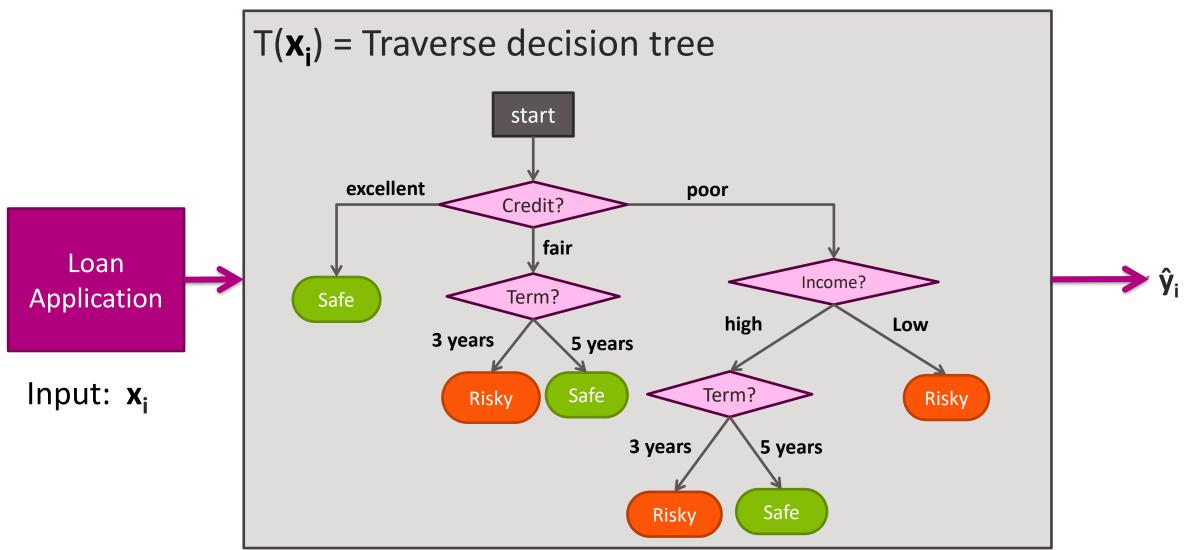
CSE/STAT 416

Missing Data

Vinitra Swamy University of Washington July 29, 2020

Decision tree review



So far: data always completely observed

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Known x and y values for all data points

Missing data

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	?	high	risky
poor	5 yrs	low	safe
fair	?	high	safe

Missing values impact training and predictions

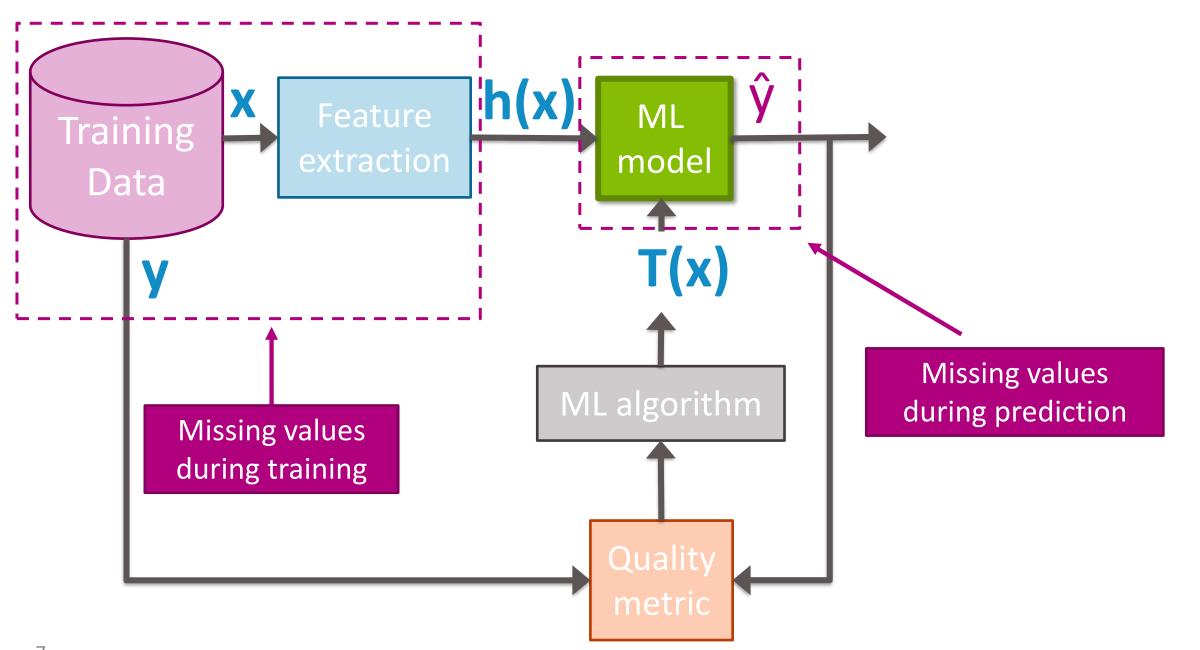
1. Training data: Contains "unknown" values

