Welcorre! Say hi or ask Os in clust before/daring/after cluss

CSE/STAT 416

Precision/Recall k-Nearest Neighbors

Hunter Schafer Paul G. Allen School of Computer Science & Engineering University of Washington

May 3, 2021

Musc. Charlie XCX

Pre-Lecture Video

Detecting Spam

Imagine I made a "Dummy Classifier" for detecting spam

- The classifier ignores the input, and always predicts spam.
- This actually results in 90% accuracy! Why?
 Most emails are spam...

This is called the **majority class classifier**.

A classifier as simple as the majority class classifier can have a high accuracy if there is a **class imbalance**.

 A class imbalance is when one class appears much more frequently than another in the dataset

This might suggest that accuracy isn't enough to tell us if a model is a good model.

Assessing Accuracy

Always digging in and ask critical questions of your accuracy.

- Is there a class imbalance?
- How does it compare to a baseline approach?
 - Random guessing
 - Majority class
 - ----
- Most important: What does my application need?
 - What's good enough for user experience?
 - What is the impact of a mistake we make?

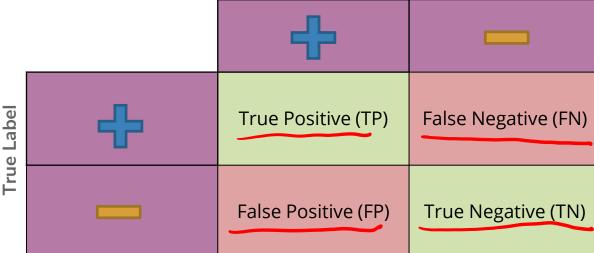
Confusion Matrix

For binary classification, there are only two types of mistakes

$$\hat{y} = +1, y = -1$$

 $\hat{y} = -1, y = +1$

Generally we make a **confusion matrix** to understand mistakes.



Predicted Label

Binary Classification Measures

Notation • $C_{TP} = #TP$, $C_{FP} = #FP$, $C_{TN} = #TN$, $C_{FN} = #FN$ $N = C_{TP} + C_{FP} + C_{TN} + C_{FN}$ $N_P = C_{TP} + C_{FP}, \quad N_N = C_{FP} + C_{TN}$ н. **Error Rate A** True Positive Rate or Recall $C_{FP} + C_{FN}$ $\frac{T_P}{N_P}$ Ν **Accuracy Rate** A Precision $C_{TP} + C_{TN}$ T_P $\overline{C_{TP} + C_{FP}}$ Ν 🕺 False Positive rate (FPR) F1-Score $2\frac{Precision \cdot Recall}{2}$ $\frac{C_{FP}}{N_N}$ Precison + RecallFalse Negative Rate (FNR) C_{FN} See more! Np

Change Threshold

What if I never want to make a false positive prediction?

Always predict negative
$$(\alpha = \infty)$$

What if I never want to make a false negative prediction?

Always predicting positive (a = - 00)

One way to control for our application is to change the scoring threshold. (Could also change intercept!)

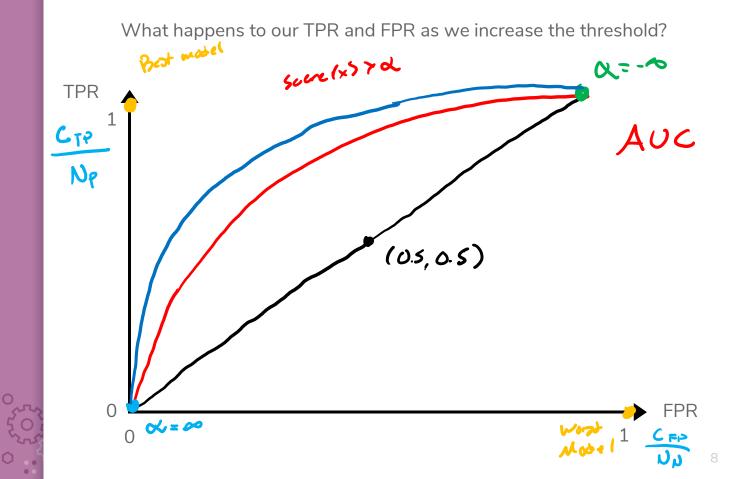
If
$$Score(x) > \alpha$$
:
- Predict $\hat{y} = +1$

