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Deep 
Learning

A lot of the buzz about ML recently has come from recent 
advancements in deep learning. 

When people talk about “deep learning” they are generally talking 
about a class of models called neural networks that are a loose 
approximation of how our brains work. 
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Recall: 
Linear 
Classifier

Remember the linear classifier based on score

3

w
0

 +
 w

1
x[

1
] 

+ 
w

2
x[

2]
 +

 …
 +

 w
d

x[
d

]
= 

0Score(x) > 0 Score(x) < 0

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]



Perceptron Graphical representation of this same classifier

This is called a perceptron 4
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Learnable

What can a perceptrons represent?
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XOR The perceptron can learn most boolean functions, but XOR always 
has to ruin the fun.

This data is not linearly separable, therefore can’t be learned with 
the perceptron
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Neural 
Network

Idea: Combine these perceptrons in layers to learn more complex 
functions.
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XOR
Notice that we can represent 

𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥[2] 𝑂𝑅 (! 𝑥 1 𝐴𝑁𝐷 𝑥 2 )
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XOR This is a 2-layer neural network 

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2

= 𝑔(−0.5 + 𝑥 1 − 𝑥 2 )

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

= 𝑔(−0.5 − 𝑥 1 + 𝑥 2 )

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2

= 𝑔(−0.5 + 𝑣 1 + 𝑣 2 )
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Neural 
Network

Two layer neural network (alt. one hidden-layer neural network)
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Power of 2-
layer NN

A surprising fact is that a 2-layer network can represent any 
function, if we allow enough nodes in hidden layer.

For this example, consider regression function with one input.

See more here: 
http://neuralnetworksanddeeplearning.com/chap4.html 11

x

v[1]

v[2]

Σ

http://neuralnetworksanddeeplearning.com/chap4.html


Class
Session

12



Activation 
Function

Before, we were using the sign activation function.

▪ This is not generally used in practice. 
- Not differentiable 
- No notion of confidence

Generally, people use different sigmoid functions as activation 
functions. For example, the logistic function
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Sigmoid 
Functions
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Neural 
Networks

Generally layers and layers of linear models and non-linearities 
(activation functions).

Have been around for about 50 years

▪ Fell in “disfavor” in the 90s when simpler models were doing 
well

In the last few years, have had a huge resurgence 

▪ Impressive accuracy on several benchmark problems

▪ Have risen in popularity due to huge datasets, GPUs, and 
improvements to 
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Overfitting 
NNs

Are NNs likely to overfit? YES. 

▪ Consequence of being able to fit any function! 

How to avoid overfitting?

▪ Get more training data

▪ Few hidden nodes / better topology 
- Rule of thumb: 3-layer NNs outperform 2-layer NNs, 

but going deeper only helps if you are very careful 
(different story next time with convolutional neural 
networks)

▪ Regularization
- Dropout 

▪ Early stopping
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Application 
to Computer 
Vision
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Image 
Features

Features in computer vision are local detectors 

▪ Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)
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The Past A popular approach to computer vision was to make hand-crafted 
features for object detection

Relies on coming up with these features by hand (yuck!)
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Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created 
features



NN to the 
Rescue

Neural Networks implicitly find these low level features for us!

Each layer learns more and more complex features
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Layer 1 Layer 2 Layer 3 Prediction

Example 
detectors 
learned

Example 
interest points 
detected

[Zeiler & Fergus ‘13]



Brain BreakBrain BreakBrain Break
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Classification 
or 
Regression

You can use neural networks for classification and regression! 

Regression

The output layer will generally have one node that is the output 
(outputs a single number)

Classification

The output layer will have one node per class. Usually take the 
node with the highest score as the prediction for an example. Can 
also use the logistic function to turn scores into probabilities! 
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Learning 
Coefficients

So the idea of neural networks might make sense, but how do we 
actually go about learning the coefficients in the layers?

First we need to define a quality metric or cost function

▪ For regression, generally use RSS or RMSE

▪ For classification, generally use something call the Cross 
Entropy loss. 

Can we use gradient descent here? Actually yes!

▪ How do we take the derivative of a network? 

▪ Are there convergence guarantees? 
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Backpropagation What does gradient descent do in general? Have the model make 
predictions and update the model in a special way such that the 
new weights have lower error. 

To do gradient descent with neural networks, we generally use 
the backpropagation algorithm.

1. Do a forward pass of the data through the network to get 
predictions

2. Compare predictions to true values

3. Backpropagate errors so the weights make better predictions
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Training NN It’s pretty expensive to do this update for the entire dataset at 
once, so it’s common to break it up into small batches to process 
individually. 

However, processing each batch only once isn’t enough. You 
generally have to repeatedly update the model parameters. We 
call an iteration that goes over every batch once an epoch.
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for i in range(num_epochs):
for batch in batches(training_data):
preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare
model.backprop(diffs) # Backpropagation



Brain BreakBrain BreakBrain Break

26



Training NN Neural Networks have MANY hyperparameters

▪ How many hidden layers and hidden neurons?

▪ What activation function? 

▪ What is the learning rate for gradient descent?

▪ What is the batch size?

▪ How many epochs to train?

▪ And much much more! 

How do you decide these values should be?

The most frustrating thing is that we don’t have a great grasp on 
how these things impact performance, so you generally have to 
try them all. 
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¯\_(ツ)_/¯



Hyperparameter 
Optimization
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Hyperparameter 
Optimization
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Hyperparameter 
Optimization
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Hyperparameter 
Optimization

Recent work attempts to speed up hyperparameter evaluation by 
stopping poor performing settings before they are fully trained.
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Hyperparameter 
Optimization

In general, hyperparameter optimization is a non-convex 
optimization problem where we know very little about how the 
function behaves. 

Your time is valuable and compute time is cheap. Write your code 
to be modular so you can use compute time to try a range of 
values.

Tools for different purposes

▪ Very few evaluations: use random search (and pray) 

▪ Few evaluations and long-run computations: See last slide

▪ Moderate number of evaluations: Bayesian optimization

▪ Many evaluations possible: Use random search. Why 
overthink it?
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NN 
Convergence

In general, loss functions with neural networks are not convex. 

This means the backprop algorithm for gradient descent will only 
converge to a local optima. 

Like with k-means, this means that how you initialize the weights 
is really important and can impact the final result. 

How should you initialize weights? 

▪ Usually people do random initialization

All the same rules apply from gradient descent with a learning 
rate, you might miss the mark of the local optima if the step size is 
too large.
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