2. Predictions: Input at prediction time contains "unknown" values

Missing values during prediction

x_i = (Credit = poor, Income = ?, Term = 5 years) Start What do we do??? excellent poor Credit? fair Income? Term? Safe high Low 3 years 5 years Term? Safe Risky Risky 3 years 5 years Safe Risky

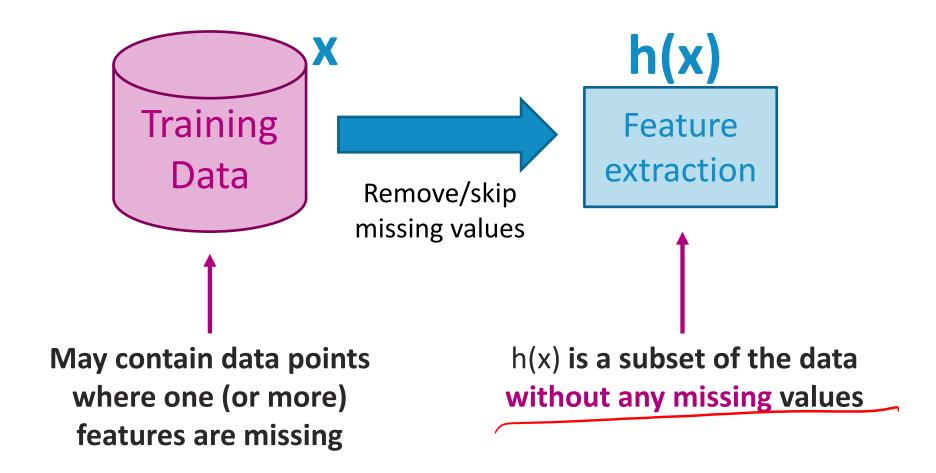
©2018 Emily Fox



Handling missing data

Strategy 1: Purification by skipping

Idea 1: Purification by skipping/removing



Idea 1: Skip data points with missing values

N = 9, 3 features

Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	low	risky	
poor	3 yrs	?	safe	
fair	?	high	safe	

Skip data points with missing values

N = 6, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	low	risky

The challenge with Idea 1

X

N = 9, 3 features

Credit **Term** Income Y excellent 3 yrs high safe fair risky low 3 yrs fair high safe risky high poor excellent risky low fair safe high 3 yrs risky low poor safe low poor fair safe high

Warning: More than 50% of the loan terms are unknown!

Skip data points with missing values

N = 3, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	high	safe
poor	3 yrs	low	risky

Idea 2: Skip features with missing values

N = 9, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	?	high	risky
excellent	?	low	risky
fair	5 yrs	high	safe
poor	?	high	risky
poor	?	low	safe
fair	?	high	safe

Skip features with many missing values

N = 9, 2 features

Credit	Income	У
excellent	high	safe
fair	low	risky
fair	high	safe
poor	high	risky
excellent	low	risky
fair	high	safe
poor	high	risky
poor	low	safe
fair	high	safe

