CSE/STAT 416 Missing Data

Vinitra Swamy University of Washington July 29, 2020

Decision tree review

©2018 Emily Fox

So far: data always completely observed

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Known x and y values for all data points

Missing data

Missing values impact training and predictions

1. Training data: Contains "unknown" values

2. Predictions: Input at prediction time contains "unknown" values

Missing values during prediction

Handling missing data Strategy 1: Purification by skipping

Idea 1: Purification by skipping/removing

Idea 1: Skip data points with missing values

X

N = 9, 3 features

Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	low	risky	
poor	3 yrs	?	safe	
fair	?	high	safe	

Skip data points with missing values h(x) N = 6, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	low	risky

The challenge with Idea 1

Х N = 9, 3 features Credit Term Income Y excellent 3 yrs high safe fair ? risky low 3 yrs fair high safe ? risky high poor excellent ? risky low fair ? safe high 3 yrs risky low poor ? safe low poor fair ? safe high

Warning: More than 50% of the loan terms are unknown!

Skip data points with missing values h(x) N = 3, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	high	safe
poor	3 yrs	low	risky

Idea 2: Skip features with missing values

X

N = 9, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	?	high	risky
excellent	?	low	risky
fair	5 yrs	high	safe
poor	?	high	risky
poor	?	low	safe
fair	?	high	safe

Skip features with many missing values

N = 9, 2 features

Credit	Income	У
excellent	high	safe
fair	low	risky
fair	high	safe
poor	high	risky
excellent	low	risky
fair	high	safe
poor	high	risky
poor	low	safe
fair	high	safe

Missing value skipping: Ideas 1 & 2

Idea 1: Skip data points where any feature contains a missing value

- Make sure only a few data points are skipped

Idea 2: Skip an entire feature if it's missing for many data points

- Make sure only a few features are skipped

Missing value skipping: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)

Cons

- Removing data points and features may remove important information from data
- Unclear when it's better to remove data points versus features
- Doesn't help if data is missing at prediction time

Handling missing data Strategy 2: Purification by imputing

Main drawback of skipping strategy

Can we keep all the data?

credit	term	income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Use other data points in **x** to "guess" the "?"

Idea 2: Purification by imputing

Idea 2: Imputation/Substitution

N = 9, 3 features

Credit	Term	Income	У	
excellent	3 yrs	high	safe	 _
fair	?	low	risky	r Vəl
fair	3 yrs	high	safe	vai
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	high	risky	
poor	?	low	safe	
fair	?	high	safe	

ill in each ue with a guess

	N = 9, 3 features				
	Credit	Term	Incom		
	excellent	3 yrs	high		
n missing	fair	3 yrs	low		
calculated	fair	3 yrs	high		

fair	3 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	3 yrs	low	safe
fair	3 yrs	high	safe

Income

high

Y

safe

Example: Replace ? with most common value

		# 3	# 3 year loa	
		# 5	year lo	ans: 2
Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	?	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	Pur
excellent	3 yrs	low	risky	
fair	5 yrs	high	safe	
poor	3 yrs	high	risky	
poor	?	low	safe	
fair	?	high	safe	

Purification by imputing

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	3 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	3 yrs	low	safe
fair	3 yrs	high	safe

Common (simple) rules for purification by imputation

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- Categorical features use mode: Most popular value (mode) of non-missing x_i
- 2. Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Missing value imputation: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)
- Can be used at prediction time: use same imputation rules

Cons

• May result in systematic errors

Example: Feature "age" missing in all banks in Washington by state law

Handling missing data Strategy 3: Adapt learning algorithm to be robust to missing values

Missing values during prediction: revisited

©2018 Emily Fox

Add missing values to the tree definition

 $x_i = (Credit = poor, Income = ?, Term = 5 years)$

Add missing value choice to every decision node

Prediction with missing values becomes simple

Prediction with missing values becomes simple

Explicitly handling missing data by learning algorithm: Pros and Cons

Pros

- Addresses training and prediction time
- More accurate predictions

Cons

- Requires modification of learning algorithm
 - Very simple for decision trees

Feature split selection with missing data

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Must select feature & branch for missing values!

Feature split (without missing values)

Feature split (with missing values)

Missing value handling in threshold splits

Should missing go left, right, or middle?

Choose branch that leads to lowest classification error!

Choice 1: Missing values go with Credit=excellent Choice 2: Missing values go with Credit=fair Choice 3: Missing values go with Credit=poor

Computing classification error of decision stump with missing data

N = 40, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
?	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
?	3 yrs	low	risky
?	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Use classification error to decide

Choice 1: error = 0.25

Choice 2: error = 0.25

Choice 3: error = 0.225

Feature split selection algorithm with missing value handling

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - Split data points of M where h_i(x) is not "unknown" according to feature h_i(x)
 - Consider assigning data points with "unknown" value for h_i(x) to each branch
 - A. Compute classification error split & branch assignment of "unknown" values
- Chose feature h^{*}(x) & branch assignment of "unknown" with lowest classification error

Summary of handling missing data

©2018 Emily Fox

What you can do now...

Describe common ways to handling missing data:

- 1. Skip all rows with any missing values
- 2. Skip features with many missing values
- 3. Impute missing values using other data points

Modify learning algorithm (decision trees) to handle missing data:

- 1. Missing values get added to one branch of split
- Use classification error to determine where missing values go

Thank you to Dr. Krishna Sridhar

Dr. Krishna Sridhar Staff Data Scientist, Dato, Inc.