Else:

- Predict $\hat{y} = -1$

ROC Curve

 ∇



Assessing Accuracy

Often with binary classification, we treat the positive label as being the more important of the two. We then often then focus on these metrics:

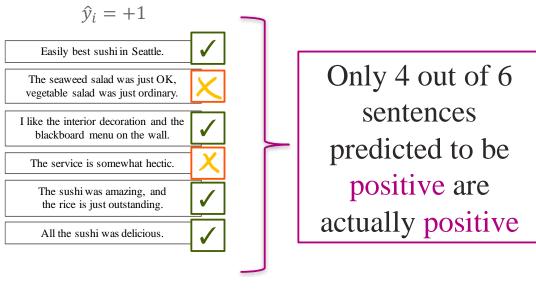
Precision: Of the ones I predicted positive, how many of them were actually positive?

Recall: Of all the things that are truly positive, how many of them did I correctly predict as positive?

Precision

What fraction of the examples I predicted positive were correct?

Sentences predicted to be positive:



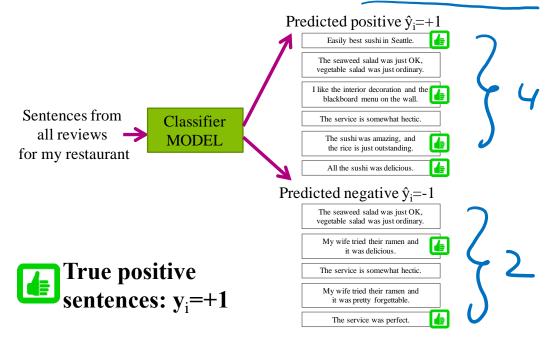
 $precision = \frac{C_{TP}}{C_{TP}}$

3

11.0

Recall

Of the truly positive examples, how many were predicted positive?



$$recall = \frac{C_{TP}}{N_P} = \frac{C_{TP}}{C_{TP} + C_{FN}} = \frac{4}{4 + 2} = \frac{2}{3}$$

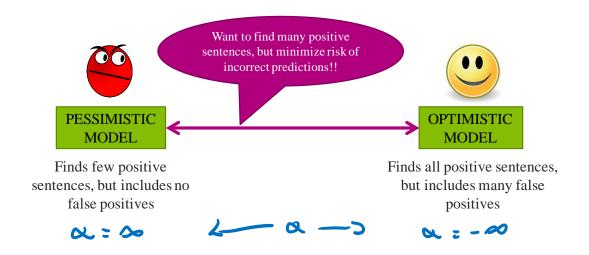
Precision & Recall

An optimistic model will predict almost everything as positive

High recall, low precision

A pessimistic model will predict almost everything as negative

High precision, low recall



Controlling Precision/Recall

Depending on your application, precision or recall might be more important

 Ideally you will have high values for both, but generally increasing recall will decrease precision and vice versa.

For logistic regression, we can control for how optimistic the model is by changing the threshold for positive classification