Missing value skipping: Ideas 1 & 2

Idea 1: Skip data points where any feature contains a missing value

- Make sure only a few data points are skipped

Idea 2: Skip an entire feature if it's missing for many data points

- Make sure only a few features are skipped

Missing value skipping: Pros and Cons

Pros

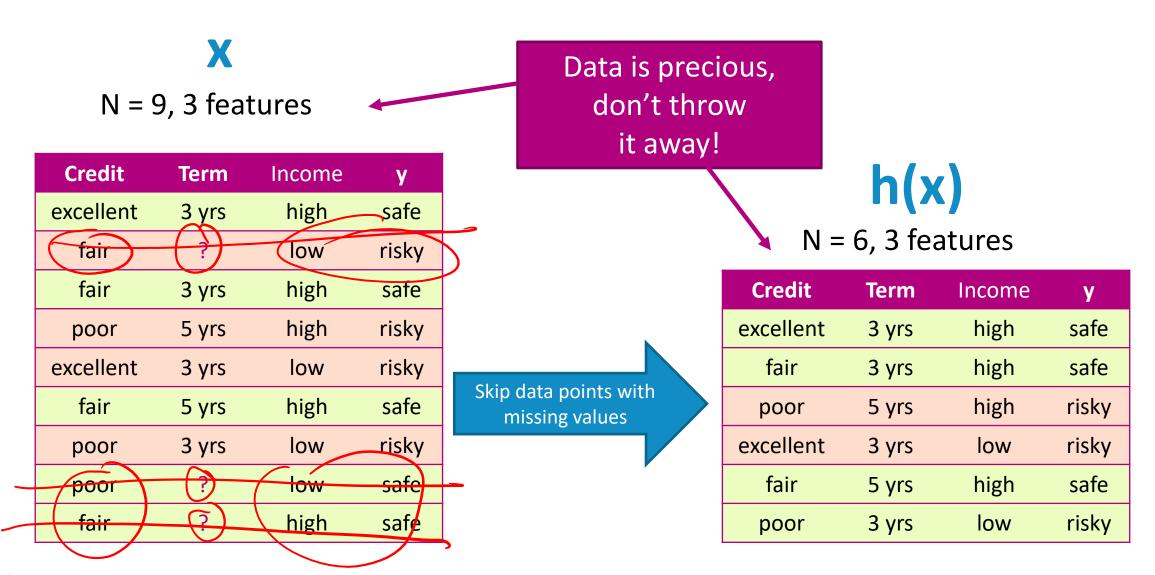
- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)

Cons

- Removing data points and features may remove important information from data
- Unclear when it's better to remove data points versus features
- Doesn't help if data is missing at prediction time

Handling missing data Strategy 2: Purification by imputing

Main drawback of skipping strategy

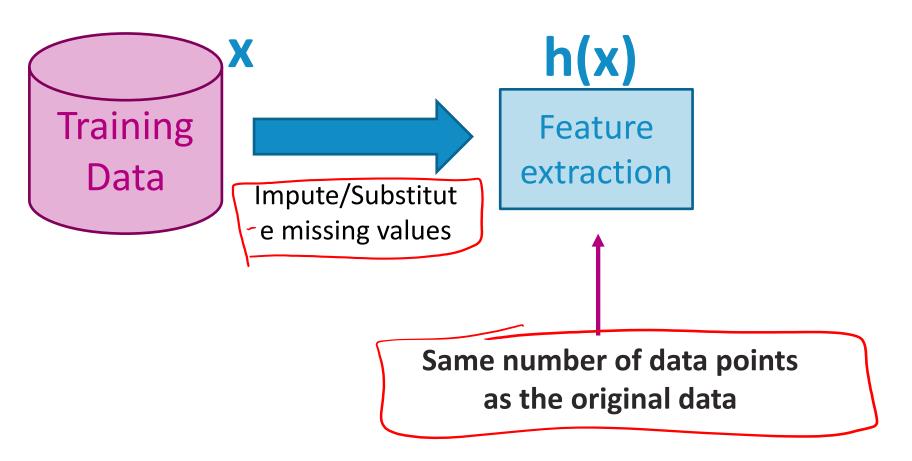


Can we keep all the data?

credit	term	income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Use other data points in x to "guess" the "?"

