
CSE 416 Section 4!
Tip of the day:
Prepend # to every line of your code increases the efficiency of 
your code and optimizes your code to have O(0) runtime!
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Notebook wise, what we heard:

Notebook demos are helpful!!!

So I got two for you this week:

One gives you example of a decision tree and random forest. 

Another uses Kaggle Titanic data to predict whether a passenger from 
the Titanic is alive or not, based on the existing data.

As usual, I’ll explain the concepts as clear as I can in 
section, and the notebook is there for you to play 
around with, no pressure!

THANKS 
FOR FILLING OUT THE EVALUATION!



Decision Tree
AND 

RANDOM FORREST (IN A BIT)



Decision tree algorithm creates a 
model that predicts the value of a 
target variable based on several input 
variables.

DECISION TREE!

WHAT IS IT?



Classification And Regression Tree (CART)

Classification tree analysis:

◦ When the predicted outcome is the class (discrete) to 
which the data belongs.

Regression tree analysis:

◦ When the predicted outcome can be considered a real 
number (e.g. the price of a house, or a patient's 
length of stay in a hospital).

DECISION TREE!

WHAT TYPE OF PROBLEMS CAN IT SOLVE?



Black Box vs. Transparent Methods
◦ Transparent

◦ If we're using Machine Learning to actually get insights from the data, 
"black box" models are almost useless and it's best to stick with simpler, 
transparent techniques.

◦ Decision Tree!!!

◦ Black Box

◦ If we need to build a model that will be directly used for some task and 
only show it's end results, then we don't really care about building 
some kind of "black box" if it's accurate enough (image or speech 
recognition for example).

◦ Deep Learning, ensemble learning, etc. NOT decision tree.

DISCUSSION QUESTION:
Why do we care about interpretability

DECISION TREE!

WHEN TO USE IT?



Of course! Stop dreaming there is no all perfect algorithm out there

The main downsides of Decision Trees are their tendency to over-fit.

◦ If your tree goes too big (deep), you will overfit pretty fast!

They are also unable to grasp relationships between features. 

◦ Cuz it’s a tree like structure so you will lose some relationships between features.

They use greedy learning algorithms, because we usually use greedy 
traversal when dealing with a tree. 

◦ This is a downside because it is not guaranteed to find the global optimal model.

DECISION TREE!

SOUNDS MAGICAL. ANY DOWNSIDES?



One example of a very complex tree:

DECISION TREE!

SOUNDS MAGICAL. ANY DOWNSIDES?



Sure! Using them in a Random Forest (We will talk about 
that in a bit) helps mitigate some of this issues.

DECISION TREE!

ANY WAY TO IMPROVE THE ABOVE DOWNSIDES?



Select the best attribute using Attribute Selection 
Measures(ASM) to split the records.

Make that attribute a decision node and breaks the 
dataset into smaller subsets.

Starts tree building by repeating this process recursively 
for each child until one of the condition will match:
◦ All the tuples belong to the same attribute value.

◦ There are no more remaining attributes.

◦ There are no more instances.

DECISION TREE!

THE ALGORITHM? IF YOU ARE CURIOUS.



What? - Attribute selection measure is a heuristic for selecting the 
splitting criterion that partition data into the best possible manner.

◦ It is also known as splitting rules because it helps us to determine 
breakpoints for tuples on a given node.

How? - ASM provides a rank to each feature (or attribute) by 
explaining the given dataset.

◦ In class, we talked about using classification error as a splitting 
rile, but there are other metrics, the main purpose is the same.

◦ Best score attribute will be selected as a splitting attribute.

◦ For example, Gini Impurity.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!



Gini Impurity 
The Gini Impurity of a node is the probability 
that a randomly chosen sample in a node 
would be incorrectly labeled if it was labeled 
by the distribution of samples in the node. 

