
CSE 416 Section 4!
Tip of the day:
Prepend # to every line of your code increases the efficiency of
your code and optimizes your code to have O(0) runtime!

July 14, 2020

HONGJUN JACK WU 😆

Notebook wise, what we heard:

Notebook demos are helpful!!!

So I got two for you this week:

One gives you example of a decision tree and random forest.

Another uses Kaggle Titanic data to predict whether a passenger from
the Titanic is alive or not, based on the existing data.

As usual, I’ll explain the concepts as clear as I can in
section, and the notebook is there for you to play
around with, no pressure!

THANKS
FOR FILLING OUT THE EVALUATION!

Decision Tree
AND

RANDOM FORREST (IN A BIT)

Decision tree algorithm creates a
model that predicts the value of a
target variable based on several input
variables.

DECISION TREE!

WHAT IS IT?

Classification And Regression Tree (CART)

Classification tree analysis:

◦ When the predicted outcome is the class (discrete) to
which the data belongs.

Regression tree analysis:

◦ When the predicted outcome can be considered a real
number (e.g. the price of a house, or a patient's
length of stay in a hospital).

DECISION TREE!

WHAT TYPE OF PROBLEMS CAN IT SOLVE?

Black Box vs. Transparent Methods
◦ Transparent

◦ If we're using Machine Learning to actually get insights from the data,
"black box" models are almost useless and it's best to stick with simpler,
transparent techniques.

◦ Decision Tree!!!

◦ Black Box

◦ If we need to build a model that will be directly used for some task and
only show it's end results, then we don't really care about building
some kind of "black box" if it's accurate enough (image or speech
recognition for example).

◦ Deep Learning, ensemble learning, etc. NOT decision tree.

DISCUSSION QUESTION:
Why do we care about interpretability

DECISION TREE!

WHEN TO USE IT?

Of course! Stop dreaming there is no all perfect algorithm out there

The main downsides of Decision Trees are their tendency to over-fit.

◦ If your tree goes too big (deep), you will overfit pretty fast!

They are also unable to grasp relationships between features.

◦ Cuz it’s a tree like structure so you will lose some relationships between features.

They use greedy learning algorithms, because we usually use greedy
traversal when dealing with a tree.

◦ This is a downside because it is not guaranteed to find the global optimal model.

DECISION TREE!

SOUNDS MAGICAL. ANY DOWNSIDES?

One example of a very complex tree:

DECISION TREE!

SOUNDS MAGICAL. ANY DOWNSIDES?

Sure! Using them in a Random Forest (We will talk about
that in a bit) helps mitigate some of this issues.

DECISION TREE!

ANY WAY TO IMPROVE THE ABOVE DOWNSIDES?

Select the best attribute using Attribute Selection
Measures(ASM) to split the records.

Make that attribute a decision node and breaks the
dataset into smaller subsets.

Starts tree building by repeating this process recursively
for each child until one of the condition will match:
◦ All the tuples belong to the same attribute value.

◦ There are no more remaining attributes.

◦ There are no more instances.

DECISION TREE!

THE ALGORITHM? IF YOU ARE CURIOUS.

What? - Attribute selection measure is a heuristic for selecting the
splitting criterion that partition data into the best possible manner.

◦ It is also known as splitting rules because it helps us to determine
breakpoints for tuples on a given node.

How? - ASM provides a rank to each feature (or attribute) by
explaining the given dataset.

◦ In class, we talked about using classification error as a splitting
rile, but there are other metrics, the main purpose is the same.

◦ Best score attribute will be selected as a splitting attribute.

◦ For example, Gini Impurity.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

Gini Impurity
The Gini Impurity of a node is the probability
that a randomly chosen sample in a node
would be incorrectly labeled if it was labeled
by the distribution of samples in the node.

For example, in the top (root) node, there is a
44.4% chance of incorrectly classifying a data
point chosen at random based on the sample
labels in the node.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity

Gini Impurity (Math)
Just here for those of you who are curious…

The Gini Impurity of a node n is 1 minus the sum
over all the classes J (for a binary classification
task this is 2) of the fraction of examples in each
class p_i squared.

For example, the root Gini Impurity is calculated:

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

Gini Impurity

At each node, the decision tree searches through the
features for the value to split on that results in the greatest
reduction in Gini Impurity.

As the algorithm recursively go down the tree branches,
the weighted total Gini Impurity at each level of tree must
decrease.

Eventually, the weighted total Gini Impurity of the last
layer goes to 0.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

Gini Impurity

Eventually, the weighted total Gini Impurity of the last layer goes to 0.

Each node is completely pure and there is no chance that a point
randomly selected from that node would be misclassified.

While this may seem like a positive, it means that the model may
potentially be overfitting because the nodes are constructed only
using training data.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

The flowchart-like structure helps you in decision
making.

It's visualization like a flowchart diagram which easily
mimics the human level thinking.

That is why decision trees are easy to understand and
interpret.

DECISION TREE!

WHY SHOULD YOU CARE?

If your boss is a marketing manager, he wants a set of
customers who are most likely to purchase your product.
◦ This is how he can save his marketing budget by finding your

audience.

If your boss is a loan manager, he needs you to help
identify risky loan applications to achieve a lower loan
default rate.

DECISION TREE!

WHY SHOULD YOUR BOSS CARE?

RANDOM FORREST

You might be tempted to ask why not just
use one decision tree?

It seems like the perfect classifier since it
did not make any mistakes!

WHY A FOREST IS BETTER THAN ONE TREE

A critical point to remember is that the tree made no
mistakes on the training data. We expect this to be the
case since we gave the tree the answers and didn’t limit
the max depth (number of levels).

The objective of a machine learning model is to
generalize well to new data it has never seen before.

OVERFITTING:
WHY A FOREST IS BETTER THAN ONE TREE

I’ll give an easy example here:

Say I am training a tree on classifying colors of n points.

If I train the tree it will look something like this:

PART I: BAGGING

In order to prevent overfitting, what we do is we train many smaller
(less deep) trees, and bag them together.

Consider the following algorithm to train a bundle of decision trees given a
dataset of n points:

Sample, with replacement, n training examples from the dataset.

Train a decision tree on the n samples.

Repeat t times, for some t.

PART I: BAGGING

To make a prediction using this
model with t trees, we aggregate the
predictions from the individual
decision trees and either:

Take the majority vote if our trees
produce class labels (like colors).

Take the average if our trees
produce numerical values (e.g. when
predicting temperature, price, etc).

PART I: BAGGING

Bagged decision trees have only one
parameter: t, the number of trees.

For example, t for the bag of trees is
5. We use the majority vote to
classify the point as blue.

PART II: RANDOM FOREST

Random Forests have a second
parameter that controls how many
features to try when finding the
best split.

Our simple dataset for this tutorial
only had 2 features (x and y), but
most datasets will have far more
(hundreds or thousands).

PART II: RANDOM FOREST

PART II: RANDOM FOREST

This material is originally made by Hongjun Wu for the course CSE416: Introduction to Machine
Learning in the Spring 2020 quarter taught by Dr. Valentina Staneva, at University of
Washington Paul G. Allen School of Computer Science and Engineering.

It was originally made for educational purpose, in a section taught by teaching assistants to help
students explore material in more depth.

Any other materials used are cited in the Credits section.

This material is licensed under the Creative Commons License.

Anyone, especially other educators and students, are welcomed and strongly encouraged to
study and use this material.

License

https://hongjunwu.com/en_US/
https://valentina-s.github.io/cse-stat-416-sp20/
https://www.linkedin.com/in/valentina-staneva-964a133/
https://creativecommons.org/licenses/by/4.0/