Idea 2: Purification by imputing



Idea 2: Imputation/Substitution

N = 9, 3 features

Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	high	risky	
poor	?	low	safe	
fair	?	high	safe	

Fill in each missing value with a calculated guess

N = 9, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	3 yrs	low	safe
fair	3 yrs	high	safe

Example: Replace? with most common value

#3 year loans: 4

5 year loans: 2

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Purification by imputing

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	3 yrs	low	safe
fair	3 yrs	high	safe

Common (simple) rules for purification by imputation

Credit	Term	Income	У
excellent	3 yrs 🗥	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- Categorical features use mode: Most popular value (mode) of non-missing x_i
- 2. Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Missing value imputation: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)
- Can be used at prediction time: use same imputation rules

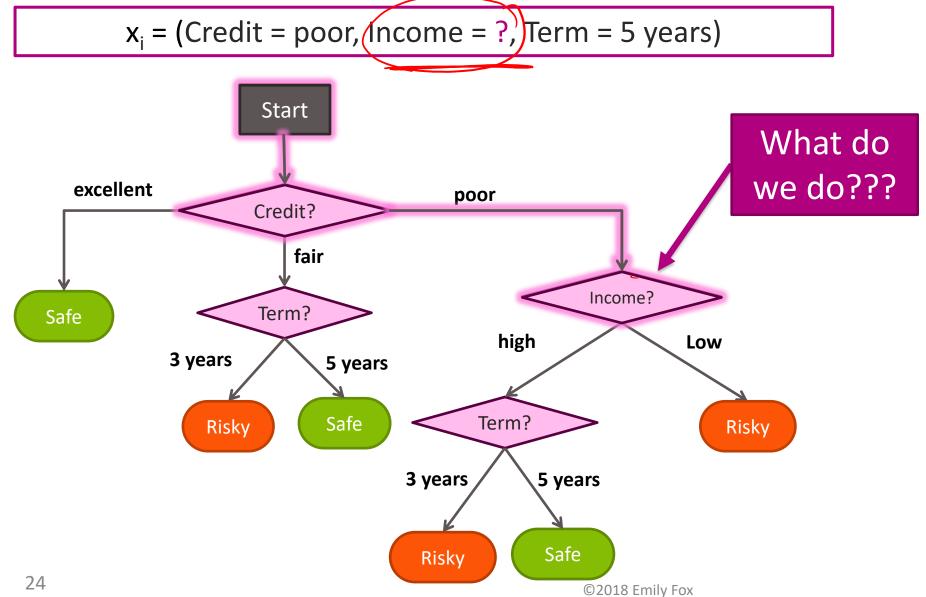
Cons

May result in systematic errors

Example: Feature "age" missing in all banks in Washington by state law

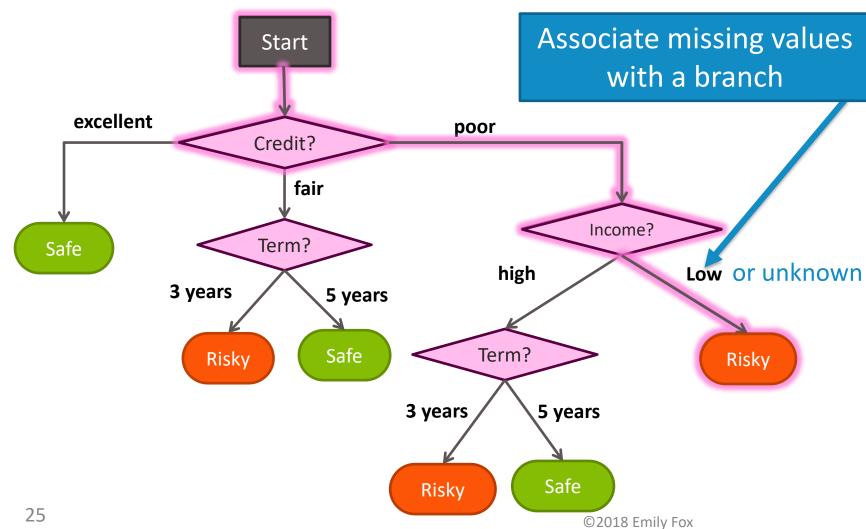
Handling missing data Strategy 3: Adapt learning algorithm to be robust to missing values

