Announcements

- Homework 7 grades have been released
- Congratulations to Team Otterhog! + creative team names
 - weak learner
 - machine teachers
 - indecisive tree classifiers
 - beff jezos
 - deep mind 2.0
 - confused matrix
 - ham in spam
- Final Exam is on Wednesday on Gradescope
 - Have scratch paper handy
 - Compile your notes / study materials
 - Work fast (if you’re getting stuck on a problem, skip it, and come back to it later)
Fairness

ML Ethics
Assessing Accuracy

Always dig in and ask critical questions of your accuracy.

- Is there a class imbalance?
- How does it compare to a baseline approach?
 - Random guessing
 - Majority class
 - ...
- Most important: What does my application need?
 - What's good enough for user experience?
 - What is the impact of a mistake we make?
What’s worse, a false negative or a false positive?
- It entirely depends on your application!

Detecting Spam
- False Negative: Annoying
- False Positive: Email lost

Medical Diagnosis
- False Negative: Disease not treated
- False Positive: Wasteful treatment

In almost every case, how treat errors depends on your context.
When ML goes wrong...

COMPAS, the algorithm used for recidivism prediction produces much higher false positive rate for African American people than Caucasian people. (Larson et al. ProPublica, 2016)

XING, a job platform, was found to rank less qualified male candidates higher than more qualified female candidates (Lahoti et al. 2018)

<table>
<thead>
<tr>
<th>Search query</th>
<th>Work experience</th>
<th>Education experience</th>
<th>Profile views</th>
<th>Candidate gender</th>
<th>Xing ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Strategist</td>
<td>146</td>
<td>57</td>
<td>12992</td>
<td>male</td>
<td>1</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>327</td>
<td>0</td>
<td>4715</td>
<td>female</td>
<td>2</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>502</td>
<td>74</td>
<td>6978</td>
<td>male</td>
<td>3</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>444</td>
<td>56</td>
<td>1504</td>
<td>female</td>
<td>4</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>139</td>
<td>25</td>
<td>63</td>
<td>male</td>
<td>5</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>110</td>
<td>65</td>
<td>3479</td>
<td>female</td>
<td>6</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>12</td>
<td>73</td>
<td>846</td>
<td>male</td>
<td>7</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>99</td>
<td>41</td>
<td>3019</td>
<td>male</td>
<td>8</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>42</td>
<td>51</td>
<td>1359</td>
<td>female</td>
<td>9</td>
</tr>
<tr>
<td>Brand Strategist</td>
<td>220</td>
<td>102</td>
<td>17186</td>
<td>female</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE II: Top k results on www.xing.com (Jan 2017) for the job serach query “Brand Strategist”.

5 sources of bias in ML

- **Historical bias** arises when the world, as it is, is biased
 - “CEO” Image Search

- **Representation bias** occurs when some groups of the population are underrepresented in the training data
 - ImageNet: 45% US, 1% China

- **Measurement bias** arises when there are granularity issues with measuring features of interest.
 - GPA -> Student Success

- **Aggregation bias** occurs when a one-size-fits-all model is used for groups that have different conditional distributions
 - Hb1ac level for diabetes across different populations

- **Evaluation bias** arises when evaluation and/or benchmark datasets are not representative of the target population
 - Facial Recognition datasets
Solutions for mitigating bias need to be tailored to the source of the bias.
Can we define fairness?

- Legal precedent
 - Barocas and Selbst, 2016

- **disparate treatment**: decisions based on sensitive attributes
- **disparate impact**: outcomes disproportionately hurt or benefit people with certain sensitive attribute values
Fairness
Frameworks

- No consensus on the mathematical definition of fairness
- Many papers have attempted to add frameworks
 - unawareness
 - demographic parity
 - equalized odds
 - predictive rate parity
 - individual fairness
 - counterfactual fairness
- Tradeoff between accuracy and fairness
Debiasing ML when you don’t have access to private data
- [“race”, “gender”, “age”] are protected attributes
- Let’s take advantage of the societal biases in names.