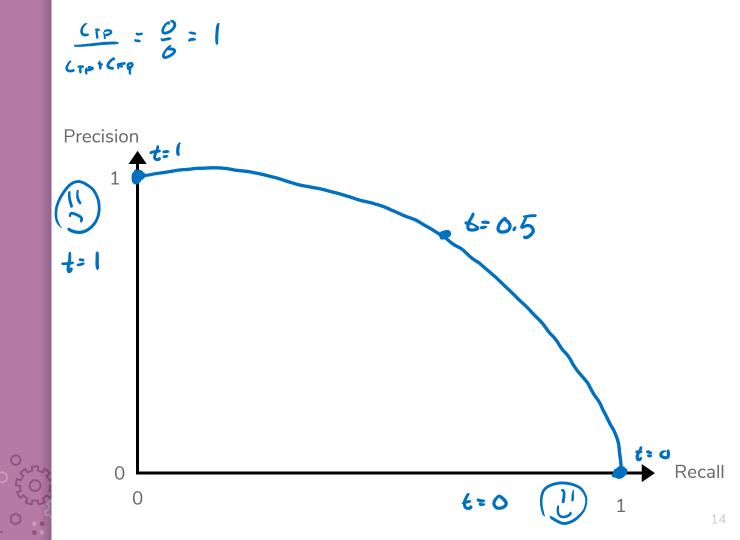
Before

 $\hat{y}_i = +1$ if $\hat{P}(y = +1|x_i) > 0.5$ else $\hat{y}_i = -1$

Now

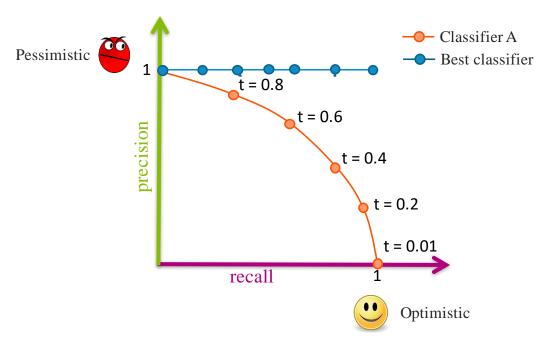
 $\hat{y}_i = +1$ if $\hat{P}(y = +1|x_i) > t$ else $\hat{y}_i = -1$

Precision-Recall Curve



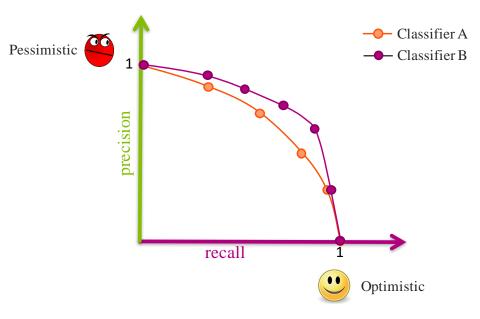
Precision-Recall Curve

Can try every threshold to get a curve like below



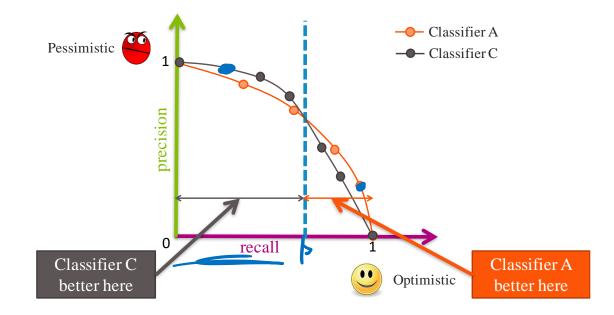
Precision-Recall Curve

Sometimes, Classifier B is strictly better than Classifier A



Precision-Recall Curve

Most times, the classifiers are incomparable



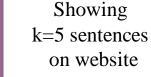
Compare Classifiers

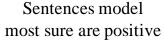
Often come up with a single number to describe it

- F1-score, AUC, etc.
- Remember, what your application needs is most important

Also common to use **precision at k**

 If you show the top k most likely positive examples, how many of them are true positives





Class Session

Roadmap

- 1. Housing Prices Regression
 - Regression Model
 - Assessing Performance
 - Ridge Regression
 - LASSO
- 2. Sentiment Analysis Classification
 - Classification Overview
 - Logistic Regression
 - Bias / Fairness
 - Decision Trees
 - Ensemble Methods
- 3. Document Retrieval Clustering and Similarity 7
 - Precision / Recall
 - k-Nearest Neighbor
 - Kernel Methods
 - Locality Sensitive Hashing
 - Clustering
 - Hierarchical Clustering

20

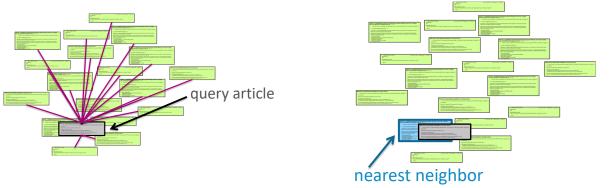
Unsaperised Learnin

Jupervised Lewring

Document Retrieval

- Consider you had some time to read a book and wanted to find other books similar to that one.
- If we wanted to write an system to recommend books
 - How do we measure similarity?
 - How do we search over books?
 - How do we measure accuracy?