Missing values during prediction: revisited

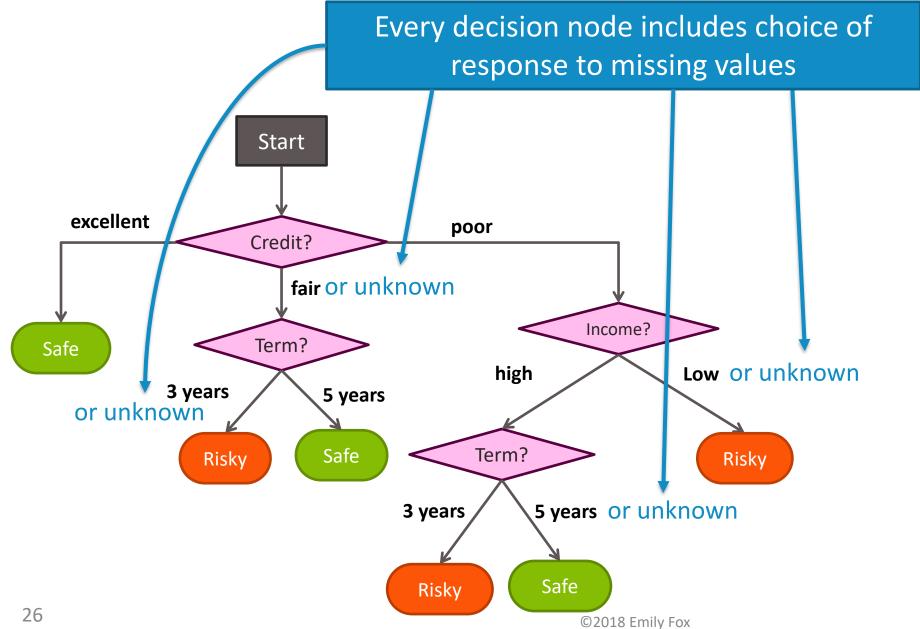


Add missing values to the tree definition

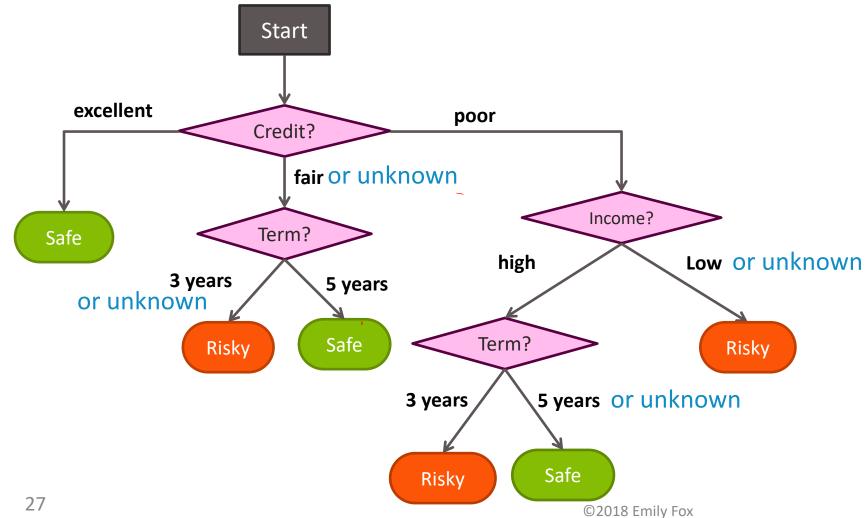
 $x_i = (Credit = poor, Income = ?, Term = 5 years)$



