CSE/STAT 416 Deep Learning

Concept Inventory

Here is a list of almost all the topics people wrote on their concept inventory. I have grouped them based on how I would categorize them, but this does not mean it is wrong to put them in different categories. Most topics appear in multiple places so this list would be long if we included every instance, but this is just how I think about them in my "ML Landscape". This is not meant to be an exhaustive list of topics, just big concepts that were listed on students' reflections.

Regression	Classification
• Linear Regression	Binary/multi-class classification
 Polynomial Regression (linear regression with polynomial features) Quality Metric: RSS/MSE/RMSE 	 Sentiment analysis Spam detection Medical Diagnoses
• Coefficients/weights/parameters	• Majority class classifier
• Regularization	• Random Classifier
– Ridge (L2 Penalty)	• Score Classifier
- LASSO (L1 Penalty)	• Sigmoid Functions (Logistic function)
- ElasticNet (L1 + L2)	• Logistic regression
Local Methods	• Decision Trees
 k-NN regression Weighted k-NN regression 	• Assessing Performance
– Kernel Regression	– Classification Error/Accuracy
* kernels (boxcar, Gaussian)	 True Positive, True Negative, False Positive, False Negative
* bandwidth	– Confusion matrix
	- TPR/FPR/etc.
	– Precision/Recall
	• Decision Boundary
	• Ensemble Methods
	– Random Forest (bagging)
	– AdaBoost or Gradient Boosting

• k-NN classifier

Document Retrieval	Misc
• k-NN Retrieval	• ML Pipeline
• Clustering	• Supervised vs. unsupervised learning
• k-means/k-means++	• Feature vs input vs output
• Hierarchical Clustering	– Polynomial features
– Agglomerative	• Model Complexity
* Single linkage	• Overfitting/Underfitting
* Complete linkage	• Bias/Variance trade-off
* Recursive k-means	• Hyperparameters
– Dendrograms	• Hyperparameter tuning
• Similarity/Distance metrics	– Grid search
– Euclidean Distance	– Random search
– Cosine Distance	• Train/Validation/Test
– Manhattan Distance	Cross-Validation
• Locality sensitive hashing	– k-fold validation
• Embeddings	Loss Function/Quality Metric
– Bag of words	• Gradient Descent/Ascent
- '1'f'-1DF'	Coordinate Descent/Ascent
	• Maximum Likelihood Estimation (MLE)
	• Feature engineering
	• Scaling Features/Normalization
	• One-hot encoding
	• Missing data
	• Curse of Dimensionality
	• Greedy algorithms
	• Efficiency $(O(n))$
	Norms
	– L1 Norm
	– L2 Norm

• Dot Product/Inner Product

Convolution

1. Suppose we are given the following image:

1	2	1	3
4	3	3	3
5	5	4	4
1	1	2	4
3	2	1	5

Below, write out the result of doing a convolution with the following kernel. Assume we use no padding and a $1 \mathrm{x} 1$ stride.

0	1	2
0	0	2
0	0	1

Solution.

14	17
19	21
18	25

Neural Networks

1. Consider a neural network where each unit has a weight w and uses the hard threshold activation function defined as

$$h(x) = \begin{cases} 1 & , w^T x \ge 0\\ 0 & , \text{ otherwise} \end{cases}$$

Construct the AND, OR gates with two inputs X_1 and X_2 . Construct the NOT gate with X_1 . Solution.

2. (a) What is an epoch?

Solution. An epoch is when all of the data in the training set is presented to the neural network at once.

(b) What is a batch?

Solution. A batch is a subset of the data we get predictions for before back-propigating the differences through the network to update the weights.

(c) Given the algorithm defined in class

```
for i in range(num_epochs):
```

```
for batch in batches(training_data):
    preds = model.predict(batch.data)
    diffs = compare(preds, batch.labels)
    model.backprop(diffs)
```

How many iterations of back-prop will we run? (answer as of a function of num_epochs and num_batches)

Solution. num_epochs * num_batches