Bias in word embeddings exist
- Debiasing methods by zero-ing projection onto the gender direction conceals the bias instead of removing it

WHAT’S IN A NAME? REDUCING BIAS IN BIOS WITHOUT ACCESS TO PROTECTED ATTRIBUTES, BY ALEXEY ROMANOV ET. AL

LIPSTICK ON A PIG: DEBIASING METHODS COVER UP SYSTEMATIC GENDER BIASES IN WORD EMBEDDINGS BUT DO NOT REMOVE THEM, BY HILA GONEN AND YOAV GOLDBERG
What effect does deep learning research have on the planet?

- “training one model on GPU, with tuning and experimentation, results in CO2 emissions that are comparable to the two-year carbon footprint of an average American”
- “cloud computing costs for developing a state-of-the-art NLP model may account for $103–350K”

ENERGY AND POLICY CONSIDERATIONS FOR DEEP LEARNING IN NLP, BY EMMA STRUBELL, ANANYA GANESH, ANDREW MCCALLUM
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive four-horned, silver-white features, as the "Andean Unicorns." These unicorns were previously unknown by modern humans.

Now, after almost two centuries, the mystery of what sparked the first unicorn sightings is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of Andes, who led the expedition with several companions, was exploring the Andes Mountains when they stumbled upon the valley, with no other animals or humans. Pérez noticed that the unicorns appeared to be a natural fountain, surrounded by two peaks covered with silver snow.

A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label ‘Blurred Lines’ on the front and ‘Fashion Police’ on the back.

Scroll down for video
Select the text sample that was generated by GPT-2.

In a shocking finding, scientists discovered a herd of unicorns living in a remote, previously unexplored valley in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

For today’s homework assignment, please describe the reasons for the US Civil War.

By Donny Ferguson

It is easy to identify why the Civil War happened, because so many people and so many books and so much television and film tell us that it was the cause, that it had something to do with race or economics or religion. There is such agreement that it was essentially a war of slavery on behalf of capitalism, about a century of slavery. But that’s not what most people think of when they think of the Civil War. Many people think of the war as about states’ rights. You’re not wrong about that, but it’s kind of misleading to say that the Civil War was a conflict between states’ rights and federalism. So let’s try again. What’s the idea that has inspired so many people to go onto the battlefields of Gettysburg and Antietam and Gettysburg and Petersburg and Fredericksburg? The American idea of the republic—a notion of limited government—is a great part of the history.

A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

The incident occurred on the downtown train line, which runs from Covington and Ashtabula stations.

In an email to Ohio news outlets, the US Department of Energy said it is working with the Federal Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation,” said Tim Hicks, the US Energy Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label ‘Blurred Lines’ on the front and ‘Fashion Police’ on the back.

Scroll down for video.
Doge, our vacuum cleaner, got stuck. As an explanation for the accident, Doge told us that it needs to be on an even surface.
Interpretability

- What is an explanation?
- Interpretable Models
- Model-Agnostic Methods
- Example-Based Explanations
- Future of Interpretability

Partial Dependence Plot (PDP)
Individual Conditional Expectation (ICE)
Feature Importance
Global Surrogate
Local Surrogate (LIME)
Shapley Value (SHAP)
What Is an explanation?
- An explanation is the answer to a why-question (Miller 2017)
 - Why did the treatment not work on the patient?
 - Why was my loan rejected?
 - Why have we not been contacted by alien life yet?

What is a “good” explanation?
- Humanities research can help us out!
- Good explanations are contrastive (Lipton 1990)
- Good explanations are selected
- Good explanations are context-driven
- Good explanations focus on the abnormal
- Good explanations are general and probable
Interpretable Models

- Linear Regression
- Logistic regression
- Decision Trees
- Naïve Bayes
- K Nearest Neighbors

(GLM, RuleFit, Decision Rules)
Model-Agnostic Methods: PDP

- The partial dependence plot (PDP plot) shows the marginal effect one or two features have on the predicted outcome of a machine learning model (J. H. Friedman 2001).

pro: easy to implement

con: avg. line hides heterogenous effects
Model-Agnostic Methods: Surrogate Models

- **Global Surrogate Model**
 - An interpretable model is trained to approximate the prediction of a black box model.

