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Precision What fraction of the examples I predicted positive were correct?

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑇𝑃

𝐶𝑇𝑃 + 𝐶𝐹𝑃
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Easily best sushi in Seattle.

I like the interior decoration and the 

blackboard menu on the wall. 

All the sushi was delicious.

The sushi was amazing, and 

the rice is just outstanding.

The seaweed salad was just OK, 

vegetable salad was just ordinary.

The service is somewhat hectic.  

 Only 4 out of 6 

sentences 

predicted to be 

positive are 

actually positive

Sentences predicted to be positive:
ො𝑦𝑖 = +1



Recall Of the truly positive examples, how many were predicted positive?

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑇𝑃
𝑁𝑃

=
𝐶𝑇𝑃

𝐶𝑇𝑃 + 𝐶𝐹𝑁 3

Classifier

MODEL

True positive 

sentences: yi=+1

Predicted positive ŷi=+1
Easily best sushi in Seattle.

I like the interior decoration and the 

blackboard menu on the wall. 

All the sushi was delicious.

The sushi was amazing, and 

the rice is just outstanding.

The seaweed salad was just OK, 

vegetable salad was just ordinary.

The service is somewhat hectic.

Predicted negative ŷi=-1
The seaweed salad was just OK, 

vegetable salad was just ordinary.

My wife tried their ramen and 

it was delicious. 

The service is somewhat hectic.

My wife tried their ramen and 

it was pretty forgettable. 

The service was perfect.

Sentences from 

all reviews 

for my restaurant



Document 
Retrieval

▪ Consider you had some time to read a book and wanted to 
find other books similar to that one.

▪ If we wanted to write a system to recommend books
- How do we measure similarity?
- How do we search over books?
- How do we measure accuracy?

Big Idea: Define an embedding and a similarity metric for the 
books, and find the “nearest neighbor” to some query book.
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query article

nearest neighbor



Predicting 
House Prices

When we saw regression before, we assumed there was some 
linear/polynomial function that produced the data. All we had to 
do was choose the right polynomial degree. 
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Predicting 
House Prices

What if instead, we didn’t try to find the global structure, but 
instead just tried to infer values using local information instead.

Big Idea: Use 1-nearest neighbor to predict the price of a house.

Not actually a crazy idea, something realtors do sometimes!
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1-NN 
Regression

Where 1𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the algorithm described yesterday to 
find the single nearest neighbor of a point.
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Input: Query point: 𝑥𝑞 , Training Data: 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

(𝑥𝑁𝑁, 𝑦𝑁𝑁) = 1𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥𝑞, 𝒟)

Output: 𝑦𝑁𝑁



Visualizing 
1-NN 
Regression

The function learned by 1-NN is “locally constant” in each region 
nearest to each training point.  

Can visualize this with a Voronoi Tessellation

▪ Shows all of the points that are “closest” to a particular 
training point

▪ Not actually computed in practice, but helps understand
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Visualizing 
1-NN 
Regression

Like last time, how you define “closest” changes predictions
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Euclidean distance Manhattan distance



1-NN 
Regression

Weaknesses

▪ Inaccurate if data is sparse

▪ Can wildly overfit
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over large regions…



1-NN 
Classification

Can we use the same algorithm for classification? Yes!

Predict the class of the nearest neighbor. Besides that, exactly the 
same as regression.
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Prevent 
Overfitting

The downfalls of 1-NN come from it relies too much on a single 
data point (the nearest neighbor), which makes it susceptible to 
noise in the data.

More reliable estimate if you look at more than one house!
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$ = ???

$ = 850k

$ = 749k

$ = 833k

$ = 901k

Input: Query point: 𝑥𝑞 , Training Data: 𝒟 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

(𝑥𝑁𝑁1 , 𝑦𝑁𝑁1),… , (𝑥𝑁𝑁𝑘 , 𝑦𝑁𝑁𝑘) = 𝑘𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥𝑞 , 𝒟, 𝑘)

Output:   ො𝑦𝑞 =
1

𝑘
σ𝑗=1
𝑘 𝑦𝑁𝑁𝑗



k-NN 
Regression

By using a larger 𝑘, we make the function a bit less crazy

▪ Still discontinuous though (neighbor is either in or out)

▪ Boundaries are still sort of a problem
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Issues with 
k-NN

While k-NN can solve some issues that 1-NN has, it brings some 
more to the table.

▪ Have to choose right value of k.
- If k is too large, model is too simple

▪ Discontinuities matter in many applications
- The error might be good, but would you believe a price 

jump for a 2640 sq.ft. house to a 2641 sq.ft. house?

▪ Seems to do worse at the boundaries still
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Weighted 
k-NN

Big Idea: Instead of treating each neighbor equally, put more 
weight on closer neighbors.

