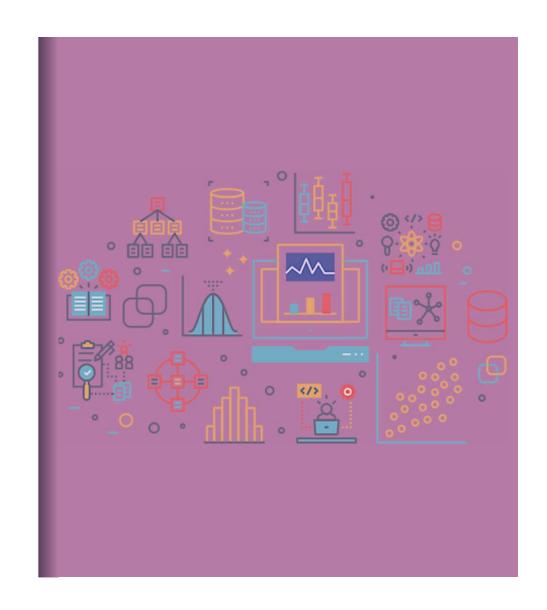
CSE/STAT 416

Classification

Hunter Schafer University of Washington July 8, 2019



Roadmap So Far

- 1. Housing Prices Regression
 - Regression Model
 - Assessing Performance
 - Ridge Regression
 - LASSO

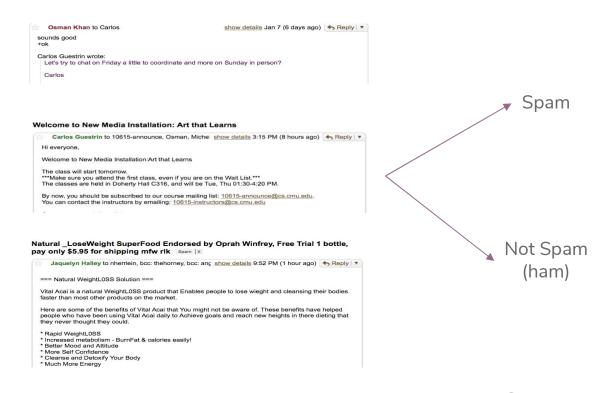
$$L2 = \sum_{j=0}^{2} U_{j}^{2}$$

$$L1 = \sum_{j=0}^{2} |\omega_{j}|$$

- 2. Sentiment Analysis Classification
 - Classification Overview
 - Logistic Regression
 - Decision Trees
 - Ensemble Methods