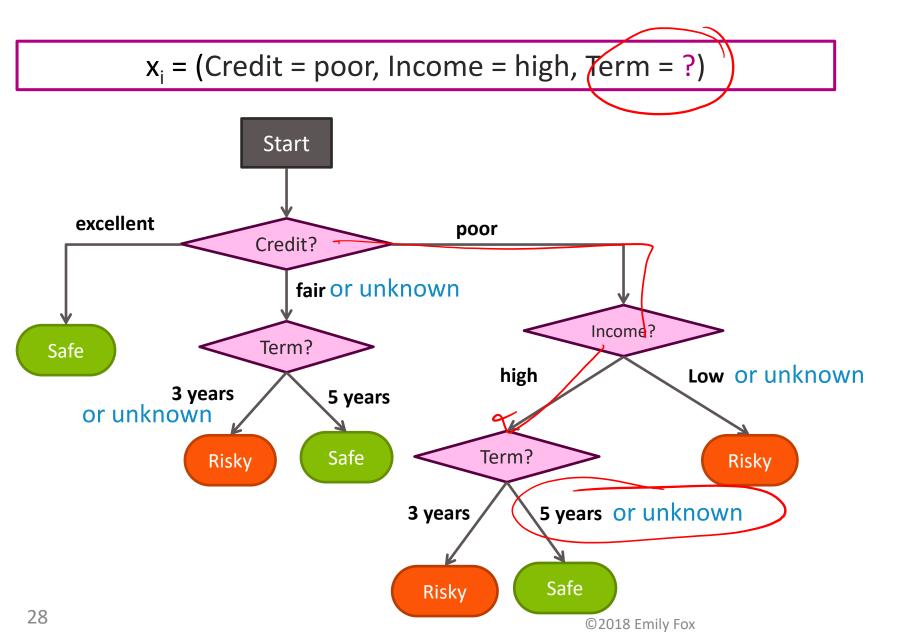
Add missing value choice to every decision node



Prediction with missing values becomes simple



Prediction with missing values becomes simple



Explicitly handling missing data by learning algorithm: Pros and Cons

Pros

- Addresses training and prediction time
- More accurate predictions

Cons

- Requires modification of learning algorithm
 - Very simple for decision trees

Feature split selection with missing data

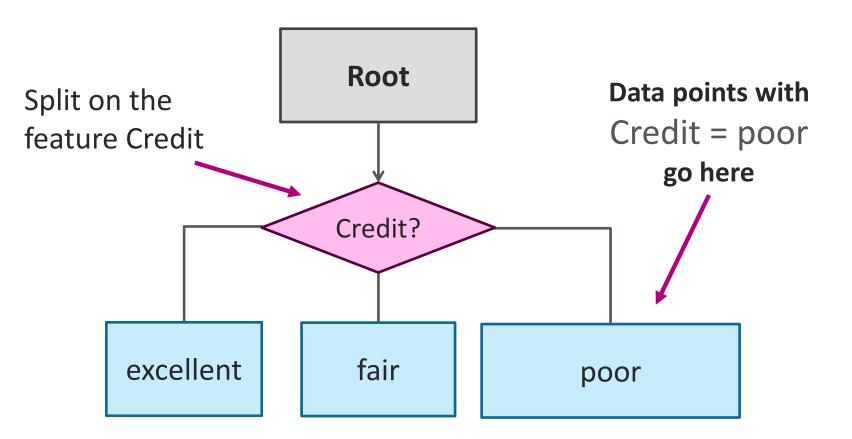
Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

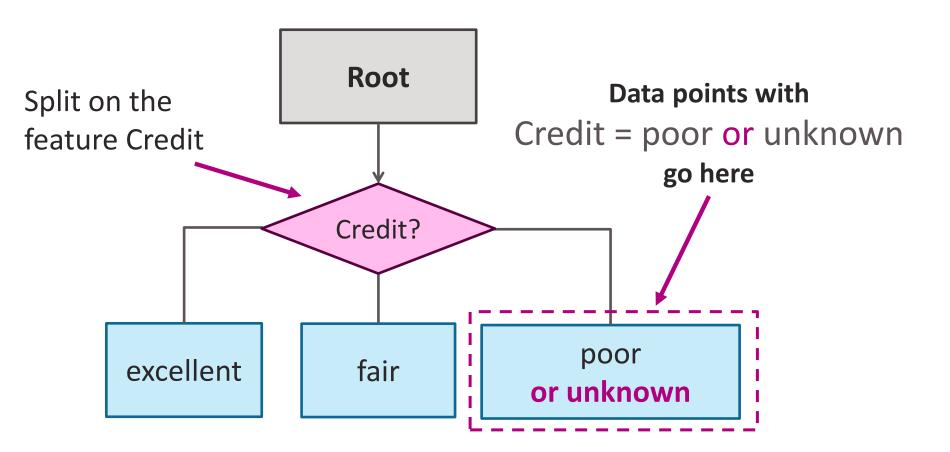
Pick feature split leading to lowest classification error

Must select feature & branch for missing values!

