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Last Time…
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Co-occurrence 
Matrix

Solution 2
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Co-occurrence 
Matrix

Idea: People who bought this, also bought …

▪ E.g. people who buy diapers also buy baby wipes

Make co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number of items) 
of item purchases. 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗

𝐶 will be symmetric (𝐶𝑖𝑗 = 𝐶𝑗𝑖) 8



Normalization The count matrix 𝐶 needs to normalized, otherwise popular items 
will drown out others (will just reduce to popularity).

Normalize the counts by using the Jaccard similarity instead 

𝑆𝑖𝑗 =
# purchased 𝑖 and 𝑗

# purchased 𝑖 or 𝑗

Could also use something like Cosine similarity, but Jaccard is 
popular
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Analysis Pros:

▪ It personalizes to the user

Cons

▪ Does not utilize 
- Context (e.g. time of day)
- User features (e.g. age)
- Product features (e.g. baby vs electronics)

▪ Scalability
- Similarity is size 𝑚2 where 𝑚 is the number of items

▪ Cold start problem 
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Matrix 
Factorization

Solution 4
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Matrix 
Completion

Want to recommend movies based
on user ratings for movies.

Challenge: Users have rated relatively
few of the entire catalog

Can think of this as a matrix of 
users and ratings with missing data!
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User Movie Rating

Input Data



Assumption

Matrix completion is an impossible task without some 
assumptions on data (unknowns could be anything otherwise).

Assume: There are 𝑘 types of movies (e.g. action, romance, etc.) 
which users have various interests in. 

This means we can describe a movie 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, drama, …

▪ Example: 𝑹𝒗 = 0.3, 0.01, 1.5, …

We can describe each user 𝒖 with a feature vector 𝑳𝒖
▪ How much she likes action, romance, drama, ….

▪ Example: 𝐿𝑢 = [2.3, 0 , 0.7 , … ]

Estimate rating for user 𝒖 and movie 𝒗 as
𝑅𝑎𝑡𝑖𝑛𝑔 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 + … 15



Example Suppose we have learned the following user and movie features 
using 2 features

Then we can predict what each user would rate each movie
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Matrix 
Factorization

Find 𝐿 and 𝑅 that when multiplied, achieve predicted ratings that 
are close to the values that we have data for.

Our quality metric will be (could use others)

𝐿, 𝑅 = argmin
𝐿,𝑅



𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2
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≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating



Unique 
Solution?

Is this problem well posed? Unfortunately, there is not a unique 
solution 

For example, assume we had a solution

Then doubling everything in 𝐿 and halving everything in 𝑅 is also a 
valid solution. The same is true for all constant multiples.
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Coordinate 
Descent
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Find 𝐿 & 𝑅 Remember, our quality metric is 

𝐿, 𝑅 = argmin
𝐿,𝑅



𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Gradient descent is not used much in practice to optimize this, 
since it is much easier to implement coordinate descent (i.e. 
Alternating Least Squares) to find 𝐿 and 𝑅
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Coordinate 
Descent

Goal: Minimize some function 𝑔 𝑤 = 𝑔(𝑤0, 𝑤1, … , 𝑤𝐷)

Instead of finding optima for all coordinates, do it for one 
coordinate at a time! 

To pick coordinate, can do round robin or 
pick at random each time.

Guaranteed to find an optimal solution
under some constraints
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𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ෝ𝑤 = 0 (𝑜𝑟 𝑠𝑚𝑎𝑟𝑡𝑙𝑦)
𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑:

𝑝𝑖𝑐𝑘 𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑗
ෝ𝑤𝑗= argmin

𝑤
𝑔(ෝ𝑤0 , … , ෝ𝑤𝑗−1 , 𝑤, ෝ𝑤𝑗+1 , … , ෝ𝑤𝐷 )



Coordinate 
Descent for 
Matrix 
Factorization

𝐿, 𝑅 = argmin
𝐿,𝑅



𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Fix movie factors 𝑅 and optimize for 𝐿𝑢

First key insight:
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Coordinate 
Descent for 
Matrix 
Factorization

Holding movies fixed, we can solve for each user separately! 

