CSE/STAT 416

Classification

Vinitra Swamy University of Washington July 6, 2020

Roadmap So Far

- 1. Housing Prices Regression
 - Regression Model
 - Assessing Performance
 - Ridge Regression
 - LASSO

- 2. Sentiment Analysis Classification
 - Classification Overview
 - Logistic Regression
 - Decision Trees
 - Ensemble Methods

Spam Filtering

Input: x

Text of email Sender Subject Output: y

Object Detection

multi-clays classification

Input: xPixels

Output: y
Class
(+ Probability)

Sentiment Classifier

In our example, we want to classify a restaurant review as positive or negative.

Implementation 1: Simple Threshold Classifier

Idea: Use a list of good words and bad words, classifier by most frequent type of word

- Positive Words: great, awesome, good, amazing, ...
- Negative Words: bad, terrible, disgusting, sucks, ...

Simple Threshold Classifier

Input *x*: Sentence from review

- Count the number of positive and negative words, in x
- If num_positive > num_negative:

$$-\hat{y} = +1$$

Else:

$$\hat{y} = -1$$

pos = 2 # neg = 1 y = +1

Example: "Sushi was great, the food was awesome, but the service was terrible"

Problems with Threshold

How do we get list of positive/negative words?

Words have different degrees of sentiment.

- Great > Good
- How can we weigh them differently?

Learn

Single words are not enough sometimes...

- "Good" → Positive

- "Not Good" → Negative

n-gram encoding bigrams >> 2 wd c at a time unigram >> 1 wd at a time

Implementation 2: Linear Classifier

Idea: Use labelled training data to learn a weight for each word. Use weights to score a sentence.

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
	•••

Score a Sentence

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
	• • •

Input x_i :

"Sushi was **great**, the food was **awesome**, but the service was **terrible**"

Linear classifier, because output is linear weighted sum of inputs.

Will learn how to learn weights soon!

Implementation 2: Linear Classifier

Idea: Use labelled training data to learn a weight for each word. Use weights to score a sentence.

See last slide for example weights and scoring.

Linear Classifier

Input *x*: Sentence from review

- Compute Score(x)
- If $Score(x) \ge 0$:

$$\hat{y} = +1$$

Else:

$$- \hat{y} = -1$$

Score
$$(x_i) = 2.1$$

 $\hat{y} = +1$

Linear Classifier Notation

$$\begin{aligned} h_1(x) &= \text{\# good} \\ h_2(x) &= \text{\# griad} \\ \text{Model: } \hat{y}_i &= sign(Score(x_i)) & \text{Sign}(0,8) &= \text{\# form}(-1,23\text{\# form}) &= -1 \\ & \text{Score}(x_i) &= w_0 h_0(x_i) + w_1 h_1(x_i) + \dots + w_D h_D(x_i) \\ &= \sum_{j=0}^D w_j h_j(x_i) \\ &= w^T h(x) \end{aligned}$$

We will also use the notation

$$\hat{s}_i = Score(x_i) = w^T h(x_i)$$
$$\hat{y}_i = sign(\hat{s}_i)$$

Decision Boundary

Consider if only two words had non-zero coefficients

Decision Boundary

$Score(x) = 1 \cdot \#awesome - 1.5 \cdot \#awful$

Generally, with classification we don't us a plot like the 3d view since it's hard to visualize, instead use 2d plot with decision boundary

Decision Boundary

$Score(x) = 1 \cdot \#awesome - 1.5 \cdot \#awful$

Poll Everywhere

- Typical Activity
 - Question is posed
 - Think (1 min): Think about the question on your own
 - Pair (2 min): Talk with your neighbor to discuss question
 - If you arrive at different conclusions, discuss your logic and figure out why you differ!
 - If you arrived at the same conclusion, discuss why the other answers might be wrong!
 - **Share** (1 min): We discuss the conclusions as a class
- During each of the **Think** and **Pair** stages, you will respond to the question via a Poll Everywhere poll
 - The poll will only be open for the last **15** seconds of each of the stage
 - Not worth any points, just here to help you learn!

Poll Everywhere

Think &

1 min

pollev.com/cse416

What happens to the decision boundary if we add an intercept?

 $Score(x) = 1.0 + 1 \cdot \#awesome - 1.5 \cdot \#awful$

Poll Everywhere

Pair 22

2 min

pollev.com/cse416

What happens to the decision boundary if we add an intercept?

 $Score(x) = 1.0 + 1 \cdot \#awesome - 1.5 \cdot \#awful$

Complex Decision Boundaries?

What if we want to use a more complex decision boundary?

- Need more complex model/features!
- Covered next lecture!

9:25 Brain Break

Evaluating Classifiers

Classification Error

indicator function 1/ E A3 = El if Aistrue 2

Ratio of examples where there was a mistaken prediction

What's a mistake?

- If the true label was positive (y = +1), but we predicted negative ($\hat{y} = -1$)
- false positive If the true label was negative (y = -1), but we predicted positive ($\hat{y} = +1$)

Classification Error

Classification Accuracy

What's a good accuracy?