Spam Filtering

Binary Classification

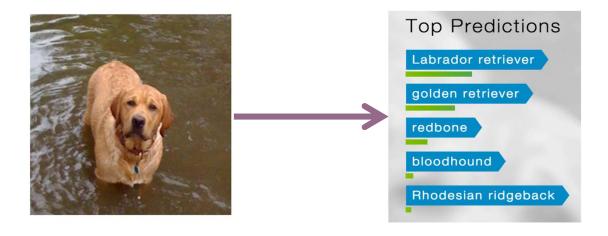


Input: x

Text of email Sender Subject Output: y

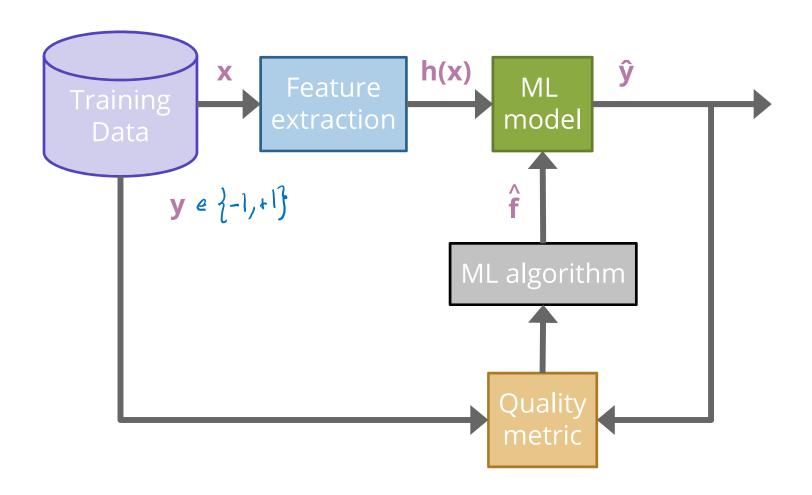
Object Detection

Multiclass Classification



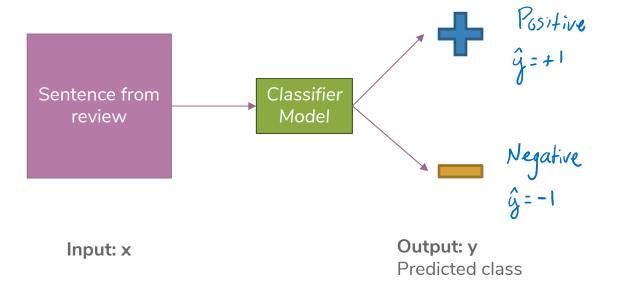
Input: xPixels

Output: y
Class
(+ Probability)



Sentiment Classifier

In our example, we want to classify a restaurant review as positive or negative.



Implementation 1: Simple Threshold Classifier

Idea: Use a list of good words and bad words, classifier by most frequent type of word

- Positive Words: great, awesome, good, amazing, ...
- Negative Words: bad, terrible, disgusting, sucks, ...

Simple Threshold Classifier

Input *x*: Sentence from review

- Count the number of positive and negative words, in x
- If num_positive > num_negative:

$$-\hat{y} = +1$$

 $\hat{y} = -1$

Else:

p6s = 2 # neg = 1

Example: "Sushi was great, the food was awesome, but the service was terrible"

Problems with Threshold

How do we get list of positive/negative words?

Words have different degrees of sentiment.

- Great > Good
- How can we weigh them differently?

Lewn, a classifier

Single words are not enough sometimes...

- "Good" → Positive
- "Not Good" → Negative

More complex feature

bi gram

Implementation 2: Linear Classifier

Idea: Use labelled training data to learn a weight for each word. Use weights to score a sentence.

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
•••	•••

Score a Sentence

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
	•••

Input x_i :

"Sushi was **great**, the food was **awesome**, but the service was **terrible**"

Score
$$(x_i)$$
=
$$1.5 \cdot 1 + 2.7 \cdot 1 - 2.1 \cdot 1 = 2.1$$

Linear classifier, because output is linear weighted sum of inputs.

Will learn how to learn weights soon!

Implementation 2: Linear Classifier

Idea: Use labelled training data to learn a weight for each word. Use weights to score a sentence.

See last slide for example weights and scoring.

Linear Classifier

Input *x*: Sentence from review

• Compute
$$Score(x)$$

• If
$$Score(x) \ge 0$$
:

$$-\hat{y} = +1$$

Else:

$$- \hat{y} = -1$$

Linear Classifier Notation

$$h_1(x) = \pm \frac{1}{9000} = 1$$
 $h_1(x) = \pm \frac{1}{9000} = 1$
 $h_1(x) = \frac{1}{9000} = 1$

Score
$$(x_i) = w_0 h_0(x_i) + w_1 h_1(x_i) + \dots + w_D h_D(x_i)$$

= $\sum_{j=0}^{D} w_j h_j(x_i)$
= $w^T h(x)$

We will also use the notation

$$\hat{s}_{i} = Score(x_{i}) = w^{T}h(x_{i})$$

$$\hat{y}_{i} = sign(\hat{s}_{i})$$

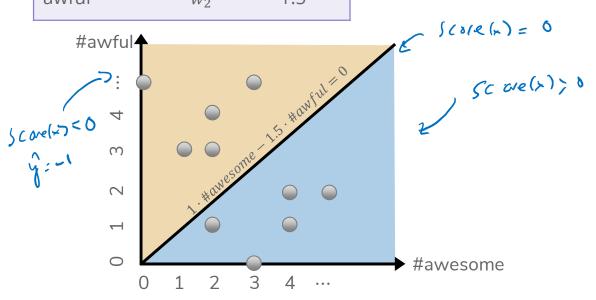
$$\hat{S} \in [-\infty, \infty] , \hat{g} \in \{-1, 1\}$$

