CSE/STAT 416

Decision Trees

Vinitra Swamy University of Washington July 13, 2020

* Content built on the work of Hunter Schafer and Emily Fox.

Logistics

- Reading is optional
- If you have a question, there is a high chance somebody else in the class the same question too
- Homework 3
 - Extension until Friday
 - Concept question #11 has been removed

Today:

Decision Trees

Probability Classifier

Idea: Estimate probabilities $\hat{P}(y|x)$ and use those for prediction

Probability Classifier

Input *x*: Sentence from review

Estimate class probability $\hat{P}(y = +1|x)$

If
$$\hat{P}(y = +1|x) > 0.5$$
:
 $\hat{y} = +1$

Else:

Notes:

Estimating the probability improves interpretability

Interpreting Score

Naïve Bayes

Idea: Naïve Bayes

x = "The sushi & everything else was awesome!"

P(y = +1 | x = "The sushi & everything else was awesome!")?P(y = -1 | x = "The sushi & everything else was awesome!")?

Idea: Select the class with the highest probability!

Bayes Rule: $P(y = +1|x) = \frac{P(x|y = +1)P(y=+1)}{P(x)}$

 $\frac{P("The sushi \& everything else was awesome!" | + 1) P(+1)}{P("The sushi \& everything else was awesome!")}$

Since we're just trying to find out which class has the greater probability, we can discard the divisor.

Problem

Idea: Select the class with the highest probability!Problem: We have not seen the sentence before.Assumption: Words are independent from each other.

x = "The sushi & everything else was awesome!"

P("The sushi & everything else was awesome!"|+1) P(+1)

P("The sushi & everything else was awesome!")

 $\begin{array}{l} P(``The sushi \& everything else was awesome! " | + 1) \\ = P(The | +1) * P(sushi | + 1) * P(\& | + 1) * P(everything | + 1) \\ * P(else | + 1) * P(was | + 1) * P(awesome | + 1) \end{array}$

P(``awesome'' | + 1)?

Zeros

If a feature is missing in a class everything becomes zero. P("The sushi & everything else was awesome!" | + 1) = P(The | +1) * P(sushi | + 1) * P(&| + 1) * P(everything| + 1) * P(else| + 1) * P(was| + 1) * P(awesome| + 1)

Solutions?

- Take the log (product becomes a sum: linear classifier)
- Laplacian Smoothing (adding a constant to avoid multiplying by zero)

Naïve Bayes vs Logistic Regression

Naïve Bayes vs Logistic Regression

Logistic Regression:

$$P(y = +1|x, w) = \frac{1}{1 + e^{-w^T h(x)}}$$

Naïve Bayes:

$$P(y|\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d) = \prod_{j=1}^d P(x_j|y) P(y)$$

Naïve Bayes vs Logistic Regression

Generative vs Discriminative Classifiers

Generative: defines a model for generating x (e.g. Naïve Bayes)

Discriminative: only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)

Properties

- Linear Classifier for discrete values
- Continuous Variables Gaussian Naïve Bayes
- Gaussian Naïve Bayes is equivalent to a Logistic Regression!
- Naïve Bayes very efficient for discrete data: only counts
- Naïve Bayes works well for big datasets

Multiclass Classification

Everything works with multiple classes!

Input: x Image pixels Output: y Object in image

Take max of: *P*(*Labrador retriever*|*x*), *P*(*golden retriever*|*x*), *P*(*redbone*|*x*), *P*(*bloodhound*|*x*), *P*(*Rhodesian ridgeback*|*x*)

Decision Trees

How do we make decisions?

https://www.holzer.org/coronavirus-covid-19-updates/

XOR (Exclusive Or)

A line might not always support our decisions.

What makes a loan risky?

17 Bank

Loan Application

Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair

Credit History $\star\star\star\star$ Income $\star\star\star$ Term **** Personal Info $\star \star \star$

Income

What's my income?

Example: \$80K per year

Credit History ★★★★

> Income ★★★

Term ★★★★★

Personal Info ★★★

Loan terms

How soon do I need to pay the loan?

Example: 3 years, 5 years,...

Personal information

Age, reason for the loan, marital status,...

Example: Home loan for a married couple

Credit History $\star\star\star\star$ Income $\star\star\star$ Term **** Personal Info $\star \star \star$

Intelligent application

Classifier review

Setup

Data (N observations, 3 features)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Evaluation: classification error

Many possible decisions: number of trees grows exponentially!

Decision Trees

- internal node: testing a feature
- **branch:** splits into possible values of a feature
- leaf: final decision (the class value)

Growing Trees

- Grow the trees using a greedy approach
- What do we need?

Visual Notation

Decision stump: 1 level

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Making predictions

For each intermediate node, set \hat{y} = majority value

How do we select the best feature?

* Select the split with lowest classification error

.

Calculate the node values.

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Choice 2: Split on Term

pollev.com/cse416

How do we select the best feature?

* Select the split with lowest classification error

How do we measure effectiveness of a split?

Calculating classification error

Step 1: \hat{y} = class of majority of data in node Step 2: Calculate classification error of predicting \hat{y} for this data

Choice 1: Split on Credit history?

Split on Credit: Classification error

Choice 1: Split on Credit

Choice 2: Split on Term?

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

Choice 1 vs Choice 2: Comparing split on credit vs term

Tree	Classification	
	error	
(root)	0.33	
split on credit	0.22	
split on loan term	0.33	

Choice 1: Split on Credit

Choice 2: Split on Term

Split Selection Summary

- Given a subset of data M (a node in a tree)
- For each remaining feature h_i(x):
 - 1. Split data of M according to feature h_i(x)
 - 2. Compute classification error of split
- Chose feature h^{*}(x) with lowest classification error

Greedy Algorithm

- If split is perfect (classification error = 0) or out of features:
 Stop
 - Else:

•

repeat split selection with next stump

Decision stump: 1 level

Stopping

Stop if all points are in one class

Tree learning = Recursive stump learning

Second level

Next Step Tree

Real valued features

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split

Best threshold?

Threshold between points

Same classification error for any threshold split between v_A and v_B Income v_A v_B v_B v Only need to consider midpoints

Threshold split selection algorithm

- Step 1: Sort the values of a feature h_j(x) : Let {v₁, v₂, v₃, ... v_N} denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for threshold split h_j(x) >= t_i
 - Chose the **t**^{*} with the lowest classification error

Visualizing the threshold split

Split on Age >= 38

Each split partitions the 2-D space

Depth 1: Split on x[1]

Depth 2

Threshold split caveat

For threshold splits, same feature can be used multiple times

Decision boundaries

 Decision boundaries can be complex!

Overfitting

- Deep decision trees are prone to overfitting
 - Decision boundaries are interpretable but not stable
 - Small change in the dataset leads to big difference in the outcome
- Overcoming Overfitting:
 - Early stopping
 - Fixed length depth
 - Stop if error does not considerably decrease
 - Pruning
 - Grow full length trees
 - Prune nodes to balance a complexity penalty

Predicting probabilities

Recap

What you can do now:

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions