Decision Tree Classification

Guest Lecturer: Joshua Ervin

Example: Predicting potential loan defaults

e Data: discrete for now (e.g. credit rating: excellent, fair, poor)
e Goal: Given a new loan application, predict whether or not the applicant will
default on their loan:

Credit Term Income Y
excellent 3 years high safe
fair 5 years low risky
fair 3 years high risky
poor 3 years high risky

Decision Tree

START

Excellent Poor

e Internal Node: A node that tests a feature
e Branch: Splits input data based on the value of a feature
e Leaf Assigns a class to data (i.e. SAFE, RISKY)

/79 Hev. o m/ cse 4

Decision Stumps
Choice 1: Split on Credit \/ Choice 2: Split on Term Length

q"' 7+ ,4 SszAzfsT /V= ?0 ?o
32

Excellent

v o
o How do we decide which split to make?

o Always pick the split which maximizes accuracy accuracy =

#correct predictions

#data points

Greedy Algorithm for Growing a Decision Tree

e Start with a single root node
e Repeat while the gtopping rule is not met
o Choose a feature x[i] to split that maximizes classification accuracy

e Stopping Rule:

o 1) Do not branch if all data has the same label (pure)

o 2) We have already split on that feature before
M

Classification Accuracy: 80%

Greedy Algorithm

START
22:18

Excellent Poor

Greedy Algorithm

Excellent

START
2218

SAFE
9:0

CREDIT

Classification Accuracy:

Poor

9:4

4:14

~_

Why is it ok to stop

here?

Repeat the same decision tree stump-building
process with this subset of data.

Classification Accuracy:

Greedy Algorithm

START
22:18

Excellent Poor

9:4 414

3 Years 5 Years High Low

4:5

Greedy Algorithm

Excellent

START
22:18

3 Years

Classification Accuracy: 92.5%

Poor

9:4

5 Years

4:14

5 Years

(]

Early Stopping Rules

e Stopping Rules:

o 1) Do not branch if all data has the same label (pure)
o 2) We have already split on that feature before
o 3% If adding a branch does not increase accuracy, should we still branch?

Xo

x[2]

-1

+1

+1

-1

+1

+1

(4

Ckac/é One oJo--

>

W

XOR: Root

KEY
+1:-1

1] X[2] y
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1
Levels Accuracy
0] 50%
1 ?
2 ?

XOR: 1 Split

KEY
+1:-1

1] X[2] y
A1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1
Levels Accuracy
0] 50%
1 50%
2 ?

START
2:2

XOR: 2 Splits

KEY
+1:-1

1] X[2] y
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1
Levels Accuracy
0] 50%
1 50%
2 100%

START

-
Real Valued Data -
amm
/S
e We've been making an assumption so far that our data takes on discrete
values.

e How do we know here to split our data? There are an infinite number of
possible splits we can make.

Credit Term Income Y
excellent 3 years $105,000.00 | safe
fair 5 years $63,000.00 | risky
fair 3 years $85.000.00 | risky
poor 3 years $99,000.00 | risky

Real Valued Data

Annual Income ,J—\

$10,000

O O
A4 A 4

o
o
A
o
0O

$200,000

How do we know where to split our data?

Real Valued Data N Aot peiﬂ'/f
<A/-/

Annual Income l 2 3 4 ; c 7 8 q

& ——— 000 — 000
- q5 € # & S (65200000

N o
w

$10,000 \

L3
Key Insight: Sort the data and split halfway between each pair of
adjacent points. There will always be a finite number of splits. 4' é %

How many splits are there?

Real Valued Data

Risky Safe

(| \

Annual Income

O——0O0——0 : o O0-—0O—0—+—0—0—+—0
$10,000 ! ! ! L i i i $200,000

— L A

Which split is best? Pick the one that maximizes accuracy.

Real Valued Data

x| — - +
i +
—~ +
S
= s - Tneone
st T
1IO 2IO 3I0 l

Real Valued Data

age <= 21

age > 21

START
8:8

<=21

Income

START

Real Valued Data 8:3

age <= 21

Income

START

Real Valued Data 8:3

age <= 21 age > 21 <= 21

34 5:4

Income

<=19k >19k <=20k >20k

Probabilistic Prediction

4
Py = —1) = -
(y) 6
X
O__
™M
Q=X
SF
(@]
£
XX
o
4
]P = 1 = —
(y = +1) 1

10

Overfitting

e Similar to regression, training error monotonically non-increases with model

complexity.
e Model complexity with decision trees is commonly measured in the depth of
the tree.
e Two methods for preventing overfitting: &‘(f
o 1) Early stopping
m Stop the tree before it can get too complex \\,
o 2)Pruning

m Create a complex tre and make it more simple

Overfitting

x[2]

x[2]

Depth 1

x[2]

25 el =3 =2 =1 0

x[1]

Logistic Regression
Degree 1 features

-4 -3 -2 -1 0 1 2 3
x[11

S5 e =3 =2 =1

x[1]

e e

x[11

1

2

3

x[2]

Ry g gy g e

x[1]

B g g Ay ey, @ L,

x[11

w

Overfitting: Early Stopping

e Stopping Rules:
o 1) All data in the subset have the same label
o 2) No more features left to split

e Early Stopping Rule
o Only grow up to a max depth hyperparameter (choose via validation)
m Can be difficult to know the depth.
m Oftentimes the correct tree is one that is imbalanced
o Don’t split if there is not a sufficient decrease in error
m Problem: difficult to classify XOR problems

lcsedll

Exercise: Overfitting and cross validation

8o0% Lo 20%
Train I?g;a Valsl, Test

.-k- cross-validation(data d, folds k):
/ Y \ fold_1, fold_k = split_data(d, k)

S

for each model m:
for i from 1 to k:
& Fold-1 Fold-2 model = train_model(m, fold -i)
err = error(model, fold_i)
¢\ err = average err over folds
Max Height Fold-1 Foid2| TFolc-3 | Test Error keep track of m with smallest avgerr
Error Error & Error return m with smallest avg_err

5 10.3 14.2 12.5 us 2 12 Eryr A it ",4'-,
10 5.6 43 73 87 & T. # V‘,['a(. /131

15 31 10.4 8.8 69 X 2.9 a a/%/l."?

Overfitting: Pruning

e Basic ldea: Train a tall, overfit model and then simplify it.
e Pruning is defined by a quality metric that balances classification error and
model complexity.

/(¥ Loss(T) = Error(T) + Ar(T)
A~
lcars 17 moles/

To%/ (1) = Evwr (1) ¢ AF leen (7')

Pruning Algorithm

1. Consider some arbitrary split <= 21
2. Compute the error if the split is
taken away
3. Compute the penalty of keeping the 34 5:4
split
4. Pick whichever one minimizes loss
5. Repeat 1-4 for all splits <19k >19k
Tree Error | # Leaves Total
T 0.25 4 0.43
T 0.26 3 0.41
[——

Q=003

Decision Trees for Regression

Error measured by mean squared error

Prediction is the mean value of all partitions in the sample

7

45

RS
R, ts
o~ x'
x t, Ry
R,
R,
t, t3
X, X,
(a) General partition that cannot (b) Partition of a two-dimensional
be obtained from recursive binary feature space by recursive binary
splitting. splitting, as used in CART, applied
to some fake data.
Xy <ty
X;<t, X; <t .
Xa<ty |
R, R, R;
R, Rs
(c) Tree corresponding to the partition (d) A perspective plot of the prediction
in the top right panel. surface,

