CSE/STAT 416

Ensemble Methods

Hunter Schafer
University of Washington
July 16, 2019

Roadmap
So Far

Housing Prices - Regression
Regression Model
Assessing Performance
Ridge Regression
LASSO

Sentiment Analysis — Classification
Classification Overview
Logistic Regression
Decision Trees
Ensemble Methods

Reflection Everyone had a good recap of the week and good discussion
Notes

about how this material relates to previous material
Forming these connections is incredibly important!

Reflecting on your own knowledge is one of the most
important skills you can learn for mastering a subject. This
course is dense and requires you to make these connections
S0 you can better understand it

A note about practice / HW

Concept assignments assess your conceptual knowledge of
the topics we have been learning

Programming assignments assess your ability to apply your
conceptual knowledge to solve real world problems.
ML is a field where you really aren’t able to do
applications without understand the concepts

Training Feature

Dl extraction

ML algorithm

Quality
metric

Reflection There were a TON of really good questions that were asked on

. the reflections. Unfortunately, the paper medium makes it difficult
Questions v e pap
for us to respond to your questions.

You should use Piazza to ask these questions so staff and your
colleagues can respond!

Try to avoid asking questions that are just asking for answers
to concept questions on the HW.

If it's about a topic on the concept homework, try to make the
question about a specific thing you weren’t clear about from
lecture rather than asking for the answer to the question.

You can always ask questions privately if you're unsure!

Recap

Decision Tree

START

Excellent Poor

e [nternal Node: A node that tests a feature
e [Branch: Splits input data based on the value of a feature
e |eaf: Assigns a class to data (i.e. SAFE RISKY)

Real Valued
Features

Risky Safe

[| |

Annual Income

O
$200,000

$10,000

Which split is best? Pick the one that maximizes accuracy.

Ea rIy Stopping Rules:

Stopping

1) All data in the subset have the same label
2) No more features left to split

Early Stopping Rule
Only grow up to a max depth hyperparameter (choose
via validation)
Don’t split if there is not a sufficient decrease in error
Require a minimum number of examples in a leaf node
Will use this on HW

Decision Tree
Overview

Super Simple: Interpretable model that is understandable by
people without too much ML experience.

Very Efficient: It actually isn’t too hard to train a tree

Depth Matters
Too small, it is too weak to learn the function (high bias)
Too tall, it is likely to overfit to the data (high variance)
Even by choosing depth appropriately, mnot
be the best performing models

Ensemble
Method

Instead of switching to a brand new type of model that is more
powerful than trees, what if we instead tried to make the tree into
a more powerful model.

What if we could combine many weaker models in such a way to
make a more powerful model?

A model ensemble is a collection of (generally weak) models that
are combined in such a way to create a more powerful model.

There are two common ways this is done with trees
Random Forest (Bagging)
AdaBoost (Boosting)

Random
Forest

Bagging

Overview

A Random Forest is a collection of T Decision Trees. Each

decision tree casts a “vote” for a prediction and the ensemble
predicts the majority vote of all of its trees.

Instance

Random Forest \
\
Y/
Tree~l

Tree -2 Trce—n

Class -X Class Y

| R

Majonty Voting

Class X

Clagy =X

If | just have one dataset, how could | learn more than one tree?
Training

Trees Solve this with bootstrapping! Can create many similar datasets
by randomly sampling with replacement.

Obs | X |Y
3 53 |28
43 (24
3 53 |28
Obs 1X_ 1Y Obs | X |Y
1 43 |24 ” i; ;; . { \
2 20 |11 % b
3 53 |28 =' o
t
Original Data
Obs | X |Y

2 21 |11
2 2.1 |1.1
1 43 |24

Technically, you also randomly select features too!

Details

The Random Forest model is a specific type of ensemble model
that uses bagging (bootstrapped aggregation).

When training the trees on the bootstrapped samples, we actually
want to use very deep trees that overfit!

That sounds crazy at first, but we are trying to take advantage
of what it means to have a high variance model (low bias).

Remember tnat high variance models have low bias because if
you “average out” over all the models you could learn, they
will not have bias.

That is exactly what we are doing here! If we average over a
bunch of high variance (overfit) models, to get an ensemble
that has low bias and lower variance (if we add more trees)!