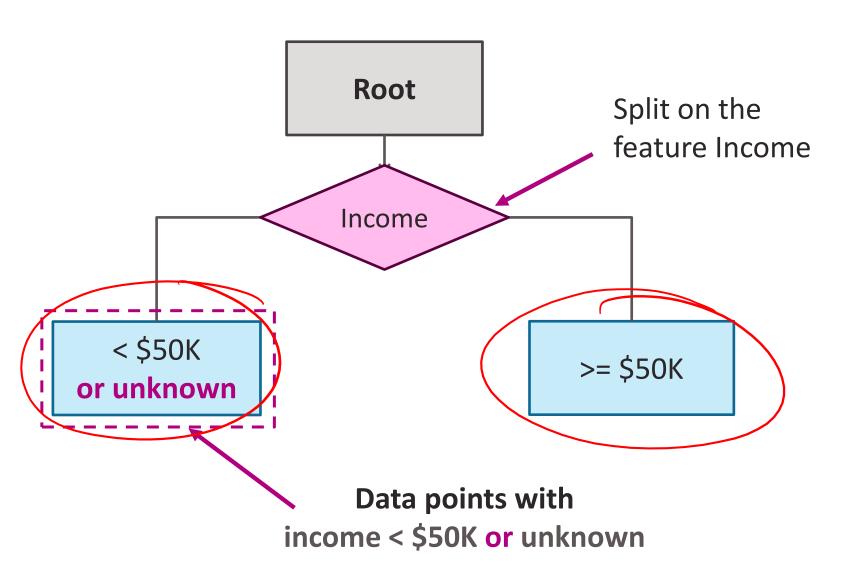
Feature split (without missing values)



Feature split (with missing values)



Missing value handling in threshold splits



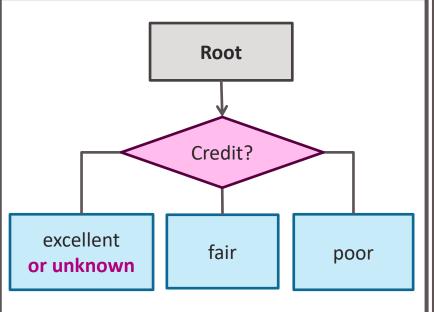
Should missing go left, right, or middle?

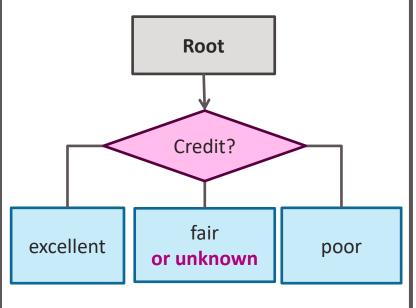
Choose branch that leads to lowest classification error!

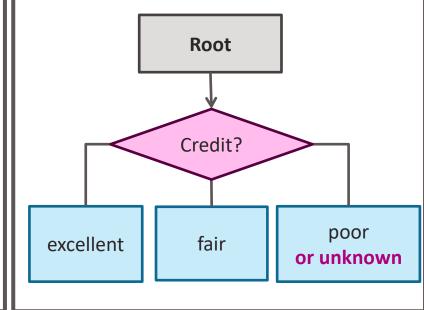
Choice 1: Missing values go with Credit=excellent

