Decision Tree Classification

Guest Lecturer: Joshua Ervin

Example: Predicting potential loan defaults

- Data: discrete for now (e.g. credit rating: excellent, fair, poor)
- Goal: Given a new loan application, predict whether or not the applicant will default on their loan:

Credit	Term	Income	Y
excellent	3 years	high	safe
fair	5 years	low	risky
fair	3 years	high	risky
poor	3 years	high	risky

Decision Tree

- Internal Node: A node that tests a feature
- Branch: Splits input data based on the value of a feature
- Leaf: Assigns a class to data (i.e. SAFE, RISKY)

Greedy Algorithm for Growing a Decision Tree

- Start with a single root node
- Repeat while the stopping rule is not met
 - Choose a feature x[i] to split that maximizes classification accuracy
- Stopping Rule:
 - 1) Do not branch if all data has the same label (pure)
 - 2) We have already split on that feature before

Classification Accuracy: 80%

Classification Accuracy:

Classification Accuracy:

Early Stopping Rules

"exactly one of ...

- Stopping Rules:
 - 1) Do not branch if all data has the same label (pure)
 - 2) We have already split on that feature before
 - **3*) If adding a branch does not increase accuracy, should we still branch?**

XOR: Root

×[1]	x[2]	У
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

# Levels	Accuracy
0	50%
1	?
2	?

XOR: 1 Split

x[1]	x[2]	У
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

# Levels	Accuracy
0	50%
1	50%
2	?

<

XOR: 2 Splits				
	×[1]	x[2]	У	
	-1	-1	-1	
	-1	+1	+1	
	+1	-1	+1	
	+1	+1	-1	

# Levels	Accuracy
0	50%
1	50%
2	100%

- We've been making an assumption so far that our data takes on discrete values.
- How do we know here to split our data? There are an infinite number of possible splits we can make.

Credit	Term	Income	Y
excellent	3 years	\$105,000.00	safe
fair	5 years	\$63,000.00	risky
fair	3 years	\$85.000.00	risky
poor	3 years	\$99,000.00	risky

How do we know where to split our data?

Real Valued Data

N data points <N-1

Key Insight: Sort the data and split halfway between each pair of adjacent points. There will always be a finite number of splits. How many splits are there?

Which split is best? Pick the one that maximizes accuracy.

START

8:8

Probabilistic Prediction

Overfitting

- Similar to regression, training error monotonically non-increases with model complexity.
- Model complexity with decision trees is commonly measured in the depth of the tree.
- Two methods for preventing overfitting:
 - 1) Early stopping
 - Stop the tree before it can get too complex
 - 2) Pruning
 - Create a complex tre and make it more simple

Overfitting

Overfitting: Early Stopping

- Stopping Rules:
 - 1) All data in the subset have the same label
 - \circ 2) No more features left to split
- Early Stopping Rule
 - Only grow up to a max depth hyperparameter (choose via validation)
 - Can be difficult to know the depth.
 - Oftentimes the correct tree is one that is imbalanced
 - Don't split if there is not a sufficient decrease in error
 - Problem: difficult to classify XOR problems

1csc 416 Exercise: Overfitting and cross validation 80% , 20% Train Data Test cross-validation(data d, folds k): fold_1, fold_k = split_data(d, k) for each model m: for i from 1 to k: Fold-1 Fold-2 model = train_model(m, fold -i) err = error(model, fold_i) <u>avg_err</u> = average err over folds keep track of m with smallest avg_err Fold-3 Fold-1 Fold-2 **Test Error** Max Height Error Error Error return m with smallest avg_err 14.5 212 cor malida day 5 10.3 14.2 12.5 25.7 volidation 8.7 10 5.6 4.3 7.3 6.9 ~ 7.9 ~ alidation 15 3.1 8.8 10.4

Overfitting: Pruning

- Basic Idea: Train a tall, overfit model and then simplify it.
- Pruning is defined by a quality metric that balances classification error and model complexity.

$$Loss(T) = Error(T) + \lambda r(T)$$

$$= Icaus in model$$

Total (t) = Ermr (t) + 2 # leas (T)

Pruning Algorithm

- 1. Consider some arbitrary split
- Compute the error if the split is taken away
- Compute the penalty of keeping the split
- 4. Pick whichever one minimizes loss
- 5. Repeat 1-4 for all splits

Tree	Error	# Leaves	Total
Т	0.25	4	0.43
Ţ'	0.26	3	0.41
1-003			

Decision Trees for Regression

- Error measured by mean squared error
- Prediction is the mean value of all partitions in the sample

