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Goal for today!
PyTorch Introduction + CNNs



Convolutions

(PART I)

CORRESPONDS TO SLIDE #16 REFERENCE

https://colah.github.io/posts/2014-07-Understanding-Convolutions/


Given two functions f and g, we define the convolution to be 
as the following integral transform:

Okay, what the heck. 

What does this mean??? 

I’ve never seen this in my life…

Am I going to fail this class because I have no idea 
and panikkkkkkkkkking?

No. Hang on.

CONVOLUTIONS – VERY BITTER MATH



In order to understand this, you will at least need knowledge from some Laplace transformation 
from Differential Equations (MATH307) and matrix operations from Linear Algebra (MATH308). 

In my honest opinion the blog we provided to you is still a bit too hard to understand on 
its own... 

But you don’t have to understand everything, you just need to understand…well, 
enough so you get why we care and how CNN works.

So let’s dig into it and learn what you need to know, shall we?

Or if you are super mathy then read this: Understanding Convolutions

CONVOLUTIONS 

https://colah.github.io/posts/2014-07-Understanding-Convolutions/


What it is:

In mathematics! 

Convolution is a mathematical operation on 
two functions (f and g) that produces a 
third function expressing how the shape 
of one is modified by the other.

What does this mean?

This means we can use convolution to 
extract some high level features!

CONVOLUTIONS 



Convolutional 
Neural Networks

(PART II)

CORRESPONDS TO SLIDE #17 REFERENCE

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Like seriously, we learned sooooo many ML algorithms, why do we even care about CNN?

(At least when I first learned it I was like oh well fine whatever)

First, where we use it the most? -> Artificial Intelligence aka a fancy name for ML.

(Well, ML is a fancy name for math and statistics except you make more money because of the 
hype of artificial intelligence than mathematicians and statistians)

Like what in AI that we can do cool things? -> How about computer vision? Coooooool.

WHY DO WE EVEN CARE ABOUT CNN



What is computer vision in a nutshell? 

-> Analyze a picture, or a matrix of numbers(pixels) that makes up an image.

-> Video is just many many images, and image is just many many pixels.

Now, one simple way, naively, one can come up with is say I have a black and white photo, I 
just convert all the pixels in a matrix into an array (aka flattening) and just feed it to a multi-
level perceptron for classification purposes?

WHY DO WE EVEN CARE ABOUT CNN



In cases of extremely basic binary images, the method might show an average precision score 
while performing prediction of classes. 

But would have little to no accuracy when it comes to complex images having pixel 
dependencies throughout.

WHY DO WE EVEN CARE ABOUT CNN



A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image 
through the application of relevant filters. 

The architecture performs a better fitting to the image dataset due to the reduction in the 
number of parameters involved and reusability of weights. 

In other words, the network can be trained to understand the sophistication of the image better.

WHY DO WE EVEN CARE ABOUT CNN



Let’s break this down…

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image 
through the application of relevant filters. 

What do filters do?

Well, they filter out some information that we don’t want and preserve information that we do 
want.

So, what should we use to make a filter that filters out all the  unnecessary data without losing 
features which are critical for getting a good prediction? 

You guessed it! Convolution!

WHY DO WE EVEN CARE ABOUT CNN



Let’s break this down…

The architecture performs a better fitting to the image dataset due to the reduction in the 
number of parameters involved and reusability of weights. 

Imagine that you are dealing with 8K images (7680x4320) and good luck dealing with every 
single pixel in that image…

How do we reduce the amount of parameters involved so it is easier to process?

Yes! Convolution!

WHY DO WE EVEN CARE ABOUT CNN



Now, I just boasted in front of you about how great this CNN thing is 
and to you, I probably look like some fraud that tries to sell you magic. 
How can this possibly be true?

Let me explain how this thing works.

First, you choose a what’s called a Kernel, or if that is a fancy name you can 
just think of it as a filter. It is just a matrix consist of 1 and 0s.

Say I choose:

MAGIC BREAKDOWN



Say I have this 5x5 matrix here and we try to convolute it with the filter we just 
made, It will look like this:

For each convolved feature simply add all the multiplication results together. 
Like this:

MAGIC BREAKDOWN



So if we keep filtering, eventually it will look like this:

MAGIC BREAKDOWN



The Kernel shifts 9 times because of Stride Length = 1 (Non-Strided), every 
time performing a matrix multiplication operation between K and the 
portion P of the image over which the kernel is hovering.

MAGIC BREAKDOWN



Stride Length (Ouch you just introduced another fancy word that we won’t be 
able to remember but that’s okay as long as you know what it means you’re 
fine) literally means how many pixels away you go when you do the next filter 
operation.

For example: Convolution Operation with Stride Length = 2

MAGIC BREAKDOWN



The filter moves to the right with a certain Stride Value till it parses the 
complete width. 

Moving on, it hops down to the beginning (left) of the image with the same 
Stride Value and repeats the process until the entire image is traversed.