Random Training
Forest Make T random samples of the training data that are the same

Algorithm

size as the training data but are sampled with replacement

Train a really tall tree on each sampled dataset (overfit)

Predict

For a given example, ask each tree to predict what it thinks the
label should be

Take a majority vote over all trees

Application

Microsoft used Random Forests in their Kinect system to identify
the “pose” of a person from the depth camera.

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon

Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

front . Bt 405

depthimage == bodyparts =% 3D joint proposals
Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

LT PR n Sl PTG oy} S [PRROTURSTEETS . |

Random Use overfitting to our advantage! Averaging overfit models

Forest
Overview

can help make a strong model.

Versatile: Works pretty well in a lot of cases and can serve
many different purposes.
Classification, regression, clustering, feature importance

Low Maintenance: Tends to require less hyper-parameter
tuning. Good “out of the box” model.
More trees is always better here (but takes longer).
Some other hyperparameters, but they tend to have a
small affect on performance.

Efficient: Trees can be learned in parallel!

A&lmﬁ hrees rduces varance oF
Yo, eunSemble,

§§

€) Brain Break

AdaBoost

Boosting

Backg round A weak learner is a model that only does slightly better than
random guessing.

Kearns and Valiant (1988, 1989):

“Can a set of weak learners create a single strong learner?”

Schapire (1990)

“Yes!”

Overview

AdaBoost is a model similar to Random Forest (an ensemble of
decision trees) with two notable differences that impact how we
train it quite severely.

Instead of using high depth trees that will overfit, we limit
ourselves to decision stumps.

Each model in the ensemble gets a weight associated to it,
and we take a weighted majority vote

T
§=F() = sign| D @efe()
t=1
—

% £ {"/'75

Yes No £ —
fil) = +1 Weight Value

W 2

Example

W, ~1

Bad Good fz (x) = —1 " 15
W, 0

j - Sljm /Z'e?‘ ek, 1))

3 Years 5 Years f3 (x) =-1 (8
; | z Sijm(
(2)(+)

4,(-‘)(")
Bad Good ﬁl-(x) = +1 4 (]S) (‘l)

¥ (OH(N
) :527(/1“671 d

Traini ng With AdaBoost, training is going to look very different.

AdaBoost

We train each model in succession, where we use the errors of the
previous model to affect how we learn the next one.

To do this, we will need to keep track of two types of weights

The first are the w; that we will use as the end result to
weight each model.
Intuition: An accurate model should have a high weight

We will also introduce a weight a; for each example in the

dataset that we update each time we train a new model
Intuition: We want to put more weight on examples that
seem hard to classify correctly

AdaBoost
Ada Glance

Train
fortin[1,2,..,T]:
Learn f,(x) based on weights a;

Compute model weight w,
Recompute weights ¢;

Predict

VT’tf ¢ (X)

N1=

y = F(x) = sign

~
I
[y

Welghted Start with a dataset and train our first model (a decision stump)

Data ai For all the things it gets wrong, increase the weight of that
example. For each one that’s right, decrease its weight.

Credit Income y Weight o
Credit Income y
A $130K Safe g $$1830(E(RSjaie (1):
B $80K Risky ‘s y .
; C $110K Risky 1.2
C $110K Risky
A $110K Safe 0.8
A $110K Safe . 0K ot oe
A $90K Safe > $100K > are .
B $120K Safe = $10013(B $120K S‘afe 0.7
C $30K Risky 3 1 C $30K R%sky 3
C $60K Risky C $60K Risky 2
B $95K Safe B $95K Safe 0.8
A $60K Safe A $60K Safe 0.7
A $98K Safe A $98K Safe 0.9

Learni ng W/ Before, when we learned decision trees was find the split that

Welghted minimized classification error.
Data

Now, we want to minimize weighted classification error

o al{fe () # yi}

n
i=1 %i

WeightedError(f;) =

If an example x, has weight @, = 3, this means getting that
example wrong is the same as getting 3 examples wrong!

This will most likely change which split is optimal!

0 Poll Everywhere

Consider the following weighted dataset, what is the weighted
classification error of the optimal decision stump (just one split)?

Thlnk g We want to use the TumorSize and IsSmoker to predict if a
patient’s tumor is malignant.

2 min
TumorSize IsSmoker Malignant Weight
Small No No 0.5
Small Yes Yes 1.2
Large No No 0.3
Large Yes Yes 0.5
Small Yes No 3.3

pollev.com/cse416

§2:00

0 Poll Everywhere

Consider the following weighted dataset, what is the weighted
classification error of the optimal decision stump (just one split)?

