Announcements

- Slides + annotations can be found on the course website
- Jupyter Notebooks (Local or Colab)
 - notebook autograder
- Section tomorrow will give you practice writing some of the code for HW1
 - HW1 will be released shortly after lecture
Linear Regression Model

Assume the data is produced by a line.

\[y_i = w_0 + w_1 x_i + \epsilon_i \]

\(w_0, w_1 \) are the *parameters* of our model that need to be learned

- \(w_0 \) is the intercept (\$ of the land with no house)
- \(w_1 \) is the slope (\$ increase per increase in sq. ft)

Learn estimates of these parameters \(\hat{w}_0, \hat{w}_1 \) and use them to predict new value for any input \(x \):

\[\hat{y} = \hat{w}_0 + \hat{w}_1 x \]
Important: Distinction is the difference between a data input and a feature.

- Data inputs are columns of the raw data
- Features are the values (possibly transformed) for the model (done after our feature extraction $h(x)$)

Data Input: $x_i = (x_i[1], x_i[2], ..., x_i[d])$

Output: y_i

- x_i is the i^{th} row
- $x_i[j]$ is the i^{th} row’s j^{th} data input
- $h_j(x_i)$ is the j^{th} feature of the i^{th} row
Linear Regression Recap

Dataset
\[\{(x_i, y_i)\}_{i=1}^{n} \text{ where } x \in \mathbb{R}^d, y \in \mathbb{R} \]

Feature Extraction
\[h(x): \mathbb{R}^d \rightarrow \mathbb{R}^D \]
\[h(x) = (h_0(x), h_1(x), ..., h_D(x)) \]

Regression Model
\[y = f(x) + \epsilon = \sum_{j=0}^{D} w_j h_j(x) + \epsilon = w^T h(x) + \epsilon \]

Quality Metric
\[RSS(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

Predictor
\[\hat{w} = \min_{w} RSS(w) \]

ML Algorithm
Optimized using Gradient Descent

Prediction
\[\hat{y} = \hat{w}^T h(x) \]
Assessing Performance
Polynomial Regression

How do we decide what the right choice of p is?
Consider using different degree polynomials on the same dataset

Which one has a lower RSS on this dataset?

$p = 20$

It seems like minimizing the RSS is not the whole story here...
Why do we train ML models?

We generally want them to do well on **future** data.

A model that best minimizes RSS on the data it learned will **memorize** the data, not **generalize** well.

- Practice exam vs. actual exam

Key Idea: Assessing yourself based on something you learned from generally **overestimates** how well you will do in the future!
What we care about is how well the model will do in the future. How do we measure this? True error

To do this, we need to understand uncertainty in the world.

\[
\text{general loss function: } L(y, \hat{f}(x)) \\
\text{so far, we have used } \text{RSS: } L(y, \hat{f}(x)) = (y - \hat{f}(x))^2
\]

\[
E_{x,y}[L(y, \hat{f}(x))] = \sum_{x \in X} \sum_{y \in Y} L(y, \hat{f}(\omega)) p(x,y)
\]

Expected loss over all possible \(x,y\) pairs.
How can we figure out how well a model will do on future data if we don’t have any future data?

- Estimate it! We can hide data from the model to test it later as an estimate how it will do on future data

We will randomly split our dataset into a **train set** and a **test set**

- The train set is to train the model
- The test set is to estimate the performance in the future
What we really care about is the true error, but we can’t know that without having an infinite amount of data!

We will use the test set to estimate the true error

Test error: error on the test set

\[
RSS_{\text{test}}(\hat{w}) = \sum_{i \in \text{Test}} (y_i - f_{\hat{w}}(x_i))^2
\]

If the test set is large enough, this can approximate the true error
Train/Test Split

If we use the test set to estimate future, how big should it be?

Bigger test set \Rightarrow better estimate of the error

This comes at a cost of reducing the size of the training set though (in the absence of being able to just get more data)

In practice people generally do train:test as either

- 80:20
- 90:10

Important: Never train your model on data in the test set!
What happens to training error as we increase model complexity?

- Start with the simplest model (a constant function)
- End with a very high degree polynomial
What happens to true error as we increase model complexity?

- Start with the simplest model (a constant function)
- End with a very high degree polynomial
Train/True Error

Compare what happens to train and true error as a function of model complexity.
Overfitting happens when we too closely match the training data and fail to generalize.

Overfitting happens when, you train a predictor \hat{w}, but there exists another predictor w' from that model that has the following properties:

- $error_{true}(w') < error_{true}(\hat{w})$
- $error_{train}(w') > error_{train}(\hat{w})$
Bias-Variance Tradeoff
The ability to overfit/underfit is a knob we can turn based on the model complexity.