Big Idea: Define an **embedding** and a **similarity metric** for the books, and find the **"nearest neighbor"** to some query book.



Nearest Neighbors

1-Nearest Neighbor

- x_q : Query example (e.g. my book)
- x_1, \dots, x_n : Corpus of documents (e.g. Amazon books)

Output

The document in corpus that is most similar to x_q

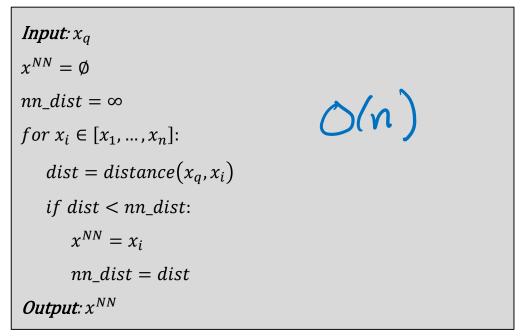
$$x^{NN} = \underset{x_i \in [x_1, \dots, x_n]}{\operatorname{arg\,min}} \operatorname{distance}(x_q, x_i)$$

It's very critical to properly define how we represent each document x_i and the similarity metric *distance*! Different definitions will lead to very different results.

1-Nearest Neighbor

How long does it take to find the 1-NN? About *n* operations

n= 100,000,000



k-Nearest Neighbors

Input

- x_q: Query example (e.g. my book)
- x_1, \dots, x_n : Corpus of documents (e.g. Amazon books)

Output

List of k documents most similar to x_q

Formally

k-Nearest Neighbors

convent K-NNS

$$C_{uvver} \perp$$
 See
 Next

 $\chi^{k-NN} = [\chi_1, \chi_2, \chi_3]$
 χ_4
 $\chi^{k-NN} = [\chi_1, \chi_2, \chi_4]$
 $\mu_{d,555} = [4, 7, 5]$
 3
 $nn.dist_2 = [4, 5, 8]$

Same idea as 1-NN algorithm, but maintain list of k-NN

Input: x_q $\begin{aligned} X^{k-NN} &= [x_1, \dots, x_k] \\ nn_dists &= [dist(x_1, x_q), dist(x_2, x_q), \dots, dist(x_k, x_q)] \\ for \ x_i \in [x_{k+1}, \dots, x_n]: \end{aligned}$ $dist = distance(x_a, x_i)$ *if* $dist < max(nn_dists)$: remove largest dist from X^{k-NN} and nn_dists add x_i to X^{k-NN} and distance (x_a, x_i) to nn_dists *Output:* X^{k-NN}

k-Nearest Neighbors

 $\Box \dot{\Box} \Delta$

Brain Brach: 3:06

Can be used in many circumstances!

Retrieval

Return X^{k-NN}

Regression

Classification

 $\hat{y}_i = \frac{1}{k} \sum_{j=1}^{k} x^{NN_j}$

 $\hat{y}_i = majority_class(X^{k-NN})$

) Will discuss Wed.

Embeddings

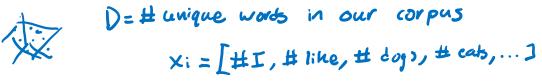
Important Points

While the formalization of these algorithms are fairly tedious, the intuition is fairly simple. Find the 1 or k nearest neighbors to a given document and return those as the answer.

This intuition relies on answering two important questions

- How do we represent the documents x_i ?
- How do we measure the distance $distance(x_q, x_i)$?

Document Representation



Like our previous ML algorithms, we will want to make a vector out of the document to represent it as a point in space.

Simplest representation is the **bag-of-words** representation.

