CSE/STAT 416

Deep Learning

Vinitra Swamy
University of Washington
Aug 3, 2020




Deep
Learning

A lot of the buzz about ML recently has come from recent
advancements in deep learning.

When people talk about “deep learning” they are generally talking
about a class of models called neural networks that are a loose
approximation of how our brains work.




Applications

virtual assistants

.. and so much more!

computer
vision

f
C\aasa ot (L/,g,,gc'w wLAion

C, ) ",i,(: al
dangred Lo Covmmil Hovt

\ ‘\U.,\«,\\—Ui.(.tt‘f\(‘ oo Text

Optical Character Recognition

is designed to convert your
Hey Siri handwriting into text.



Remember the linear classifier based on score

Recall:
Linear
Classifier
Score(x) = wy+ wy x[1] + w, x[2] + ... + wy x[d]
Score(x) >0 o[ Score(x) <0
+ + 3 -
+ 7 =
+ & N é _ -
£ -
+ g
+ 4 . 3 =
d




Graphical representation of this same classifier

Perceptron

Input Output
S(OV‘(XV]?

d
z wix[j] = wo + wix[1] + ... + wgx[d]

] = At vatyon
st S ™Mudhn

0
® " & e

w

. -
. N _J |
®/ 51 ge(sere (1)) :
\‘ g(Score(x)) = 1, if ;ij[i] >0

-1, otherwise

This is called a perceptron



What can a perceptrons represent?

| earnable

X1 X2 y X1 X2 y
0 0 0 - 0 0 0
0 1 1 4 0 1 0 -
1 0 1 + 1 0 0
1 1 1 + 1 1 1




@ Poll Everywhere

What are the weights needed to learn x; AND x,?

. Enter your answer as a tuple (wy, wy, w,)
Think £

1 mir ____x, ANDx, [

W,

R~ |Oo|o
= o= |o
el E=NE=EE=EA

pollev.com/cse416




@ Poll Everywhere

What are the weights needed to learn x; AND x,?

Enter your answer as a tuple (wy, wy, w,)

Think &
1 mir ____x, ANDx, [

0 0
0 1
1 0
1 1

-
—

el E=NE=EE=EA

e

‘]‘—\—\ -0+ /=0 >~
-V

pollev.com/cse416 S 4l = — — 4

&
AR R A S>3

2:00




The perceptron can learn most boolean functions, but XOR always
has to ruin the fun.

This data is not linearly separable, therefore can’t be learned with
the perceptron

. -
= #

—>
V) 4 x(_\j




Neu ral Idea: Combine these perceptrons in layers to learn more complex

hiddepn
Jhdden bugpr

functions.

Network




X, <\

Notice that we can represent

o= ARy G )
- + v V2

&
o % J

4
-0+ lx -|r0-05 >+

X1-0 o)

V’E’O'ﬁr‘\'\ ¥y V-0=—15= _



This is a 2-layer neural network

y = x[1] XOR x[2] = (x[1] AND ! x[2]) OR (! x[1] AND x[2])

v[1] = (x[1] AND !x[2])
= g(—0.5+ x[1] — x[2])

v[2] = (! x[1] AND x[2])

= g(—0.5 — x[1] + x[2])
- =

y =v[1] OR v[2] '
= g(—0.5+ v[1] + v[2])




Neu ral Two layer neural network (alt. one hidden-layer neural network)
N etW O r k Inputs Outputs

RO
NS
\

2\
A7
O -

Single acHvaon B

v
( out(x5= g (Wo + Z ij[i]>
- J
1-hidden layer
o+ S+ )
- k : ;

Ji
Ve




Power of 2- A surprising fact is that a 2-layer network can represent any

layer NN

function, if we allow enough nodes in hidden layer.

For this example, consider regression function with one input.

See more here: —

http://neuralnetworksanddeeplearning.com/chap4.html



http://neuralnetworksanddeeplearning.com/chap4.html

; THIS IS A NEURAL

€ ) Brain Break

NETWORK.

IT MAKES MISTAKES.
IT LEARNS FROM THEM.

BELIKEANEURAL
NETWORK .




Activation Before, we were using the sign activation function. X

Function This is not generally used in practice.,
Not differentiable

No notion of confidence

o o — Q,aD@n
-

Generally, people use different sigmoid functions as activation
functions. For example, the logistic function

_ 1
g(wp + Z wix[j]) = 1+ e_’(wa+zj w;x[j])




Sigmoid
Functions

-Sigmoid 1
R~ S
-Historically popular, but (mostly) fallen out of favor
. - 0 4

*Neuron’s activation saturates —

(weights get very large -> gradients get small) sigmoid

*Not zero-centered -> other issues in the gradient steps  _4

-When put on the output layer, called “softmax” because -1 0 1
interpreted as class probability (soft assignment) <

‘Hyperbolic tangent g(x) = tanh(x)

-Saturates like sigmoid unit, but zero-centered
Rectified linear uni(x) = x+ = max(0,x)
-Most popular choice these days 1 ,
-Fragile during training and neurons can “die off”.. ‘)9//
be careful about learning rates
a4
-"Noisy” or “leaky” variants ::){ X i v N (d '
7 0. O\(X) ReLU

Softplus g(x) = log(1+exp(x))

-Smooth approximation to rectifier actwatlon




Neural
Networks

Generally layers and layers of linear models and non-linearities
=10 ormEa

(activation functions).