Palr g We want to use the TumorSize and IsSmoker to predict if a
patient’s tumor is malignant.

3 min
TumorSize IsSmoker Malignant Weight
Small No No 0.5
Small Yes Yes 1.2
Large No No 0.3
Large Yes Yes 0.5
Small Yes No 3.3

pollev.com/cse416

TumorSize IsSmoker Malignant

0 Poll Everywhere |l No No 0.5
Small Yes Yes 1.2
Think & Large No No 0.3
Large Yes Yes 0.5
3 min
Small Yes No 3.3
Luje,L/ \Sm(l \(L/ N
[Nb Yej—) [}JG), YC?/ ND j EYQS, YGS/ JJO] CHO, Nt]
' 12 65 3 0S 0.2
0.% 05 605 L4 3.5 g
Nes N o No 0
pollev.com/cse416
I 0'3 l IL \ "7 O

Weihiad Eveor = \'S y:' WaglledErer = 17

Real Valued
Features

The algorithm is more ore less the same, but now we need to
account for weights

Risky Safe

\ A
[| |

Annual Income

$10,000 5 g 4 $200,000

S ¢ | 1o

Which split is best? Pick the one that maximizes accuracy.

AdaBoost
Ada Glance

Train

Pt]
] . wo,l— ” o
fortin|[1,2, ...,T]A. | M(LW le,
Learn f;(x) based on weights «; D L({}

Compute model weight w, <
Recompute weights a; \)WL meve. WL 7M/L

sn havd o
(,/fg;(:\/ psif#)
Predict

T
9= Fx) = sign (Z Pef, ())

t=1

Weigakd Erer (e0) 0 and |

MOdel Goal: Want to have high weight for models that are very accurate,
- A~ and low weight for models that are not.
Weights w; ?
The specific formula used for AdaBoost
N 11 1— WeightedError(fJ)
Wy ==In .
2 WeightedError(f;)
$= 0.0l
l ~ O. 6‘ « n - Z ’b
= W, -
5.6l 11 7T
*e) =0J
N
,_‘_'/0.2 = \ =7 h)f; O
69
\UE(?): D'qq . A ,,2.3
N S S R W

U pd ati Nng a; Goal: Increase the weights of data examples that were hard to
classify. If we got it wrong, increase the weight, otherwise
decrease it.

ae™™, if fi(x) =y
a;e"t, if fr(x;) = y;

AdaBoost
Ada Glance

Train W, =

1l <1 - WeightedError(fJ)
t — 5 n
0(; - ,//\/ 2

WeightedError(fy)

fortin[1,2,..,T]:
Learn f,(x) based on weights a;
Compute model weight w,

Recompute weights a; rx

ae™t, if fr(x) #y;

a; — {aie_wt; if fe(x) = y;
L

Predict

VT’tf ¢ (X)

N1=

y = F(x) = sign

~
I
[y

Normalizing
Weights

Generally, the weights for some points get really large/small in
magnitude due to how the data is laid out.

Numbers in wildly different scales can often cause problems due
to finite precision of computers when it comes to real numbers.

Generally we normalize the weights so they sum to 1 to prevent
them from getting too small or too big.

AdaBoost
Ada Glance

Train

1 <1 - WeightedError(fJ)
W = Eln

WeightedError(fy)

fortin[1,2,..,T]:
Learn f,(x) based on weights a;

Predict

Compute model weight w,
Recompute weights ¢;
Normalize «;

]~
%)

y = F(x) = sign

~
1l
=

o e aie‘;wt’ %fft(xi) =Y
ae™t, if fr(x;) #y;

tf +(x)

L5

§§

€) Brain Break

Visualizing
AdaBoost

= |
Learn a
Classifier

x[2]

Start with all data having same weight

Learn a decision stump that minimizes weighted error

With all the same weights, this is the same as before!

Fr) = -
Calculate w; = 0.61
Original data
4 A ——
3 - -
2t - - -]
R -t T
-1t - -t +_+ +
P - + *
3

25 4 -3 -2 -1 0 1 2
vi11

3

"

x[2]

Learned decision stump f;(x)

3504 =3 —2 -1

x[1]

t=1
Update Data
Weights

x[2]

Compute new weights @; based on the errors of f;

The points with more weight are drawn larger

Increase weight

of misclassified points

New data weights o,
Boundary

Learned decision stump f;(x)

-3 -3l
-5 -4 -3 -2 -1 3 =5 -4 -3 -2 -1 0 1 2 3

X[1] x[1]

t =2
Learn a
Classifier

X[2]

Now use new weights to learn best stump that minimizes
weighted classification error.

fol) = -
7
Calculate Wg\z 0.53

Then update weights based on errors.