Decision Boundary

Consider if only two words had non-zero coefficients

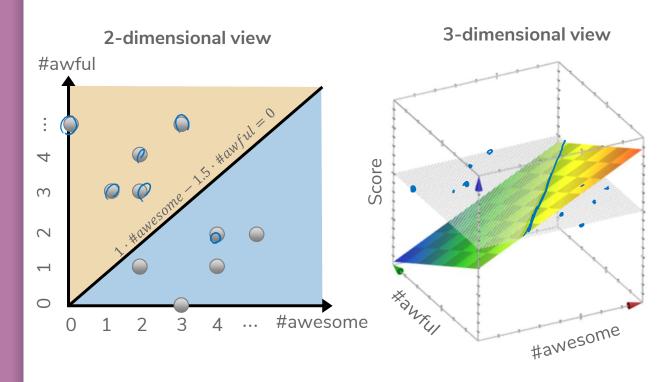
Word	Coefficient	Weight
	W_0	0.0
awesome	W_1	1.0
awful	W_2	-1.5

 $\hat{s} = 1 \cdot \#awesome - 1.5 \cdot \#awful$



Decision Boundary

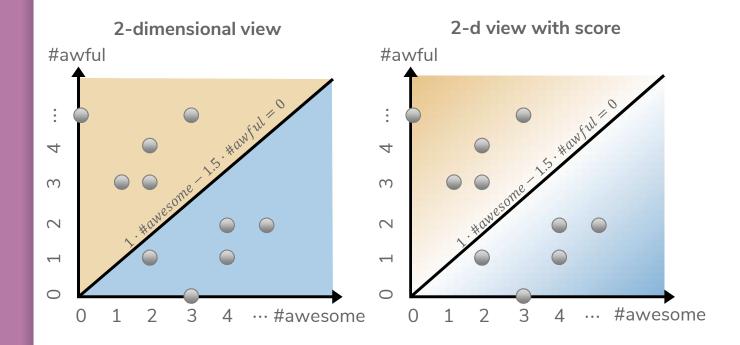
$Score(x) = 1 \cdot \#awesome - 1.5 \cdot \#awful$



Generally, with classification we don't us a plot like the 3d view since it's hard to visualize, instead use 2d plot with decision boundary

Decision Boundary

$Score(x) = 1 \cdot \#awesome - 1.5 \cdot \#awful$



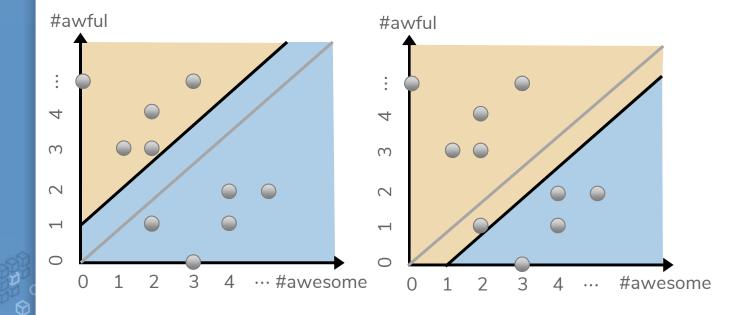
Think &

1 min

pollev.com/cse416

What happens to the decision boundary if we add an intercept?

 $Score(x) = 1.0 + 1 \cdot \#awesome - 1.5 \cdot \#awful$



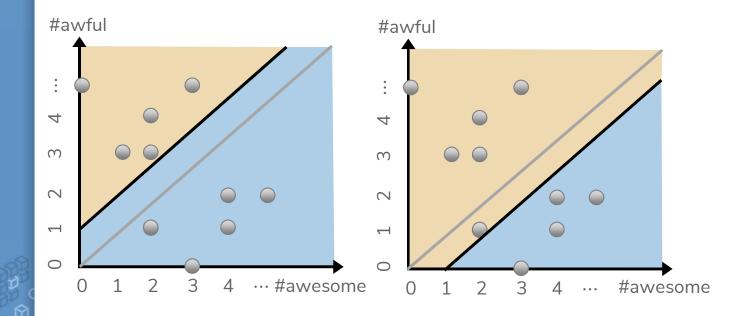
Poll Everywhere

Pair & B

pollev.com/cse416

What happens to the decision boundary if we add an intercept?