Choice 2: Missing values go with Credit=fair

Choice 3: Missing values go with Credit=poor



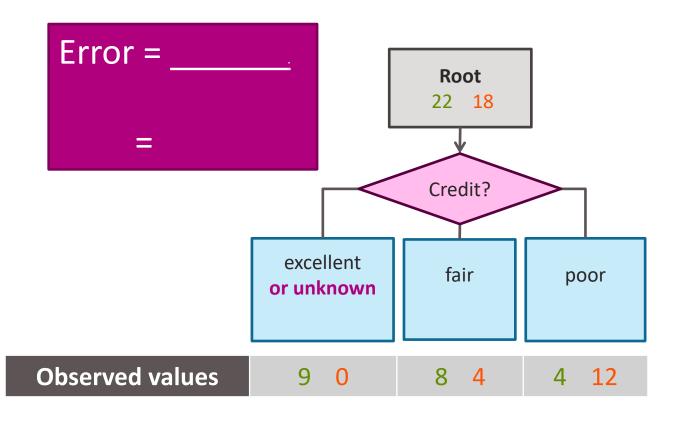




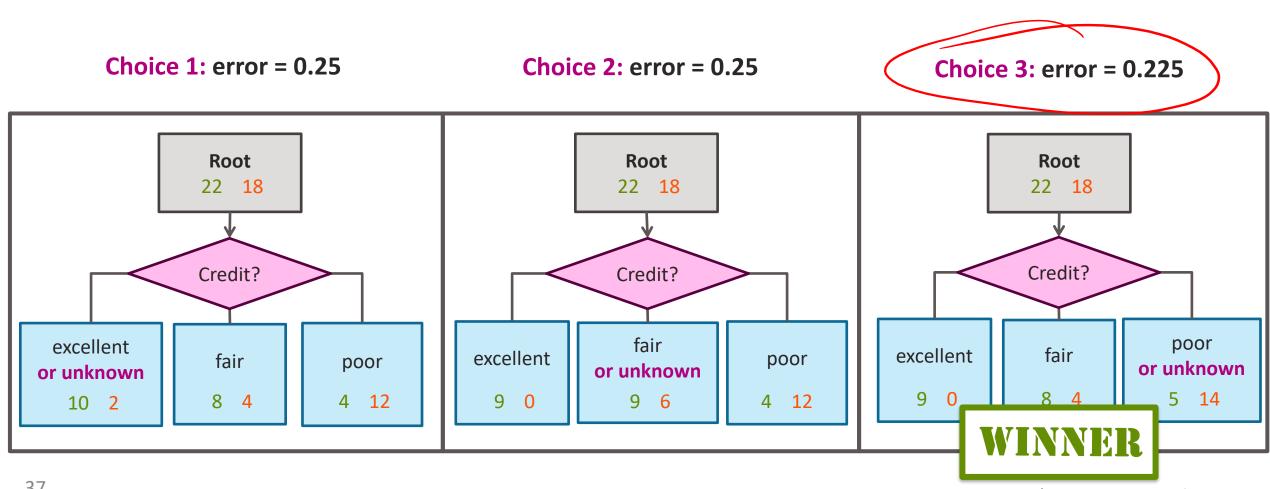
Computing classification error of decision stump with missing data

N = 40, 3 features

Credit	Term	Income	у
excellent	3 yrs	high	safe
?	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
?	3 yrs	low	risky
?	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe
		•••	



Use classification error to decide



Feature split selection algorithm with missing value handling

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data points of M where $h_i(x)$ is not "unknown" according to feature $h_i(x)$
 - 2. Consider assigning data points with "unknown" value for $h_i(x)$ to each branch
 - A. Compute classification error split & branch assignment of "unknown" values
- Chose feature h*(x) & branch assignment of "unknown"
 with lowest classification error

Summary of handling missing data

What you can do now...

Describe common ways to handling missing data:

- 1. Skip all rows with any missing values
- 2. Skip features with many missing values
- 3. Impute missing values using other data points

Modify learning algorithm (decision trees) to handle missing data:

- 1. Missing values get added to one branch of split
- Use classification error to determine where missing values go

Think &

Concept Inventory

This week we want to practice recalling vocabulary. Spend 10 minutes trying to write down all the terms for concepts we have learned in this class and try to bucket them into the following categories.

Regression

Classification

Document Retrieval

Misc – For things that fit in multiple places

You don't need to define/explain the terms for this exercise, but you should know what they are!

Try to do this for at least 5 minutes before looking at your notes.

