
Decision Tree Classification
Guest Lecturer: Joshua Ervin



Example: Predicting potential loan defaults

● Data: discrete for now (e.g. credit rating: excellent, fair, poor)
● Goal: Given a new loan application, predict whether or not the applicant will 

default on their loan:

Credit Term Income Y

excellent 3 years high safe

fair 5 years low risky

fair 3 years high risky

poor 3 years high risky



Decision Tree
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● Internal Node: A node that tests a feature
● Branch: Splits input data based on the value of a feature
● Leaf: Assigns a class to data (i.e. SAFE, RISKY)



Choice 2: Split on Term Length
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Choice 1: Split on Credit

Decision Stumps

○ How do we decide which split to make?
○ Always pick the split which maximizes accuracy



Greedy Algorithm for Growing a Decision Tree

● Start with a single root node
● Repeat while the stopping rule is not met

○ Choose a feature x[i] to split that maximizes classification accuracy

● Stopping Rule:
○ 1) Do not branch if all data has the same label (pure)
○ 2) We have already split on that feature before



Greedy Algorithm
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Classification Accuracy: 80% 



Greedy Algorithm
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Why is it ok to stop 
here?

Repeat the same decision tree stump-building 
process with this subset of data.

Classification Accuracy: 



Greedy Algorithm
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Greedy Algorithm
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Classification Accuracy: 92.5% 



Early Stopping Rules

● Stopping Rules:
○ 1) Do not branch if all data has the same label (pure)
○ 2) We have already split on that feature before
○ 3*) If adding a branch does not increase accuracy, should we still branch?

x[1] x[2] y
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+1 -1 +1

+1 +1 -1



XOR: Root
x[1] x[2] y
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XOR: 1 Split
x[1] x[2] y
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XOR: 2 Splits
x[1] x[2] y
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Real Valued Data

Credit Term Income Y

excellent 3 years $105,000.00 safe

fair 5 years $63,000.00 risky

fair 3 years $85.000.00 risky

poor 3 years $99,000.00 risky

● We’ve been making an assumption so far that our data takes on discrete 
values.

● How do we know here to split our data? There are an infinite number of 
possible splits we can make.



Real Valued Data

$10,000 $200,000

Annual Income

How do we know where to split our data?



Real Valued Data

$10,000 $200,000

Annual Income

Key Insight: Sort the data and split halfway between each pair of 
adjacent points. There will always be a finite number of splits. 
How many splits are there?



Real Valued Data

$10,000 $200,000

Annual Income

Which split is best? Pick the one that maximizes accuracy.

Risky Safe



Real Valued Data
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Probabilistic Prediction
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Overfitting

● Similar to regression, training error monotonically non-increases with model 
complexity.

● Model complexity with decision trees is commonly measured in the depth of 
the tree.

● Two methods for preventing overfitting:
○ 1) Early stopping

■ Stop the tree before it can get too complex
○ 2) Pruning

■ Create a complex tre and make it more simple



Overfitting



Overfitting: Early Stopping

● Stopping Rules:
○ 1) All data in the subset have the same label
○ 2) No more features left to split

● Early Stopping Rule
○ Only grow up to a max depth hyperparameter (choose via validation)

■ Can be difficult to know the depth.
■ Oftentimes the correct tree is one that is imbalanced

○ Don’t split if there is not a sufficient decrease in error
■ Problem: difficult to classify XOR problems



Exercise: Overfitting and cross validation

Max Height Fold-1 
Error

Fold-2 
Error

Fold-3 
Error

Test Error

5 10.3 14.2 12.5 14.5

10 5.6 4.3 7.3 8.7

15 3.1 10.4 8.8 6.9

cross-validation(data d, folds k):
  fold_1, fold_k = split_data(d, k)

    for each model m:
      for i from 1 to k:
        model = train_model(m, fold -i)
        err = error(model, fold_i)
      avg_err = average err over folds
      keep track of m with smallest avg_err

  return m with smallest avg_err

Fold-1 Fold-2 Fold-3

Train Data Test

Test



Overfitting: Pruning

● Basic Idea: Train a tall, overfit model and then simplify it.
● Pruning is defined by a quality metric that balances classification error and 

model complexity.



Pruning Algorithm

1. Consider some arbitrary split
2. Compute the error if the split is 

taken away
3. Compute the penalty of keeping the 

split
4. Pick whichever one minimizes loss
5. Repeat 1-4 for all splits

age

3:4 5:4

<= 21 > 21

income

SAFE RISKY

<=19k >19k
income

RISKY

<=20k >20k

SAFE

Tree Error # Leaves Total

T 0.25 4 0.43

T’ 0.26 3 0.41



Decision Trees for Regression

● Error measured by mean squared error
● Prediction is the mean value of all partitions in the sample


