
CSE 416 Section 7!
Pandemic Special Episode

August 6, 2020

Original slides by HONGJUN JACK WU, modifications by BEN EVANS

Goal for today!
PyTorch Introduction + CNNs

Convolutions

(PART I)

CORRESPONDS TO SLIDE #16 REFERENCE

https://colah.github.io/posts/2014-07-Understanding-Convolutions/

Given two functions f and g, we define the convolution to be
as the following integral transform:

Okay, what the heck.

What does this mean???

I’ve never seen this in my life…

Am I going to fail this class because I have no idea
and panikkkkkkkkkking?

No. Hang on.

CONVOLUTIONS – VERY BITTER MATH

In order to understand this, you will at least need knowledge from some Laplace transformation
from Differential Equations (MATH307) and matrix operations from Linear Algebra (MATH308).

In my honest opinion the blog we provided to you is still a bit too hard to understand on
its own...

But you don’t have to understand everything, you just need to understand…well,
enough so you get why we care and how CNN works.

So let’s dig into it and learn what you need to know, shall we?

Or if you are super mathy then read this: Understanding Convolutions

CONVOLUTIONS

https://colah.github.io/posts/2014-07-Understanding-Convolutions/

What it is:

In mathematics!

Convolution is a mathematical operation on
two functions (f and g) that produces a
third function expressing how the shape
of one is modified by the other.

What does this mean?

This means we can use convolution to
extract some high level features!

CONVOLUTIONS

Convolutional
Neural Networks

(PART II)

CORRESPONDS TO SLIDE #17 REFERENCE

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Like seriously, we learned sooooo many ML algorithms, why do we even care about CNN?

(At least when I first learned it I was like oh well fine whatever)

First, where we use it the most? -> Artificial Intelligence aka a fancy name for ML.

(Well, ML is a fancy name for math and statistics except you make more money because of the
hype of artificial intelligence than mathematicians and statistians)

Like what in AI that we can do cool things? -> How about computer vision? Coooooool.

WHY DO WE EVEN CARE ABOUT CNN

What is computer vision in a nutshell?

-> Analyze a picture, or a matrix of numbers(pixels) that makes up an image.

-> Video is just many many images, and image is just many many pixels.

Now, one simple way, naively, one can come up with is say I have a black and white photo, I
just convert all the pixels in a matrix into an array (aka flattening) and just feed it to a multi-
level perceptron for classification purposes?

WHY DO WE EVEN CARE ABOUT CNN

In cases of extremely basic binary images, the method might show an average precision score
while performing prediction of classes.

But would have little to no accuracy when it comes to complex images having pixel
dependencies throughout.

WHY DO WE EVEN CARE ABOUT CNN

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image
through the application of relevant filters.

The architecture performs a better fitting to the image dataset due to the reduction in the
number of parameters involved and reusability of weights.

In other words, the network can be trained to understand the sophistication of the image better.

WHY DO WE EVEN CARE ABOUT CNN

Let’s break this down…

A ConvNet is able to successfully capture the Spatial and Temporal dependencies in an image
through the application of relevant filters.

What do filters do?

Well, they filter out some information that we don’t want and preserve information that we do
want.

So, what should we use to make a filter that filters out all the unnecessary data without losing
features which are critical for getting a good prediction?

You guessed it! Convolution!

WHY DO WE EVEN CARE ABOUT CNN

Let’s break this down…

The architecture performs a better fitting to the image dataset due to the reduction in the
number of parameters involved and reusability of weights.

Imagine that you are dealing with 8K images (7680x4320) and good luck dealing with every
single pixel in that image…

How do we reduce the amount of parameters involved so it is easier to process?

Yes! Convolution!

WHY DO WE EVEN CARE ABOUT CNN

Now, I just boasted in front of you about how great this CNN thing is
and to you, I probably look like some fraud that tries to sell you magic.
How can this possibly be true?

Let me explain how this thing works.

First, you choose a what’s called a Kernel, or if that is a fancy name you can
just think of it as a filter. It is just a matrix consist of 1 and 0s.

Say I choose:

MAGIC BREAKDOWN

Say I have this 5x5 matrix here and we try to convolute it with the filter we just
made, It will look like this:

For each convolved feature simply add all the multiplication results together.
Like this:

MAGIC BREAKDOWN

So if we keep filtering, eventually it will look like this:

MAGIC BREAKDOWN

The Kernel shifts 9 times because of Stride Length = 1 (Non-Strided), every
time performing a matrix multiplication operation between K and the
portion P of the image over which the kernel is hovering.

MAGIC BREAKDOWN

Stride Length (Ouch you just introduced another fancy word that we won’t be
able to remember but that’s okay as long as you know what it means you’re
fine) literally means how many pixels away you go when you do the next filter
operation.

For example: Convolution Operation with Stride Length = 2

MAGIC BREAKDOWN

The filter moves to the right with a certain Stride Value till it parses the
complete width.

Moving on, it hops down to the beginning (left) of the image with the same
Stride Value and repeats the process until the entire image is traversed.

MAGIC BREAKDOWN

In the case of
images with multiple
channels (e.g. RGB),
the Kernel has the
same depth as that
of the input image.

