
Decision Tree



If I told you that there was a new point 
with an x coordinate of 1, what color do 
you think it’d be?

Credit: https://victorzhou.com/blog/intro-to-random-
forests/

DECISION TREE!

IN A NUTSHELL…

https://victorzhou.com/blog/intro-to-random-forests/


Blue, right?

You just evaluated a decision tree in your 
head:

DECISION TREE!

IN A NUTSHELL…



That’s a simple decision tree with one decision node that tests x < 2. 

If the test passes (x < 2), we take the left branch and pick Blue. 

If the test fails (x ≥2), we take the right branch and pick Green.

DECISION TREE!

IN A NUTSHELL…



Decision Trees are often used to answer that kind of question: 

Given a labelled dataset, how should we classify new samples?

Labelled: Our dataset is labelled because each point has a class 
(color): blue or green.

Classify: To classify a new datapoint is to assign a class (color) to it.

DECISION TREE!

IN A NUTSHELL…



Here’s a dataset that has 3 classes now instead of 2:

Our old decision tree doesn’t work so well anymore. 

Given a new point (x, y):

If x ≥2: 

We can still confidently classify it as green. 

If x <2: 

We can’t immediately classify it as blue - it could be red, too.  

DECISION TREE!

IN A NUTSHELL…



We need to add another decision node to our decision tree:

DECISION TREE!

IN A NUTSHELL…



How to train a decision tree??

Training a decision tree consists of iteratively splitting the 
current data into two branches.

Credit: https://victorzhou.com/blog/gini-impurity/

DECISION TREE!

IN A NUTSHELL…

https://victorzhou.com/blog/gini-impurity/


Suppose we have the following data:

DECISION TREE!

IN A NUTSHELL…

Right now, we have 1 branch with 5 blues and 5 

greens.



Suppose we have the following data:

DECISION TREE!

IN A NUTSHELL…

Let’s make a split at x = 2:

This is a perfect split! It breaks 
our dataset perfectly into two 
branches:

Left branch, with 5 blues.

Right branch, with 5 greens.



Suppose we have the following data:

DECISION TREE!

IN A NUTSHELL…

What if we’d made a split at x = 1.5x=1.5 instead?

This imperfect split breaks 
our dataset into these 
branches:

Left branch, with 4 blues.

Right branch, with 1 blue 
and 5 greens.



Suppose we have the following data:

DECISION TREE!

IN A NUTSHELL…

What if we’d made a split at x = 1.5x=1.5 instead?

It’s obvious that this split is 
worse, but how can we 
quantify that?



DECISION TREE!

IN A NUTSHELL…

Being able to measure the quality of a split becomes even more important if 
we add a third class, reds.    Imagine the following split:

Branch 1, with 3 blues, 1 green, and 1 red.
Branch 2, with 3 greens and 1 red.

Compare that against this split:

Branch 1, with 3 blues, 1 green, and 2 reds.
Branch 2, with 3 greens.

Which split is better? It’s no longer immediately obvious.



DECISION TREE!

GINI IMPURITY

Suppose we:

Randomly pick a datapoint in our dataset, then 
Randomly classify it according to the class 
distribution in the dataset. 

For our dataset, we’d classify it as blue 5/10 of 
the time and as green 5/10 of the time, since 
we have 5 datapoints of each color.

What’s the probability we classify the 
datapoint incorrectly? The answer to that 
question is the Gini Impurity.



DECISION TREE!

EXAMPLE 1: THE WHOLE DATASET

Let’s calculate the Gini Impurity of our entire 
dataset. 

If we randomly pick a datapoint, it’s either 
blue (50%) or green (50%).

Now, we randomly classify our datapoint 
according to the class distribution. Since we 
have 5 of each color, we classify it as blue 
50% of the time and as green 50% of the 
time.

What’s the probability we classify our 
datapoint incorrectly?



We only classify it incorrectly in 2 of the events above. 
Thus, our total probability is 25% + 25% = 50%, so the 
Gini Impurity is 0.5.

DECISION TREE!

EXAMPLE 1: THE WHOLE DATASET



GINI IMPURITY

THE MATH (JUST FYI)



Let’s go back to the perfect split we 
had. 

What are the Gini Impurities of the 
two branches after the split?

DECISION TREE!

EXAMPLE 2: A PERFECT SPLIT



Left Branch has only blues, so its Gini Impurity is

Right Branch has only greens, so its Gini Impurity is

Both branches have 0 impurity! 

The perfect split turned a dataset with 0.5 impurity 
into 2 branches with 0 impurity.

DECISION TREE!

EXAMPLE 2: A PERFECT SPLIT



A Gini Impurity of 0 is the lowest and best 
possible impurity. 

It can only be achieved when everything is the 
same class (e.g. only blues or only greens).

Which means…

Leaf nodes all have a Gini Impurity of 0.