For example, in the top (root) node, there is a 
44.4% chance of incorrectly classifying a data 
point chosen at random based on the sample 
labels in the node.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!

https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity


Gini Impurity (Math)
Just here for those of you who are curious…

The Gini Impurity of a node n is 1 minus the sum 
over all the classes J (for a binary classification 
task this is 2) of the fraction of examples in each 
class p_i squared.

For example, the root Gini Impurity is calculated:

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!



Gini Impurity 

At each node, the decision tree searches through the 
features for the value to split on that results in the greatest 
reduction in Gini Impurity. 

As the algorithm recursively go down the tree branches, 
the weighted total Gini Impurity at each level of tree must 
decrease.

Eventually, the weighted total Gini Impurity of the last 
layer goes to 0.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!



Gini Impurity 

Eventually, the weighted total Gini Impurity of the last layer goes to 0.

Each node is completely pure and there is no chance that a point 
randomly selected from that node would be misclassified. 

While this may seem like a positive, it means that the model may 
potentially be overfitting because the nodes are constructed only 
using training data.

DECISION TREE!

ATTRIBUTE SELECTION MEASURES(ASM)!



The flowchart-like structure helps you in decision 
making.

It's visualization like a flowchart diagram which easily 
mimics the human level thinking.

That is why decision trees are easy to understand and 
interpret.

DECISION TREE!

WHY SHOULD YOU CARE?



If your boss is a marketing manager, he wants a set of 
customers who are most likely to purchase your product.
◦ This is how he can save his marketing budget by finding your 

audience.

If your boss is a loan manager, he needs you to help 
identify risky loan applications to achieve a lower loan 
default rate.

DECISION TREE!

WHY SHOULD YOUR BOSS CARE?



RANDOM FORREST



You might be tempted to ask why not just 
use one decision tree? 

It seems like the perfect classifier since it 
did not make any mistakes! 

WHY A FOREST IS BETTER THAN ONE TREE



A critical point to remember is that the tree made no 
mistakes on the training data. We expect this to be the 
case since we gave the tree the answers and didn’t limit 
the max depth (number of levels). 

The objective of a machine learning model is to 
generalize well to new data it has never seen before.

OVERFITTING: 
WHY A FOREST IS BETTER THAN ONE TREE



I’ll give an easy example here:

Say I am training a tree on classifying colors of n points.

If I train the tree it will look something like this:

PART I: BAGGING



In order to prevent overfitting, what we do is we train many smaller 
(less deep) trees, and bag them together.

Consider the following algorithm to train a bundle of decision trees given a 
dataset of n points:

Sample, with replacement, n training examples from the dataset.

Train a decision tree on the n samples.

Repeat t times, for some t.

PART I: BAGGING



To make a prediction using this 
model with t trees, we aggregate the 
predictions from the individual 
decision trees and either:

Take the majority vote if our trees 
produce class labels (like colors).

Take the average if our trees 
produce numerical values (e.g. when 
predicting temperature, price, etc).

PART I: BAGGING



Bagged decision trees have only one 
parameter: t, the number of trees.

For example, t for the bag of trees is 
5. We use the majority vote to 
classify the point as blue.

PART II: RANDOM FOREST



Random Forests have a second 
parameter that controls how many 
features to try when finding the 
best split. 

Our simple dataset for this tutorial 
only had 2 features (x and y), but 
most datasets will have far more 
(hundreds or thousands).

PART II: RANDOM FOREST



PART II: RANDOM FOREST



This material is originally made by Hongjun Wu for the course CSE416: Introduction to Machine 
Learning in the Spring 2020 quarter taught by Dr. Valentina Staneva, at University of 
Washington Paul G. Allen School of Computer Science and Engineering. 

It was originally made for educational purpose, in a section taught by teaching assistants to help 
students explore material in more depth. 

Any other materials used are cited in the Credits section.

This material is licensed under the Creative Commons License.

Anyone, especially other educators and students, are welcomed and strongly encouraged to 
study and use this material.  

License
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