Predict:

ො𝑦𝑞 =
σ𝑗=1
𝑘 𝑐𝑞,𝑁𝑁𝑗

𝑦𝑁𝑁𝑗

σ𝑗=1
𝑘 𝑐𝑞,𝑁𝑁𝑗

Reads: Weight each nearest neighbor by some value 𝑐𝑞,𝑁𝑁𝑗

How to choose 𝑐𝑞,𝑁𝑁𝑗
?
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Want 𝑐𝑞,𝑁𝑁𝑗
to be small if 

𝑑𝑖𝑠𝑡 𝑥𝑞 , 𝑥
𝑁𝑁𝑗 is large.

Want 𝑐𝑞,𝑁𝑁𝑗
to be large if 

𝑑𝑖𝑠𝑡 𝑥𝑞 , 𝑥
𝑁𝑁𝑗 is small.



Kernels Use a function called a kernel to turn distance into weight that 
satisfies the properties we listed before.

𝑐𝑞,𝑁𝑁𝑗
= 𝐾𝑒𝑟𝑛𝑒𝑙𝜆(𝑑𝑖𝑠𝑡 𝑥𝑞 , 𝑥

𝑁𝑁𝑗 )
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−𝜆 0 𝜆
Gaussian Kernel

𝐾𝑒𝑟𝑛𝑒𝑙𝜆 𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑞 = exp −
𝑑𝑖𝑠𝑡 𝑥𝑖 , 𝑥𝑞

2

𝜆



Kernel 
Regression

We can take this one step farther, instead of just using a kernel to 
weight the k nearest neighbors, can use the kernel to weight all 
training points! This is called kernel regression.

ො𝑦𝑞 =
σ𝑖=1
𝑛 𝑐𝑞,𝑖𝑦𝑖

σ𝑖=1
𝑛 𝑐𝑞,𝑖

=
σ𝑖=1
𝑛 𝐾𝑒𝑟𝑛𝑒𝑙𝜆 𝑑𝑖𝑠𝑡 𝑥𝑖,𝑥𝑞 𝑦𝑖

σ𝑖=1
𝑛 𝐾𝑒𝑟𝑛𝑒𝑙𝜆 𝑑𝑖𝑠𝑡 𝑥𝑖,𝑥𝑞
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Visualizing 
Kernel 
Regression

This kernel has bounded support, only look at values ±𝜆 away
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Choose 
Bandwidth 𝜆

Often, which kernel you use matters much less than which value 
you use for the bandwidth 𝜆

How to choose? Cross validation or a validation set to choose

▪ Kernel

▪ Bandwidth

▪ K (if using weighted k-NN, not needed for kernel regression)
19



Think

pollev.com/cse416

In a few sentences, compare and contrast the following ML 
models.

▪ k-Nearest Neighbor Regression

▪ Weighted k-Nearest Neighbor Regression

▪ Kernel Regression

20

1.5 min



Pair

pollev.com/cse416

In a few sentences, compare and contrast the following ML 
models.

▪ k-Nearest Neighbor Regression

▪ Weighted k-Nearest Neighbor Regression

▪ Kernel Regression
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Brain Break

22

Point to classify

Nearest neighbor



Efficient 
Nearest 
Neighbors
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Nearest 
Neighbor 
Efficiency

Nearest neighbor methods are good because they require no 
training time (just store the data, compute NNs when predicting).

How slow can that be? Very slow if there is a lot of data!

▪ 𝒪(𝑛) if there are 𝑛 data points.

▪ If 𝑛 is in the hundreds of billions, this will take a while…

There is not an obvious way of speeding this up unfortunately.

Big Idea: Sacrifice accuracy for speed. We will look for an 
approximate nearest neighbor to return results faster
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Approximate 
Nearest 
Neighbor

Don’t find the exact NN, find one that is “close enough”.

Many applications are okay with approximate answers

▪ The measure of similarity is not perfect

▪ Clients probably can’t tell the difference between the most 
similar book and a book that’s pretty similar.

We will use locality sensitive hashing to answer this approximate 
nearest neighbor problem.

High level approach

▪ Design an algorithm that yields a close neighbor with high 
probability

▪ These algorithms usually come with a “guarantee” of what 
probability they will succeed, won’t discuss that in detail but is 
important when making a new approximation algorithm.
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Locality 
Sensitive 
Hashing 
(LSH)

Locality Sensitive Hashing is an algorithm that answers the 
approximate nearest neighbor problem. 

Big Idea

▪ Break the data into smaller bins based on how close they are 
to each other

▪ When you want to find a nearest neighbor, choose an 
appropriate bin and do an exact nearest neighbor search for 
the points in that bin.

More bins → Fewer points per bin → Faster search

More bins → More likely to make errors if we aren’t careful
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Binning How do we make the bins?

What if we pick some line that separates the data and then put 
them into bins based on the 𝑆𝑐𝑜𝑟𝑒(𝑥) for that line?

Looks like classification, but we don’t have labelled data here. Will 
explain shortly how to find this line.  
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Binning Put the data in bins based on the sign of the score (2 bins total)

Call negative score points bin 0, and the other bin 1 (bin index)
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2D Data Sign(Score) Bin index

x1 = [0, 5] -1 0

x2 = [1, 3] -1 0

x3 = [3, 0] 1 1
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1.0 #awesome – 1.5 #awful = 0

Sign(Score(x)) = +1

Sign(Score(x)) = -1



Binning Put the data in bins based on the sign of the score (2 bins total)

Call negative score points bin 0, and the other bin 1 (bin index)
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When asked to find 
neighbor for query point, 
only search through points 
in the same bin!