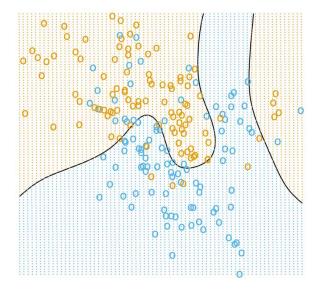
 $Score(x) = 1.0 + 1 \cdot \#awesome - 1.5 \cdot \#awful$



Complex
Decision
Boundaries?

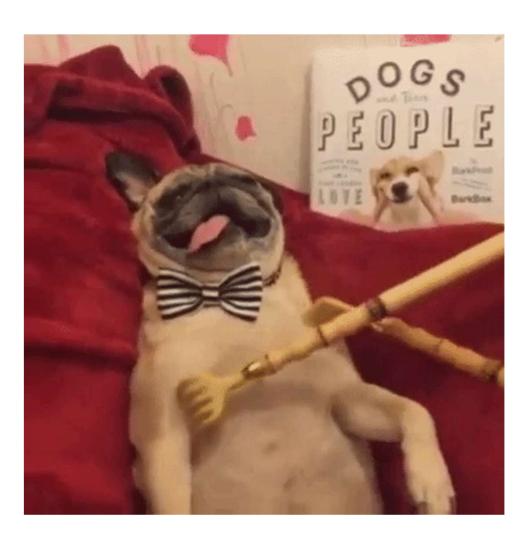
What if we want to use a more complex decision boundary?

- Need more complex model/features!
- Covered next lecture!

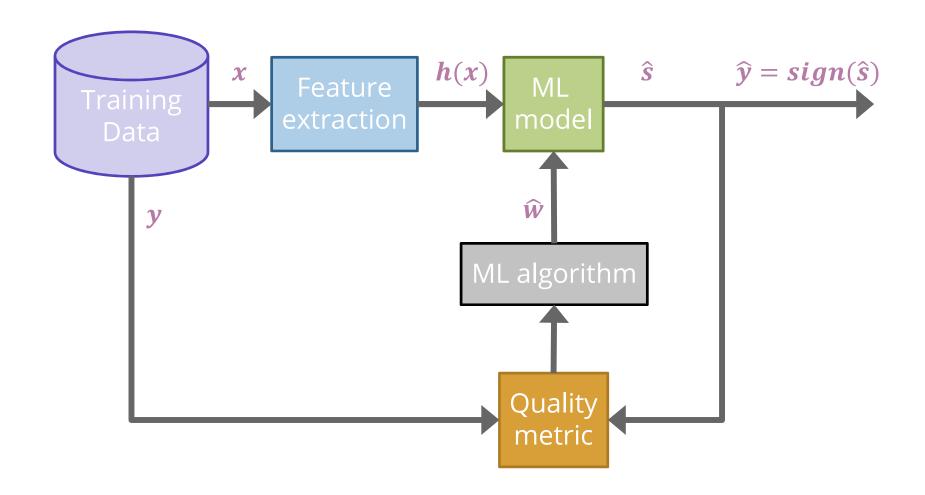


Brain Break

10:41



Evaluating Classifiers



Classification Error

Ratio of examples where there was a mistaken prediction

What's a mistake?

- Indicator Function

 11/13= 11 if A is true

 20, otherwise
- If the true label was positive (y = +1), but we predicted negative $(\hat{y} = -1)$
- If the true label was negative (y = -1), but we predicted positive $(\hat{y} = +1)$

Classification Error

Classification Accuracy

$$\pm correct$$

$$\pm examples$$

$$= 1 - error = \frac{1}{n} \sum_{i=1}^{n} 1/3i = \hat{g}_i$$

What's a good accuracy?

For binary classification:

- Should at least beat random guessing...
- Accuracy should be at least 0.5

For multi-class classification (k classes):

- Should still beat random guessing
- Accuracy should be at least $\frac{1}{k}$

- 3-class: 0.33

- 4-class: 0.25

- ..

Besides that, higher accuracy means better, right?

Detecting Spam

Imagine I made a "Dummy Classifier" for detecting spam

- The classifier ignores the input, and always predicts spam.
- This actually results in 90% accuracy! Why?
 - Most emails are spam...

This is called the majority class classifier.

A classifier as simple as the majority class classifier can have a high accuracy if there is a **class imbalance**.

 A class imbalance is when one class appears much more frequently than another in the dataset

This might suggest that accuracy isn't enough to tell us if a model is a good model.