Weighted data: using o; Learned decision stump f,(x)
chosen in previous iteration on weighted data

4 4
3> - - __- 3

2l - . j 2

1 = -, = * B #7 ~ 1

o - + ¢ - 1 X 0 (>

-h L J
-1} - + + 5 -1
[==:]
—2L - + . -2
25 -4 -3 -2 -1 0 1 2 3 354 -3 -2 -1 0 1 2 3

x[1] x[1]

AdaBoost
Ensemble

If we plot what the predictions would be for each point, we get
something that looks like thls

[?5. < 53./»(1,052(%‘) +wz§’ (A.))

Scarex:)

+ 0.53|:

AdaBoost
when t = 30

Can eventually get O training error with a set of weak learners!

This is most likely overfit

-5 -4 -3 -2 -1 0 1 2 3
x[1]

training_error = (

AdaBoost
Ada Glance

Train

1 <1 - WeightedError(fJ)
W = Eln

WeightedError(fy)

fortin[1,2,..,T]:
Learn f,(x) based on weights a;

Predict

Compute model weight w,
Recompute weights ¢;
Normalize «;

]~
%)

y = F(x) = sign

~
1l
=

o e aie‘;wt’ %fft(xi) =Y
ae™t, if fr(x;) #y;

tf +(x)

Under some technical conditions. ..

AdaBoost

May oscillate a bit
Theorem -
But will
g 0-20 generally decrease, &
E 0.15| eventually become 0!
Training error of o
boosted classifier — 0 g 010
[as]
= 0.05|
as'T =
0.00

10 2v—30 _ 40
Iterations of boosting

o

Technical conditions namely that the data can be perfectly
classified by some function

Decision Tree

Compare

rbqo/b 035} . .
0.30|

9% test error

r

0.25¢

Overfitting

0.20f

0.15¢

Classification Erro

0.10|| == Training Error

—Testbror | L Y8% training error
0 2 4 6’ 8 10 12 14 16 8 —
Tree depth

0.05

AdaBoost

0.36

=== Training Error

0-35 = Test Error

5034
w
4033}
8
=032}
&
7031}
5030}
029}

0.28

0 2 7 6 8 0 12 14 16
iterations

Boosting tends to be robust to overfitting

OVe rfitti n g? 0.3 i '] — Training Error | |

= Test Error

50 100 150 200
Wy # of trees
Qoo

But will eventually overfit

0.40
0.35
50.30
@
Y 0.25

=== Training Error
= Test Error |

S

5 0.20f

2

£0.15}

o

G 0.10}
0.05}
0.00

0 1000 2000 3000 4000 5000
of trees

ChOOSG T7 How do you end up choosing the number of trees T for boosting?

Like always
Find T that minimizes validation error

Do cross validation

You can’t
Find T that minimizes training error

Find T that minimizes test error

Application

Boosting, AdaBoost and other variants like gradient boosting,
are some of the most successful models to date.

They are extremely useful in computer vision
The standard for face detection

Used by most winners of ML competitions (Kaggle, KDD Cup, ...)

Most industry ML systems use a use model ensembles
Some with boosting, some with bagging
Many times just use 6 different types of models and
hand specify their weights.

AdaBoost
Overview

Powerful! One of the most powerful set of models for many
real world datasets.
Typically does better than random forest with the same
number of trees.

Higher Maintenance: You do have to tune parameters
AdaBoost: Number of trees is technically important, but
the model tends to be robust to overfitting in practice.
Gradient Boosting: MANY parameters (all important)

Expensive: Boosting is inherently sequential which means its
slow to learn ensembles with many trees.
Can be made faster with optimized software like
XGBoost (UW)

Theme: Compare two different ways of making ensembles
Ideas:
Describe what an ensemble model is

Explain what a random forest is and why adding trees
improves accuracy.

Formalize how AdaBoost combines weighted votes from
simple classifiers and how those classifiers are learned.

Compare/contrast bagging and boosting.

Describe the steps of the AdaBoost algorithm.