- Each document will become a W dimension vector where W is the number of words in the entire corpus of documents
- The value of x_i[j] will be the number of times word j appears in document i.
- This ignores order of words in the document, just the counts.

"I like dogs" -> [1,1,1,0] "I like cate" -> [1,1,0,1] "I vike dogs dogs" -> [1, 1, 2, 0]

Bag of Words

Pros

- Very simple to describe
- Very simple to compute

Cons

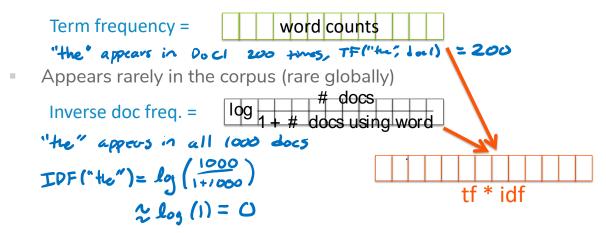
- Common words like "the" and "a" dominate counts of uncommon words
- Often it's the uncommon words that uniquely define a doc.

TF-IDF

TF-IDF: Term Frequency × Inverse Document Frequency

Goal: Emphasize important words

Appear frequently in the document (common locally)



Do a pair-wise multiplication to compute the TF-IDF for each word

 Words that appear in every document will have a small IDF making the TF-IDF small!

num features -> D= W

Distance

Euclidian Distance

Now we will define what similarity/distance means

Want to define how "close" two vectors are. A smaller value for distance means they are closer, a large value for distance means they are farther away.

The simplest way to define distance between vectors is the **Euclidean distance**

1

distance
$$(x_i, x_q) = ||x_i - x_q||_2$$

$$= \sqrt{\sum_{j=1}^{D} (x_i[j] - x_q[j])^2}$$

Manhattan Distance

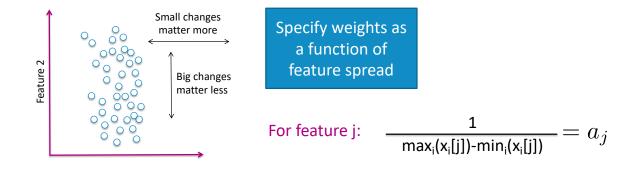
XIZJ

Another common choice of distance is the Manhattan Distance

$$distance(x_i, x_q) = ||x_i - x_q|$$
$$= \sum_{j=1}^{D} |x_i[j] - x_q[j]|$$

Weighted Distances

Some features vary more than others or are measured in different units. We can weight different dimensions differently to make the distance metric more reasonable.



Weighted Educlidean distance

distance
$$(x_i, x_q) = \sqrt{\sum_{j=1}^D a_j^2 (x_i[j] - x_q[j])^2}$$

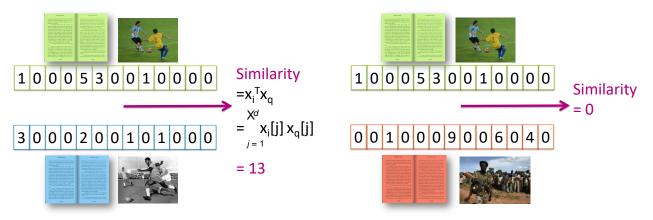
Similarity

Another natural similarity measure would use

 $x_i^T x_q = \sum_{j=1}^D x_i[j] x_q[j]$

Notice this is a measure of similarity, not distance

This means a bigger number is better



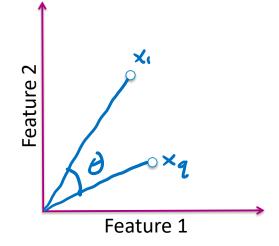
Cosine Similarity

Should we normalize the vectors before finding the similarity?

similarity =
$$\frac{x_i^T x_q}{\left|\left|x_i\right|\right|_2 \left|\left|x_q\right|\right|_2} = \underbrace{\cos(\theta)}$$

Note:

- Not a true distance metric
- Efficient for sparse vectors!