DECISION TREE!

EXAMPLE 2: A PERFECT SPLIT



Finally, let’s return to our imperfect split.

Left Branch has only blues, so we know that:

Right Branch has 1 blue and 5 greens, so:

DECISION TREE!

EXAMPLE 3: AN IMPERFECT SPLIT



It’s finally time to answer the 
question we posed earlier: 

how can we quantitatively evaluate 
the quality of a split?

Let’s take a look at the imperfect 
split again…

DECISION TREE!

PICKING THE BEST SPLIT



We’ve already calculated the Gini Impurities for:

Before the split (the entire dataset): 0.5

Left Branch: 0

Right Branch: 0.278

DECISION TREE!

PICKING THE BEST SPLIT



We’ll determine the quality of the split by weighting 
the impurity of each branch by how many 
elements it has. 

Since Left Branch has 4 elements and Right Branch 
has 6, we get:

Thus, the amount of impurity we’ve “removed” with 
this split is:

This is the Gini Gain.

DECISION TREE!

PICKING THE BEST SPLIT



This is what’s used to pick the best split in a decision 
tree!

Higher Gini Gain = Better Split. 

For example, it’s easy to verify that the Gini Gain of 
the perfect split on our dataset is 0.5 > 0.333.

Gini Impurity is the probability 
of incorrectly classifying a randomly chosen element 
in the dataset if it were randomly labeled according 
to the class distribution in the dataset.

DECISION TREE!

PICKING THE BEST SPLIT



Back to the problem of determining our root 
decision node. Now that we have a way to 
evaluate splits, all we have to do to is find the 
best split possible! 

For the sake of simplicity, we’re just going 
to try every possible split and use the best 
one (the one with the highest Gini Gain).

This is not the fastest way to find the best 
split, but it is the easiest to understand.

DECISION TREE!

PICKING THE ROOOOOOOOT NODE

??????



Trying every split means trying

Every feature (x or y).

All “unique” thresholds.

We only need to try thresholds that produce different 
splits.

DECISION TREE!

PICKING THE ROOOOOOOOT NODE



DECISION TREE!

PICKING THE ROOOOOOOOT NODE



DECISION TREE!

PICKING THE ROOOOOOOOT NODE



This is how our tree looks like right now…

DECISION TREE!

PICKING THE ROOOOOOOOT NODE



Time to make our second decision node. 

Let’s (arbitrarily) go to the left branch. We’re now only 
using the datapoints that would take the left 
branch (i.e. the datapoints satisfying x < 2), specifically 
the 3 blues and 3 reds.

To build our second decision node, we just do the same 
thing! We try every possible split for the 6 datapoints we 
have and realize that y = 2 is the best split. 

We make that into a decision node and now have this:

DECISION TREE!

BUILDING THE TREE



DECISION TREE!

BUILDING THE TREE



Now that we reached the bottom (leaf) of the tree:

Again, we try all the possible splits, but they all are 
equally good.

Have a Gini Gain of 0 (the Gini Impurity was 
already 0 and can’t go any lower).

DECISION TREE!

WHEN TO STOP?



Once all possible branches in our 
decision tree end in leaf nodes, 
we’re done.

DECISION TREE!

WHEN TO STOP?



Decision tree algorithm 
creates a model that 
predicts the value of a 
target variable based on 
several input variables.

SO,
WHAT IS IT?



Of course! Stop dreaming there is no all perfect algorithm out there

The main downsides of Decision Trees are their tendency to over-fit.

◦ If your tree goes too big (deep), you will overfit pretty fast!

They are also unable to grasp relationships between features. 

◦ Cuz it’s a tree like structure so you will lose some relationships between features.

They use greedy learning algorithms, because we usually use greedy 
traversal when dealing with a tree. 

◦ This is a downside because it is not guaranteed to find the global optimal model.

SOUNDS MAGICAL. ANY DOWNSIDES?



Sure! Using them in a Random Forest (We will talk about 
that in a bit) helps mitigate some of this issues.

ANY WAY TO IMPROVE THE ABOVE DOWNSIDES?

This is a somewhat complex tree!



This material is originally made by Hongjun Wu for the course CSE416: Introduction to 
Machine Learning in the Spring 2020 quarter taught by Dr. Valentina Staneva, at 
University of Washington Paul G. Allen School of Computer Science and Engineering. 

It was originally made for educational purpose, in a section taught by teaching 
assistants to help students explore material in more depth. 

Any other materials used are cited in the Credits section.

This material is licensed under the Creative Commons License.

Anyone, especially other educators and students, are welcomed and strongly 
encouraged to study and use this material.  

License

https://hongjunwu.com/en_US/
https://valentina-s.github.io/cse-stat-416-sp20/
https://www.linkedin.com/in/valentina-staneva-964a133/
https://creativecommons.org/licenses/by/4.0/