- More complex => easier to overfit
- Less complex => easier to underfit

In a bit, we will talk about how to chose the “just right”, but now we want to look at this phenomena of overfitting/underfitting from another perspective.

Underfitting / Overfitting are a result of certain types of errors
Learning from data relies on balancing two aspects of our data
- Signal
- Noise

Complex models make it easier to fit too closely to the noise

Simple models have trouble picking up the signal
A model that is too simple fails to fit the signal. In some sense, this signifies a fundamental limitation of the model we are using to fail to fit the signal. We call this type of error bias.

Low complexity (simple) models tend to have high bias.*
A model that is too complicated for the task overly fits to the noise. The flexibility of the complicated model makes it capable of memorizing answers rather than learning general patterns. This contributes to the error as **variance**.

High complexity models tend to have high variance.*
It turns out that bias and variance live on a spectrum, increasing one tends to decrease the other

- Simple models: High bias + Low variance
- Complex models: Low bias + High variance

In the case for squared error with regression

$$\text{Error} = \text{Bias}^2 + \text{Variance} + \text{Noise}$$

Noise comes from the regression model (ϵ_i) and is impossible to avoid!
Bias-Variance Tradeoff

Visually, this looks like the following!

\[\text{Error} = \text{Bias}^2 + \text{Variance} + \text{Noise} \]
So far our entire discussion of error assumes a fixed amount of data. What happens to our error as we get more data?
Brain Break

Credit: https://xkcd.com/1838/
So far we have talked about the affect of using different complexities on our error. Now, how do we choose the right one?
Suppose I wanted to figure out the right degree polynomial for my dataset (we’ll try p from 1 to 20). What procedure should I use to do this? Pick the best option.

For each possible degree polynomial p:

- Train a model with degree p on the training set, pick p that has the lowest test error
- Train a model with degree p on the training set, pick p that has the highest test error
- Train a model with degree p on the test set, pick p that has the lowest test error
- Train a model with degree p on the test test set, pick p that has the highest test error
- None of the above
Choosing Complexity

We can’t just choose the model that has the lowest train error because that will favor models that overfit!

It then seems like our only other choice is to choose the model that has the lowest test error (since that is our approximation of the true error)

- This is almost right, but now we don’t have a good estimate of the true error anymore.
- We didn’t technically train the model on the test set (that’s good), but we chose which model to use based on the performance of the test set.
 - It’s no longer a stand in for “the unknown” since we probed it many times to figure out which model would be best.
Choosing Complexity

We will talk about two ways to pick the model complexity without ruining our test set.

▪ Using a validation set
▪ Doing cross validation
So far we have divided our dataset into train and test.

We can’t use Test to choose our model complexity, so instead, break up Train into ANOTHER dataset.
The process generally goes

```python
train, validation, test = split_data(dataset)
for each model complexity p:
    model = train_model(model_p, train)
    val_err = error(model, validation)
    keep track of p with smallest val_err
return best p + error(model, test)
```
Pros

Easy to describe and implement

Pretty fast

- Only requires training a model and predicting on the validation set for each complexity of interest

Cons

Have to sacrifice even more training data! 😞
Cross-Validation

Clever idea: Use many small validation sets without losing too much training data.

Still need to break off our test set like before. After doing so, break the training set into k chunks.

For a given model complexity, train it k times. Each time use all but one chunk and use that left out chunk to determine the validation error.
Cross-Validation

The process generally goes

\[
\text{chunk}_1, \ldots, \text{chunk}_k, \text{test} = \text{split_data(}\text{dataset}\text{)}
\]

for each model complexity \(p\):

\[
\text{for } i \text{ in } [1, k]:
\]

\[
\text{model} = \text{train_model(}\text{model}_p, \text{chunks - i})
\]

\[
\text{val_err} = \text{error(}\text{model, chunk}_i\text{)}
\]

\[
\text{avg_val_err} = \text{average } \text{val_err} \text{ over chunks}
\]

keep track of \(p\) with smallest \(\text{avg_val_err}\)

return model trained on train with best \(p\) +

\[
\text{error(}\text{model, test})
\]
Cross-Validation

Pros
Don’t have to actually get rid of any training data!

Cons
Can be a bit slow. For each model complexity, trains k models!

For best results, need to make k really big
- Theoretical best estimator is to use $k = n$
 - Called "Leave One Out Cross Validation"
- In practice, people use $k = 5$ to 10
Recap

Theme: Assess the performance of our models

Ideas:

- Model complexity
- Train vs. Test vs. True error
- Overfitting and Underfitting
- Bias-Variance Tradeoff
- Error as a function of train set size
- Choosing best model complexity
 - Validation set
 - Cross Validation