesian optimization

▪ Many evaluations possible: Use random search. Why
overthink it?

32

NN
Convergence

In general, loss functions with neural networks are not convex.

This means the backprop algorithm for gradient descent will only
converge to a local optima.

Like with k-means, this means that how you initialize the weights
is really important and can impact the final result.

How should you initialize weights?

▪ Usually people do random initialization

All the same rules apply from gradient descent with a learning
rate, you might miss the mark of the local optima if the step size is
too large.

33

¯_(ツ)_/¯