Matrix Multiplication
is performed
between Kn and In
stack ([K1, I1]; [K2,
I2]; [K3, I3]) and all
the results are
summed with the
bias to give us a
squashed one-depth
channel Convoluted
Feature Output.

MAGIC BREAKDOWN

Why do we even do convolution operation???

The objective of the Convolution Operation is to extract the high-level features such as edges,
from the input image.

So what?

We are trying to let our model learn an image similar to how we would. Magic?

I GET HOW FILTER WORKS, NOW WHAT?

Magic? Not necessarily.

ConvNets need not be limited to only one Convolutional Layer!

Conventionally, the first ConvLayer is responsible for capturing the Low-Level features.

Such as edges, color, gradient orientation, etc.

With added layers, the architecture adapts to the High-Level features as well.

Giving us a network which has the wholesome understanding of images in the dataset,
similar to how we would.

I GET HOW FILTER WORKS, NOW WHAT?

So far, when we do filtering, the result is in which the convolved
feature is reduced in dimensionality as compared to the input.

However, sometimes we want the dimensionality is either increased
or remains the same.

Houston we got a problem!!!

That is, the original matrix is not big enough for us to filter and
obtain a result that we want (dim increase or remain the same).

PADDING

Turns out that pixels in the corners is used less than those in the
middle, so we can just fill in 0s to augment the original matrix into
a bigger matrix just so that our filter has more space to work with.

This is called Zero-Padding. Very intuitive.

PADDING

Now then, coming back, again, there are two types of results to
the operation —

If we want to reduce the dimension all we do is what’s called
Valid Padding, another fancy word that you just need to know,
aka what we’ve been doing before which does not use zero
padding.

When we augment the 5x5x1 image into a 7x7x1 image and then
apply the 3x3x1 kernel over it, we find that the convolved matrix
turns out to be of dimensions 5x5x1. Hence the name — Same
Padding.

Image:

SAME padding: 5x5x1 image is padded with 0s to create a 6x6x1 image.

Learn more about padding and watch more animations: HERE

PADDING

https://github.com/vdumoulin/conv_arithmetic

What is a pooling layer and why I should care about it?

Remember that we want to process an image but there is just
wayyy too many data and the complexity of model goes too
high and it takes forever to compute?

Well, pooling layers comes to rescue.

Pooling layer is responsible for reducing the spatial size of
the Convolved Feature.

POOLING LAYER

Image: 3x3 max pooling over 5x5
convolved feature

Two things they do:

Decrease the computational power required to
process the data through dimensionality reduction.

Extracting dominant features which are rotational and
positional invariant, thus maintaining the process of
effectively training of the model.

POOLING LAYER

Image: 3x3 max pooling over 5x5
convolved feature

There are two ways to pool, both very intuitive:

Max Pooling returns the maximum value from the
portion of the image covered by the Kernel.

◦ Max Pooling also performs as a Noise Suppressant.

◦ It discards the noisy activations altogether and also performs
de-noising along with dimensionality reduction.

Average Pooling returns the average of all the
values from the portion of the image covered by the
Kernel.

◦ Average Pooling simply performs dimensionality reduction as a
noise suppressing mechanism.

Takeaway: Max Pooling performs a lot better than
Average Pooling.

POOLING LAYER

Image: 3x3 max pooling over 5x5
convolved feature

The Convolutional Layer and the Pooling Layer, together form
the i-th layer of a Convolutional Neural Network.

Depending on the complexities in the images, the number of
such layers may be increased for capturing low-levels details
even further, but at the cost of more computational power.

After going through the above process, we have successfully
enabled the model to understand the features.

Moving on, we are going to flatten the final output and feed it
to a regular Neural Network for classification purposes.

OOOF WRAPPING UP
EXPLAINING CONVOLUTION AND POOLING

OOF WRAPPING UP

An example neural network.

Adding a Fully-Connected layer is a
(usually) cheap way of learning non-linear
combinations of the high-level features as
represented by the output of the
convolutional layer.

The Fully-Connected layer is learning a
possibly non-linear function in that space.

OOF WRAPPING UP

An example neural network.

Now that we have converted our input
image into a suitable form for our Multi-
Level Perceptron, we shall flatten the
image into a column vector.

The flattened output is fed to a feed-
forward neural network and
backpropagation applied to every iteration
of training.

Over a series of epochs, the model is able
to distinguish between dominating and
certain low-level features in images and
classify them using the Softmax
Classification technique.

License

This material is originally made by Hongjun Wu for the course CSE416: Introduction to Machine Learning
in the Spring 2020 quarter taught by Dr. Valentina Staneva, at University of Washington Paul G. Allen
School of Computer Science and Engineering.

It was originally made for educational purpose, in a section taught by teaching assistants to help students
explore material in more depth.

Any other materials used are cited in the Credits section.

This material is licensed under the Creative Commons License.

Anyone, especially other educators and students, are welcomed and strongly encouraged to study and use
this material.

https://hongjunwu.com/en_US/
https://valentina-s.github.io/cse-stat-416-sp20/
https://www.linkedin.com/in/valentina-staneva-964a133/
https://creativecommons.org/licenses/by/4.0/