For each user 𝑢

𝐿𝑢 = argmin
𝐿𝑢



𝑣∈𝑉𝑢

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Second key insight:

Looks like linear regression!
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Overall 
Algorithm

Want to optimize

𝐿, 𝑅 = argmin
𝐿,𝑅



𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix movie factors 𝑅, and optimize for user factors separately

▪ Independent least squares for each user

𝐿𝑢 = argmin
𝐿𝑢



𝑣∈𝑉𝑢

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix user factors, and optimize for movie factors separately

▪ Independent least squares for each movie

𝑅𝑣 = argmin
𝑅𝑣



𝑢∈𝑈𝑣

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Repeatedly do these steps until convergence (to local optima) 

System might be underdetermined: Use regularization
24



pollev.com/cs416

ThinkThinkThink

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current residual sum of squares loss? (number)

If the next step of coordinate descent updates the user factors, 
which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None

25

1.5 minutes



pollev.com/cs416

ThinkThinkThink

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current residual sum of squares loss? (number)

If the next step of coordinate descent updates the user factors, 
which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None
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3 minutes



Using 
Results

Use movie factors 𝑅 to discover “topics” for movie 𝑣: 𝑅𝑣

Use user factors 𝐿 to discover “topic preferences” for user 𝑢: 𝐿𝑢

Predict how much a user 𝑢 will like a movie 𝑣
𝑅𝑎𝑡𝑖𝑛𝑔 𝑢, 𝑣 = 𝐿𝑢 ⋅ 𝑅𝑣

Recommendations: Sort movies user hasn’t watched by 
𝑅𝑎𝑡𝑖𝑛𝑔 𝑢, 𝑣

▪ Recommend movies with highest predicted rating
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Brain BreakBrain BreakBrain Break
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Topics The “features” found by matrix factorization don’t always 
correspond to something meaningful (like film genre), but 
sometimes they do! 

▪ Remember, the exact values are meaningless since we can 
scale them an infinite number of ways, but directions might 
mean something

29

Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X = ≈X L
R’

=

Application to text data:



pollev.com/cs416

ThinkThinkThink

Which of the following are true about matrix factorization for 
recommendation systems? 

A. Provides personalization

B. Captures context (e.g. time of day)

C. Solves the cold start problem

30
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Blending Models: 
Featurized Matrix 
Factorization

Final Solution
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Cold Start 
Again

Consider a new user 𝑢′ and we want to predict their ratings

No previous ratings for them so: for all 𝑣,  𝑟𝑢′𝑣 = ?

Objective

𝐿, 𝑅 = argmin
𝐿,𝑅



𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2 + 𝜆𝑈 𝐿

𝐹

2
+ 𝜆𝑉 𝑅

𝐹

2

Optimal user factor: 𝐿𝑢′ = 0 because there is only penalty

Therefore, for all 𝑣,  Ƹ𝑟𝑢′𝑣 = 0 which seems like a problem
32



Blend Models Idea: Learn a model to supplement the matrix factorization model! 

Create a feature vector for each movie 

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model
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Add 
Personalization

Of course, not all users have same preferences. 

Include a user-specific deviation from global model

Can also add user specific features to model

34



Featurized
Matrix 
Factorization

Feature-based approach 

▪ Feature representation of user and movie fixed

▪ Can address cold start problem

Matrix factorization approach

▪ Suffers from cold start problem

▪ User & Movie features are learned from data

A unified model
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Evaluating 
Recommendations

36



Accuracy? Could we use classification accuracy to identify which 
recommender system is performing best? 

▪ We don’t really care to predict what a person does not like

▪ Instead, we want to find the relatively few items from the 
catalog that they will like

▪ Similar to  a class imbalance 

Instead, we want to look at our set of recommendations and ask:

▪ How many of our recommendations did the user like?

▪ How many of the items that the user liked did we 
recommend?

Sound familiar?
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Precision -
Recall

Precision and recall for recommender systems

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

# 𝑠ℎ𝑜𝑤𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

#𝑙𝑖𝑘𝑒𝑑

For a given recommender system, plot precision and recall for 
different number of recommended items 
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Comparing 
Algorithms

In general, it depends

▪ What is true always is that for a given precision, we want 
recall to be as large as possible (and vice versa)

▪ What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision 
(precision at k)
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Optional: 
Offline 
Replay

Challenge: Deploying a new recommender system in-the-wild can 
be scary! Might not have confidence in how it will do.

One clever idea:  use a simple model to start and record it’s 
predictions and if the user interacted with the content (e.g., 
watched movie). Use this data of the model in deployment to test 
new models without needing to deploy them!

Test your new model on this logged data, if your model makes the 
same prediction as the simple model did originally, use that as a 
test example! 
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Recap

Now you can:

▪ Describe the goal of a recommender system

▪ Provide examples of applications where recommender 
systems are useful

▪ Implement a co-occurrence based recommender system

▪ Describe the input (observations, number of “topics”) and 
output (“topic” vectors, predicted values) of a matrix 
factorization model

▪ Implement a coordinate descent algorithm for optimizing the 
matrix factorization objective presented

▪ Exploit estimated “topic” vectors to make recommendations

▪ Describe the cold-start problem and ways to handle it (e.g., 
incorporating features)

▪ Analyze performance of various recommender systems in 
terms of precision and recall 

▪ Use AUC or precision-at-k to select amongst candidate 
algorithms 41