Cosine Similarity

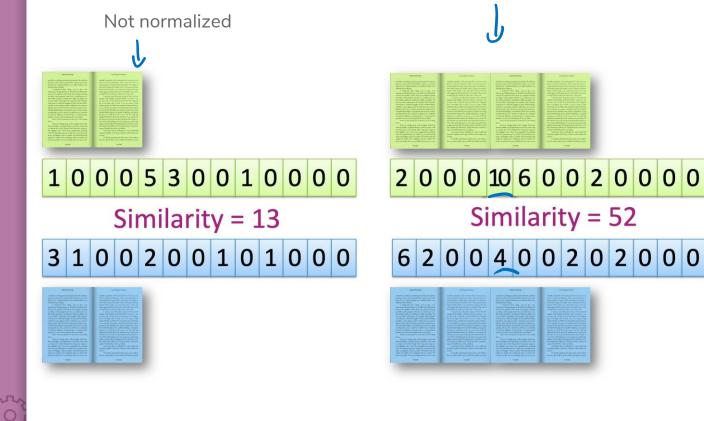
In general

 $-1 \le cosine \ similarity \le 1$ For positive features (like TF-IDF) $0 \le cosine \ similarity \le 1$

Define

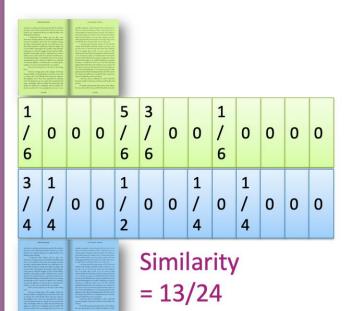
distance = 1 - similarity

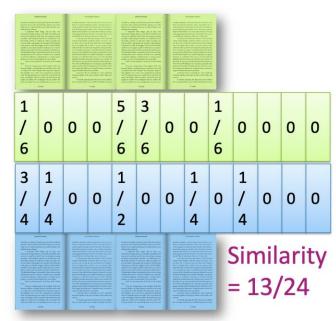
To Normalize or Not To Normalize?



To Normalize or Not To Normalize?

Normalized





To Normalize or Not To Normalize?

Normalization is not desired when comparing documents of different sizes since it ignores length.

long document

short tweet

Normalizing can make dissimilar objects appear more similar

long doc	Catalogue	long doc	Tenerosee
A set of the set of th		The second secon	

Common compromise: Just cap maximum word counts

In practice, can use multiple distance metrics and combine them using some defined weights

I Poll Everywhere

Think &

3 min

Not a real Poll Everywhere question, just time to work!

For the given documents, what are their Euclidean Distance and Cosine Similarity?

Assume we are using a bag of words representation

Document 1: "I really like dogs"

Document 2: "dogs are really really awesome"

Steps:

- Write out bag of words vectors
- Compute Euclidean distance
- Compute Cosine similarity

I Poll Everywhere

Think &

pollev.com/cs416

Docl = "I really like dojs" Doc2 = "dojs ave really really avesome" Bow = [I, really, like, dogs, are, avesone] $x_1 = [1, 1, 1, 1, 0, 0]$ $x_2 = [0, 2, 0, 1, 1, 1]$ Euclidean Distance = 11x, -x2112 $b(x, x_2) = \sqrt{(1-0)^2 + (1-2)^2 + (1-0)^2 + (1-1)^2 + (0-1)^2 + (0-1)^2}$ $=\sqrt{5}$ Cosine Distance = $1 - \frac{x_i' x_2}{||x_i||_2 ||x_e||_2}$ $\text{List}(x_1, x_2) = 1 - \frac{1 \cdot 0 + 1 \cdot 2 + 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1}{\sqrt{1^2 + 1^2 + 1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 1^2 + 1^2 + 0^2 +$ $=1-\frac{3}{\sqrt{4}\sqrt{5}} \approx 0.433$

Recap

Theme: Use nearest neighbors to recommend documents. Ideas:

- Precision and Recall Curves
- Implement a nearest neighbor algorithm
- Compare and contrast different document representations
 - Emphasize important words with TF-IDF
- Compare and contrast different measurements of similarity
 - Euclidean and weighted Euclidean
 - Cosine similarity and inner-product similarity