For binary classification:

- Should at least beat random guessing...
- Accuracy should be at least 0.5

For multi-class classification (*k* classes):

- Should still beat random guessing
- Accuracy should be at least $\frac{1}{k}$
 - 3-class: 0.33
 - 4-class: 0.25
 - ...

Besides that, higher accuracy means better, right?

Detecting Spam

Imagine I made a "Dummy Classifier" for detecting spam

- The classifier ignores the input, and always predicts spam.
- This actually results in 90% accuracy! Why?
 - Most emails are spam...

This is called the **majority class classifier**.

A classifier as simple as the majority class classifier can have a high accuracy if there is a **class imbalance**.

A class imbalance is when one class appears much more frequently than another in the dataset

This might suggest that accuracy isn't enough to tell us if a model is a good model.

Assessing Accuracy

Always digging in and ask critical questions of your accuracy.

- Is there a class imbalance?
- How does it compare to a baseline approach?
 - Random guessing
 - Majority class
 - ...
- Most important: What does my application need?
 - What's good enough for user experience?
 - What is the impact of a mistake we make?

Confusion Matrix

For binary classification, there are only two types of mistakes

$$\hat{y} = +1, y = -1$$

$$\hat{y} = -1, y = +1$$

Generally we make a **confusion matrix** to understand mistakes.

Predicted Label

Confusion Matrix Example

Which is Worse?

What's worse, a false negative or a false positive?

It entirely depends on your application!

Detecting Spam

False Negative: Annoying

False Positive: Email lost

Medical Diagnosis

False Negative: Disease not treated

False Positive: Wasteful treatment

In almost every case, how treat errors depends on your context.

Binary Classification Measures

Notation

$$C_{TP} = \text{\#TP}, \quad C_{FP} = \text{\#FP}, \quad C_{TN} = \text{\#TN}, \quad C_{FN} = \text{\#FN}$$

$$= C_{TP} + C_{FP} + C_{TN} + C_{FN}$$

$$N_P = C_{TP} + C_{FR} \qquad N_N = C_{FP} + C_{TN}$$

Error Rate

$$\frac{C_{FP} + C_{FN}}{N}$$

Accuracy Rate

$$\frac{C_{TP} + C_{TN}}{N}$$

False Positive rate (FPR)

$$\frac{C_{FP}}{N_N}$$

False Negative Rate (FNR)

$$\frac{C_{FN}}{N_P}$$

True Positive Rate or Recall

$$\frac{T_P}{N_P}$$

Precision

$$\frac{T_P}{C_{TP} + C_{FP}}$$

F1-Score

$$2\frac{Precision \cdot Recall}{Precision + Recall}$$

See more!

Multiclass Confusion Matrix

Consider predicting (Healthy, Cold, Flu)

Predicted Label

		Healthy	Cold	Flu
	Healthy	60	8	2
True Label	Cold	4	12	4
•	Flu	0	2	8

Think &

1 min

pollev.com/cse416

Suppose we trained a classifier and computed its confusion matrix on the training dataset. Is there a class imbalance in the dataset and if so, which class has the highest representation?

Predicted Label

	Pupper	Doggo	Woofer
Pupper	2	27	4
Doggo	4	25	4
Woofer	1	30	2

Pair 22

2 min

pollev.com/cse416

Suppose we trained a classifier and computed its confusion matrix on the training dataset. Is there a class imbalance in the dataset and if so, which class has the highest representation?

Predicted Label

	Pupper	Doggo	Woofer
Pupper	2	27	4
Doggo	4	25	4
Woofer	1	30	2

33

Learning Theory

How much data?

The more the merrier

But data quality is also an extremely important factor

Theoretical techniques can bound how much data is needed

- Typically too loose for practical applications
- But does provide some theoretical guarantee

In practice

More complex models need more data

Learning Curve

How does the true error of a model relate to the amount of training data we give it?

Hint: We've seen this picture before

Learning Curve

What if we use a more complex model?

Change Threshold

What if I never want to make a false positive prediction?

What if I never want to make a false negative prediction?

One way to control for our application is to change the scoring threshold. (Could also change intercept!)

- If $Score(x) \ge \alpha$:
 - Predict $\hat{y} = +1$
- Else:
 - Predict $\hat{y} = -1$

ROC Curve

What happens to our TPR and FPR as we increase the threshold?

Next Time

We will talk about learning classifiers that model the probability of seeing a particular class at a given input.

Normally assume some structure on the probability (e.g. linear) $P(y|x,w) \approx w^T x$

Use machine learning algorithm to learn approximate \widehat{w} such that $\widehat{P}(y|x) = P(y|x,\widehat{w})$

And P(y|x) and $\hat{P}(y|x)$ are close.

Recap

Theme: Describe high level idea and metrics for classification

Ideas:

- Applications of classification
- Linear classifier
- Decision boundaries
- Classification error / Classification accuracy
- Class imbalance
- Confusion matrix
- Learning theory
- ROC Curve