Decision Tree Classification

Guest Lecturer: Joshua Ervin



Example: Predicting potential loan defaults

e Data: discrete for now (e.g. credit rating: excellent, fair, poor)
e Goal: Given a new loan application, predict whether or not the applicant will
default on their loan:

Credit Term Income Y
excellent 3 years high safe
fair 5 years low risky
fair 3 years high risky
poor 3 years high risky




Decision Tree
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e Internal Node: A node that tests a feature
e Branch: Splits input data based on the value of a feature
e Leaf Assigns a class to data (i.e. SAFE, RISKY)
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Decision Stumps
Choice 1: Split on Credit \/ Choice 2: Split on Term Length
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o How do we decide which split to make?

o  Always pick the split which maximizes accuracy accuracy =

#correct predictions

#data points



Greedy Algorithm for Growing a Decision Tree

e Start with a single root node
e Repeat while the gtopping rule is not met
o Choose a feature x[i] to split that maximizes classification accuracy

e Stopping Rule:

o 1) Do not branch if all data has the same label (pure)

o  2) We have already split on that feature before
M



Classification Accuracy: 80%
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Greedy Algorithm
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Why is it ok to stop

here?

Repeat the same decision tree stump-building
process with this subset of data.



Classification Accuracy:
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Greedy Algorithm
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Classification Accuracy: 92.5%
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Early Stopping Rules

e Stopping Rules:

o 1) Do not branch if all data has the same label (pure)
o  2) We have already split on that feature before
o 3% If adding a branch does not increase accuracy, should we still branch?

Xo

x[2]

-1

+1

+1

-1

+1

+1

(4

Ckac/é One oJo--

>

W



XOR: Root
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XOR: 1 Split
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XOR: 2 Splits
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Real Valued Data -
amm
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e We've been making an assumption so far that our data takes on discrete
values.

e How do we know here to split our data? There are an infinite number of
possible splits we can make.

Credit Term Income Y
excellent 3 years $105,000.00 | safe
fair 5 years $63,000.00 | risky
fair 3 years $85.000.00 | risky
poor 3 years $99,000.00 | risky




Real Valued Data
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How do we know where to split our data?
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Key Insight: Sort the data and split halfway between each pair of
adjacent points. There will always be a finite number of splits. 4' é %

How many splits are there?



Real Valued Data
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Which split is best? Pick the one that maximizes accuracy.



Real Valued Data
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Real Valued Data

age <= 21

age > 21
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Probabilistic Prediction

4
Py = —1) = -
(y ) 6
X
O__
™M
Q=X
SF
(@]
£
XX
o
4
]P = 1 = —
(y = +1) 1

10




Overfitting

e Similar to regression, training error monotonically non-increases with model

complexity.
e Model complexity with decision trees is commonly measured in the depth of
the tree.
e Two methods for preventing overfitting: &‘(f
o 1) Early stopping
m Stop the tree before it can get too complex \\,
o 2)Pruning

m Create a complex tre and make it more simple



Overfitting
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Overfitting: Early Stopping

e Stopping Rules:
o 1) All data in the subset have the same label
o  2) No more features left to split

e Early Stopping Rule
o  Only grow up to a max depth hyperparameter (choose via validation)
m Can be difficult to know the depth.
m Oftentimes the correct tree is one that is imbalanced
o Don’t split if there is not a sufficient decrease in error
m  Problem: difficult to classify XOR problems
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Exercise: Overfitting and cross validation

8o0% Lo 20%
Train I?g;a Valsl, Test

.-k- cross-validation(data d, folds k):
/ Y \ fold_1, fold_k = split_data(d, k)

S

for each model m:
for i from 1 to k:
& Fold-1 Fold-2 model = train_model(m, fold -i)
# err = error(model, fold_i)
¢\ err = average err over folds
Max Height Fold-1 Foid2| TFolc-3 | Test Error keep track of m with smallest avgerr
Error Error & Error return m with smallest avg_err
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Overfitting: Pruning

e Basic ldea: Train a tall, overfit model and then simplify it.
e Pruning is defined by a quality metric that balances classification error and
model complexity.

/( ¥ Loss(T) = Error(T) + Ar(T)
A~
# lcars 17 moles/



To%/ (1) = Evwr (1) ¢ AF leen (7')

Pruning Algorithm

1. Consider some arbitrary split <= 21
2. Compute the error if the split is
taken away
3. Compute the penalty of keeping the 34 5:4
split
4. Pick whichever one minimizes loss
5. Repeat 1-4 for all splits <19k >19k
Tree Error | # Leaves Total
T 0.25 4 0.43
T 0.26 3 0.41
[ ——
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Decision Trees for Regression

Error measured by mean squared error

Prediction is the mean value of all partitions in the sample
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