MAGIC BREAKDOWN



In the case of 
images with multiple 
channels (e.g. RGB), 
the Kernel has the 
same depth as that 
of the input image. 

Matrix Multiplication 
is performed 
between Kn and In 
stack ([K1, I1]; [K2, 
I2]; [K3, I3]) and all 
the results are 
summed with the 
bias to give us a 
squashed one-depth 
channel Convoluted 
Feature Output.

MAGIC BREAKDOWN



Why do we even do convolution operation???

The objective of the Convolution Operation is to extract the high-level features such as edges, 
from the input image.

So what?

We are trying to let our model learn an image similar to how we would. Magic?

I GET HOW FILTER WORKS, NOW WHAT?



Magic? Not necessarily.

ConvNets need not be limited to only one Convolutional Layer!

Conventionally, the first ConvLayer is responsible for capturing the Low-Level features.

Such as edges, color, gradient orientation, etc. 

With added layers, the architecture adapts to the High-Level features as well. 

Giving us a network which has the wholesome understanding of images in the dataset, 
similar to how we would.

I GET HOW FILTER WORKS, NOW WHAT?



So far, when we do filtering, the result is in which the convolved 
feature is reduced in dimensionality as compared to the input. 

However, sometimes we want the dimensionality is either increased 
or remains the same.

Houston we got a problem!!!

That is, the original matrix is not big enough for us to filter and 
obtain a result that we want (dim increase or remain the same).

PADDING



Turns out that pixels in the corners is used less than those in the 
middle, so we can just fill in 0s to augment the original matrix into 
a bigger matrix just so that our filter has more space to work with. 

This is called Zero-Padding. Very intuitive.

PADDING



Now then, coming back, again, there are two types of results to 
the operation —

If we want to reduce the dimension all we do is what’s called 
Valid Padding, another fancy word that you just need to know, 
aka what we’ve been doing before which does not use zero 
padding.

When we augment the 5x5x1 image into a 7x7x1 image and then 
apply the 3x3x1 kernel over it, we find that the convolved matrix 
turns out to be of dimensions 5x5x1. Hence the name — Same 
Padding.

Image: 

SAME padding: 5x5x1 image is padded with 0s to create a 6x6x1 image.

Learn more about padding and watch more animations: HERE

PADDING

https://github.com/vdumoulin/conv_arithmetic


What is a pooling layer and why I should care about it?

Remember that we want to process an image but there is just 
wayyy too many data and the complexity of model goes too 
high and it takes forever to compute?

Well, pooling layers comes to rescue.

Pooling layer is responsible for reducing the spatial size of 
the Convolved Feature.

POOLING LAYER

Image: 3x3 max pooling over 5x5 
convolved feature



Two things they do:

Decrease the computational power required to 
process the data through dimensionality reduction.

Extracting dominant features which are rotational and 
positional invariant, thus maintaining the process of 
effectively training of the model.

POOLING LAYER

Image: 3x3 max pooling over 5x5 
convolved feature



There are two ways to pool, both very intuitive:

Max Pooling returns the maximum value from the 
portion of the image covered by the Kernel. 

◦ Max Pooling also performs as a Noise Suppressant.

◦ It discards the noisy activations altogether and also performs 
de-noising along with dimensionality reduction.

Average Pooling returns the average of all the 
values from the portion of the image covered by the 
Kernel.

◦ Average Pooling simply performs dimensionality reduction as a 
noise suppressing mechanism.

Takeaway: Max Pooling performs a lot better than 
Average Pooling.

POOLING LAYER

Image: 3x3 max pooling over 5x5 
convolved feature



The Convolutional Layer and the Pooling Layer, together form 
the i-th layer of a Convolutional Neural Network. 

Depending on the complexities in the images, the number of 
such layers may be increased for capturing low-levels details 
even further, but at the cost of more computational power.

After going through the above process, we have successfully 
enabled the model to understand the features. 

Moving on, we are going to flatten the final output and feed it 
to a regular Neural Network for classification purposes.

OOOF WRAPPING UP 
EXPLAINING CONVOLUTION AND POOLING



OOF WRAPPING UP

An example neural network.

Adding a Fully-Connected layer is a 
(usually) cheap way of learning non-linear 
combinations of the high-level features as 
represented by the output of the 
convolutional layer. 

The Fully-Connected layer is learning a 
possibly non-linear function in that space.



OOF WRAPPING UP

An example neural network.

Now that we have converted our input 
image into a suitable form for our Multi-
Level Perceptron, we shall flatten the 
image into a column vector. 

The flattened output is fed to a feed-
forward neural network and 
backpropagation applied to every iteration 
of training. 

Over a series of epochs, the model is able 
to distinguish between dominating and 
certain low-level features in images and 
classify them using the Softmax 
Classification technique.



License

This material is originally made by Hongjun Wu for the course CSE416: Introduction to Machine Learning
in the Spring 2020 quarter taught by Dr. Valentina Staneva, at University of Washington Paul G. Allen 
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explore material in more depth. 
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this material.  
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