- **Local Surrogate Model**
 - **LIME** (Ribeiro et. al, 2016)

 pro: human-centric explanations
 con: instability, hard to define “neighborhood”

pro: flexible, intuitive
con: draw conclusions about model, not about data -- can differ by subset of dataset
Model-Agnostic Methods: Shapley values

- Shapley value draws from game theory.
 - Each feature value of the instance is a “player” in a game.
 - The contribution of each player is measured by adding/removing the player from all subsets of players.
 - The Shapley Value for one player is the weighted sum of all its contributions.

- If you add up the Shapley Values of all the features, plus the base value, which is the prediction average, you will get the exact prediction value.

pro: good explanations, fairly distributed
con: lot of computing time, no prediction model
Example-based explanations

- **Adversarial examples**
 - small, intentional feature perturbations that cause a machine learning model to make a false prediction

- **Counterfactual examples**
 - "If X had not occurred, Y would not have occurred"
 - describes the **smallest change to the feature values** that changes the prediction to a predefined output
Brain Break

People telling me AI is going to destroy the world

My neural network

Dog
One Slide

- Regression
- Overfitting
- Training, test, generalization error
- Bias-Variance tradeoff
- Ridge/LASSO regularization
- Cross validation
- Gradient Descent
- Classification
- Logistic Regression
- Decision trees
- Boosting
- Precision and recall
- Nearest-neighbor retrieval, regression, and classification
- Kernel regression
- Locality Sensitive Hashing

- Dimensionality Reduction (PCA)
- K-means clustering
- Hierarchical clustering
- Supervised vs. unsupervised learning
- Recommender systems
- Matrix Factorization (NMF)
- Coordinate Descent
- Neural Networks
- Convolutional Neural Networks
- Transfer learning
STAT/CSE 416: Intro to Machine Learning

- Training Data
- Feature extraction
- ML model
- ML algorithm
- Quality metric

\[x \rightarrow \hat{y} \rightarrow \hat{w} \rightarrow \text{Quality metric} \rightarrow \text{ML algorithm} \rightarrow \text{Feature extraction} \rightarrow \text{ML model} \rightarrow \hat{y} \rightarrow \text{Training Data} \]
Case Study 1:
Predicting house prices

Data → Regression → Intelligence

$ = ??$

list price? (sales price)
Regression

Case study: Predicting house prices

Models

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)

Including many features:

- Square feet
- # bathrooms
- # bedrooms
- Lot size
- Year built
- ...

\[\text{RSS}(w) + \lambda ||w||_2^2 \]
Regression

Case study: Predicting house prices

Algorithms
- Gradient descent

\[
\text{RSS}(w_0, w_1) =
(w_0 + w_1 \text{sq.ft. house 1})^2 +
(w_0 + w_1 \text{sq.ft. house 2})^2 +
(w_0 + w_1 \text{sq.ft. house 3})^2 + \ldots \\
\text{[include all houses]}
\]
Regression

Case study: Predicting house prices

Concepts

• Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection

1. Noise
2. Bias
3. Variance

Stat/Cse 416: intro to Machine Learning
Case Study 2: Sentiment analysis

Sushi was awesome, the food was awesome, but the service was awful.

All reviews:

- Sushi was awesome, the food was awesome, but the service was awful.