Have been around for about 50 years

Fell in “disfavor” in the 90s when simpler models were doing
well

In the last few years, have had a huge resurgence
Impressive accuracy on several benchmark problems

Have risen in popularity due to huge datasets, GPUs, and
improvements to



Overfitting
NINES

Are NNs likely to overfit? YES.

Consequence of being able to fit any function!

How to avoid overfitting?
Get more training data

Few hidden nodes / better@g@
Rule of thumb: 3-layer NNs outperform 2-layer NNs,
but going deeper rarely helps (different story next time
with convolutional neural networks)

Regularization
Dropout

Early stopping



Application
to Computer
Vision

20



|mage Features in computer vision are local detectors

Featu Fes Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)

—




The PaSt A popular approach to computer vision was to make hand-crafted
features for object detection

Input Extract features Use simple classifier

e.g., logistic regression, SVMs
—_—

Hand-created
features

Relies on coming up with these features by hand (yuck!)




N N to the Neural Networks implicitly find these low level features for us!
Rescue

. Prediction

Example

detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13] /

Each layer learns more and more complex features




58

€ ) Brain Break

b 05

" " neural
Whenever | "pop the hood ofanetwo "




Classification
or
Regression

You can use neural networks for classification and regression!

Regression \I\\)M“\pp'm. % ?ILI 35,32

The output layer will generally have one node that is the output
(outputs a single number)

. Ol L 3 B G I+ss
Classification MM\QT [:{"ﬁ‘\ Ty ) | 'V LI D

The output layer will have one node per class. Usually take the

We as the prediction for an example. Can

also use the logistic function to turn scores into probabilities!

Softmax /. it



Learni ng So the idea of neural networks might make sense, but how do we
— actually go about learning the coefficients in the layers?
Coefficients e J y

First we need to define a gu—ajjnungtric or cost function

For regression, generally use RSS or RMSE
Teee— o ;_

For classification, generally use something call the Cross
Entropy loss.

- o Log Loss when true label = 1

e

Can we use gradient descent here? Actually yes! g

How do we take the derivative of a network?

04 0.6 08
predicted probability

Are there convergence guarantees?




Backpropagatlon What does gradient descent do in general? Have the model make
predictions and update the model in a special way such that the
new weights have lower error.

To do gradient descent with neural networks, we generally use
the backpropagation algorithm.

Do a forward pass of the data through the network to get
predictions

Compare predictions to true values

Backpropagate errors so the Wﬁ\igjh\’%”make better predictions

bagew
W PR —

OWHPRY

0\""), =




O = AN M < 1O O D00




0 = o(wpag +wiay + - +w, _1ap,_1 +b)

Increase b

Increase w;
in proportion to a;

Change a;
in proportion to w;




Traini ng NN It's pretty expensive to do this update for the entire dataset at
once, so it's common to break it up into small batches to process

individually. C / /\ \ \ —\

However, processing each batch only once isn’t enough. You

—
generally have to repeatedly update the model parameters. We
call an iteration that goes over every batch once an epoch.

—_—

for i in range(num_epochs):
for batch in batches(training_data):

preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare

model.backprop(diffs) # Backpropagation




Training NN Neural Networks have MANY hyperparameters
How many hidden layers and hidden neurons?
What activation function?

What is the learning rate for gradient descent?
What is the batch size?

How many epochs to train?

And much much morel!

How do you decide these values should be? \_(V)_/
/

The most frustrating thing is that we don’t have a great grasp on
how these things impact performance, so you generally have to
try them all.




How do we choose hyperparameters to train
Hyperparameter and evaluate?

Optimization

Grid search: ). ® o °

e 0 0 o \
& ° Hyperparameters

e o o 07 on 2d uniform grid
o oo o

0 Y




How do we choose hyperparameters to train

Hyperparameter and evaluate?
Optimization

Grid search: o0
(% \ Hyperparameters
o o

[
L]

- ® 7 on 2d uniform grid
®

Random search: * o .'

® . o ¢ \ Hyperparameters
randomly chosen




Hyperparameter
Optimization

How do we choose hyperparameters to train
and evaluate?

e _0
O " \ Hyperparameters
o O

() ®
® ®
o o w 7 on 2d uniform grid
® Qﬁ [

Random search: ® e’
® 0 ® ® . Hyperparameters

° randomly chosen
® o ® 7

Bayesian Optimization: @e

Grid search:

Hyperparameters

e - e® (6) adaptively chosen
® 7



Hyperpara meter Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

Optimization

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014,
Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012,
Dombhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves. In IJCAI, 2015,
Andris Gyorgy and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016

e

How computation time
was spent?

logs

300 1000 e ’\JGV\S'

0.00 L L L
o 200 400 600




Hyperparameter
Optimization

) AL~

,——
In general, hyperparameter optimization is a non-convex

optimization problem where we know very little about how the
function behaves.

Your time is valuable and compute time is cheap. Write your code
to be modular so you can use compute time to try a range of

values. ﬂmd stndwnt  dun cond

Tools for different purposes

Very few evaluations: use random search (and pray)

—

Few evaluations and long-run computations: See last slide

—— —

Moderate number of evaluations: Bayesian optimization

—_—

Mény evaluations possible: Use random search. Why
overthink it?



N N In general, loss functions with neural networks are not convex.

Convergence

This means the backprop algorithm for gradient descent will only
converge to a local optima.

Like with k-means, this means that how you initialize the weights
is really important and can impact the final result.

How should you initialize weights?  \_(V)_/

Usually people do random initialization

All the same rules apply from gradient descent with a learning
rate, you might miss the mark of the local optima if the step size is

too large. A/\.& _ %