This reduces the search 
time to 𝑛

2
if we choose the 

line right.

#
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0 1 2 3 4 …

0

1
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3

4

…

1.0 #awesome – 1.5 #awful = 0

Only search here for 
queries with Score(x)>0

Only search here for 
queries with Score(x)<0

candidate 
neighbors if 
Score(x)<0

Query point x

2D Data Sign(Score) Bin index

x1 = [0, 5] -1 0

x2 = [1, 3] -1 0

x3 = [3, 0] 1 1

… … …



LSH with 
2 bins

Create a table of all data points and calculate their bin index based 
on some chosen line

Store it in a hash table for fast lookup 

When searching for a point 𝑥𝑞 : 

▪ Find its bin index based on that line

▪ Search over the points in that bin 30

2D Data Sign(Score) Bin index

x1 = [0, 5] -1 0

x2 = [1, 3] -1 0

x3 = [3, 0] 1 1

… … …

Bin 0 1

List containing indices 
of datapoints:

{1,2,4,7,…} {3,5,6,8,…}
HASH 
TABLE



Think

pollev.com/cse416

If we used LSH with this line, what would be the result returned 
for searching for the nearest neighbor of the green query point?
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Pair

pollev.com/cse416

If we used LSH with this line, what would be the result returned 
for searching for the nearest neighbor of the green query point?
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Some Issues 1. How do we find a good line that divides the data in half?

2. Poor quality solution: Points close together might be split up 
into separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…
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1. How to 
choose line?

Crazy Idea: Choose the line randomly!

▪ Choose a slope randomly between 0 and 90 degrees

How bad can randomly picking it be?

▪ If two points have a small cosine distance, it is unlikely that we 
will split them into different bins!
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Some Issues 1. How do we find a good line that divides the data in half?

2. Poor quality solution: Points close together might be split up 
into separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…

35



Brain Break

36

why we use manhattan distance 

and not boston distance



More Bins Can reduce search cost by adding more lines, increasing the 
number of bins.

For example, if we use 3 lines, we can make more bins!
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LSH with 
Many Bins

Create a table of all data points and calculate their bin index based 
on some chosen lines. Store points in hash table indexed by all bin 
indexes

When searching for a point 𝑥𝑞 : 

▪ Find its bin index based on the lines

▪ Only search over the points in that bin
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Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] = 
2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0]
= 6

[1 1 1] 
= 7

Data 
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

2D Data Sign
(Score1)

Bin 1 
index

Sign
(Score2)

Bin 2 
index

Sign
(Score3)

Bin 3 
index

x1 = [0, 5] -1 0 -1 0 -1 0

x2 = [1, 3] -1 0 -1 0 -1 0

x3 = [3, 0] 1 1 1 1 1 1

… … … … … … …



LSH Example Imagine my query point was (2, 2)

This has bin index [0 1 0] 

By using multiple bins, we have reduced the search time! 

However, it’s more likely that we separate points from their true 
nearest neighbors since we do more splits 

▪ Often with approximate methods, there is a tradeoff between 
speed and accuracy. 
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Data 

indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}



Improve 
Quality

The nice thing about LSH is we can actually tune this tradeoff by 
looking at nearby bins. If we spend longer searching, we are likely 
to find a better answer.

What does ”nearby” mean for bins?

In practice, set some time “budget” and 
keep searching nearby bins until budget
runs out 40

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] = 
2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] = 
6

[1 1 1] 
= 7

Data 
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

Next closest 
bins
(flip 1 bit)
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Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]



Locality 
Sensitive 
Hashing 
(LSH)

Pre-Processing Algorithm

▪ Draw ℎ lines randomly

▪ For each data point, compute 𝑆𝑐𝑜𝑟𝑒 𝑥𝑖 for each line

▪ Translate the scores into binary indices

▪ Use binary indices as a key to store the point in a hash table

Querying LSH

▪ For query point 𝑥𝑞 compute 𝑆𝑐𝑜𝑟𝑒(𝑥𝑞) for each of the ℎ lines

▪ Translate scores into binary indices. Lookup all data points 
that have the same key.

▪ Do exact nearest neighbor search just on this bin.

▪ If there is more time in the computation budget, go look at 
nearby bins until this budget runs out.
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Higher 
Dimensions

Pick random hyper-plane to separate points for points in higher 
dimensions. 

Unclear how to pick ℎ for LSH and you can’t do cross-validation 
here (why?)

▪ Generally people use ℎ ≈ log(𝑑)
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Recap Theme: Use local methods for classification and regression and 
speed up nearest neighbor search with approximation methods.

Ideas:

▪ 1-NN Regression and Classification

▪ k-NN Regression and Classification 

▪ Weighted k-NN vs Kernel Regression

▪ Locality Sensitive Hashing
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