- Score(x) > 0

- Score(x) < 0

- “awful”

- “awesome”
Classification

Case study: Analyzing sentiment

Models
- Linear classifiers (logistic regression)
- Multiclass classifiers
- Decision trees
- Boosted decision trees and random forests
Classification

Case study: Analyzing sentiment

- Boosting
- Learning from weighted data

Algorithms

- Income > $100K?
 - Yes: Safe
 - No: Risky
 - Weighted error = 0.2

- Credit history?
 - Bad: Risky
 - Good: Safe
 - Weighted error = 0.35

- Savings > $100K?
 - Yes: Safe
 - No: Risky
 - Weighted error = 0.3

- Market conditions?
 - Bad: Risky
 - Good: Safe
 - Weighted error = 0.4

STAT/CSE 416: Intro to Machine Learning
Classification

Case study: Analyzing sentiment

- Decision boundaries, maximum likelihood estimation, ensemble methods, random forests
- Precision and recall

Concepts

$\ell(w_0, w_1, w_2)$

Precision

Recall

Classifier A
Best classifier
Classifier B
Case Study 3:
Document retrieval

Data → Nearest neighbor → Intelligence

416: Intro to Machine Learning
Case Study 3+: Document structuring for retrieval
Case Study 3++: Dimensionality reduction

Can we give each image a coordinate, such that similar images are near each other?

Images with thousands or millions of pixels

Can we give each image a coordinate, such that similar images are near each other?

[Saul & Roweis '03]
Clustering & Retrieval

Case study: Finding documents

Models

- Nearest neighbors
- Clustering
- Hierarchical clustering

Case study: Finding documents

- Nearest neighbors
- Clustering
- Hierarchical clustering
Clustering & Retrieval

Case study: Finding documents

- k-means
- Locality-sensitive hashing (LSH)
- NN regression and classification
- Kernel regression
- Agglomerative and divisive clustering
- PCA
Clustering & Retrieval

Case study: Finding documents

Concepts

- Distance metrics, kernels, approximation algorithms, dimensionality reduction

1 0 0 0 5 3 0 0 1 0 0 0 0

3 0 0 0 2 0 0 1 0 1 0 0 0

1*3 + 5*2 = 13

Principal components:

Reconstructing:

STAT/CSE 416: Intro to Machine Learning
Case Study 4: Image classification

Data -> Deep Learning -> Intelligence

Layer 1: Input variables x_1, x_2
Layer 2: Intermediate variables z_1, z_2
Output variable y

Face?
Deep Learning

Case study: Image classification

Models

• Perceptron
• General neural network
• Convolutional neural network
Deep Learning

Case study: Image classification

Algorithms

- Convolutions
- Backpropagation (high level only)

Forward

Gradient / Backprop

STAT/CSE 416: Intro to Machine Learning
Deep Learning

Case study: Image classification

Concepts

• Activation functions, hidden layers, architecture choices
Case Study 5: Product recommendation

Data

Your past purchases:

+ purchase histories of all customers

Matrix Factorization

Customers

features

features

features

Recommended items:

Products

features

features

features

features
Recommender Systems & Matrix Factorization

Case study: Recommending Products

Models
- Collaborative filtering
- Matrix factorization

Rating Equation
\[
\text{Rating} = \sum \text{Parameters of model}
\]

- X_{ij} unknown for white cells
- Rows index movies
- Columns index users
- $X = \text{Rating}$

Parameters of model:
- L
- R'

STAT/CSE 416: Intro to Machine Learning
Recommender Systems & Matrix Factorization

Case study: Recommending Products

Algorithms

- Coordinate descent

Rating = \begin{pmatrix} L & R' \end{pmatrix}

Form estimates \(\hat{L}_u \) and \(\hat{R}_v \)
Recommender Systems & Matrix Factorization

Case study: Recommending Products

Concepts

- Matrix completion, cold-start problem

Customers

Products

Customers

Products
STAT/CSE 416: Intro to Machine Learning

Training Data → Feature extraction → ML model → Quality metric → ML algorithm → Weighting → ML model → Prediction
Improving the performance at some task through experience!

- Before you start any learning task, remember fundamental questions that will impact how you go about solving it

What is the learning problem? From what experience?

What model? What loss function are you optimizing?

Are there any guarantees? With what optimization algorithm?

How will you evaluate the model? What consequences does your model have?
Congrats on finishing CSE/STAT 416! Thanks for the hard work!