Assessing Accuracy

Always digging in and ask critical questions of your accuracy.

- Is there a class imbalance?
- How does it compare to a baseline approach?
 - Random guessing
 - Majority class
 - ..
- Most important: What does my application need?
 - What's good enough for user experience?
 - What is the impact of a mistake we make?

Confusion Matrix

For binary classification, there are only two types of mistakes

$$\hat{y} = +1, \ y = -1$$

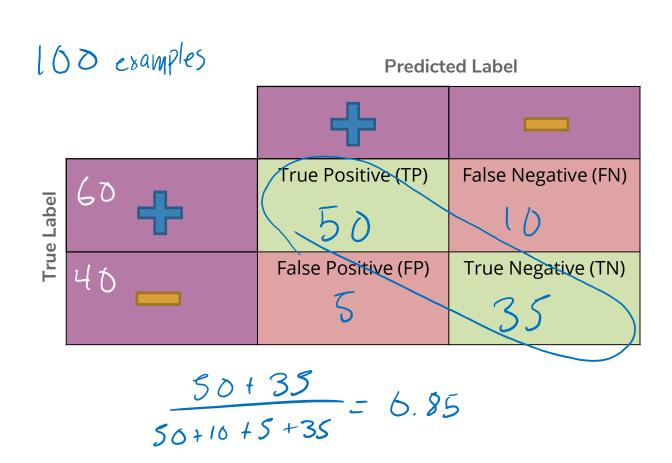
$$\hat{y} = -1, \ y = +1$$

Generally we make a **confusion matrix** to understand mistakes.

Predicted Label

		4	
True Label	4	True Positive (TP)	False Negative (FN)
		False Positive (FP)	True Negative (TN)

Confusion Matrix Example



Which is Worse?

What's worse, a false negative or a false positive?

It entirely depends on your application!

Detecting Spam

False Negative: Annoying

False Positive: Email lost

Medical Diagnosis

False Negative: Disease not treated

False Positive: Wasteful treatment

In almost every case, how treat errors depends on your context.

Binary Classification Measures

Notation

$$C_{TP} = \text{\#TP}, \quad C_{FP} = \text{\#FP}, \quad C_{TN} = \text{\#TN}, \quad C_{FN} = \text{\#FN}$$

$$N = C_{TP} + C_{FP} + C_{TN} + C_{FN}$$

$$N_P = C_{TP} + C_{FN}, N_N = C_{FP} + C_{TN}$$

Error Rate

$\frac{C_{FP} + C_{FN}}{N}$

Accuracy Rate

$$\frac{C_{TP} + C_{TN}}{N}$$

False Positive rate (FPR)

$$\frac{C_{FP}}{N_N}$$

False Negative Rate (FNR)

$$\frac{C_{FN}}{N_P}$$

True Positive Rate or Recall

$$\frac{C_{TP}}{N_P}$$

Precision

$$\frac{C_{TP}}{C_{TP} + C_{FP}}$$

F1-Score

$$2\frac{Precision \cdot Recall}{Precison + Recall}$$

See more!

Multiclass Confusion Matrix

Consider predicting (Healthy, Cold, Flu)

Predicted Label

		Healthy	Cold	Flu
	Healthy	60	8	2
True Label	Cold	4	12	4
	Flu	0	2	8

True Label

Suppose we trained a classifier and computed its confusion matrix on the training dataset. Is there a class imbalance in the dataset and if so, which class has the highest representation?

Predicted Label

	Pupper	Doggo	Boofer
Pupper	2	27	4
Dogoo	4	25	4
Boofer	1	30	2

Suppose we trained a classifier and computed its confusion matrix on the training dataset. Is there a class imbalance in the dataset and if so, which class has the highest representation?

Predicted Label

	Pupper	Doggo	Boofer
Pupper 33	2	27	4
Dogoo	4	25	4
Boofer 33	1	30	2

Doggo

No imbalance

11:20

Learning Theory

How much data?

The more the merrier

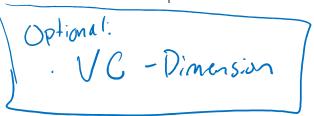
But data quality is also an extremely important factor

Theoretical techniques can bound how much data is needed

- Typically too loose for practical applications
- But does provide some theoretical guarantee

In practice

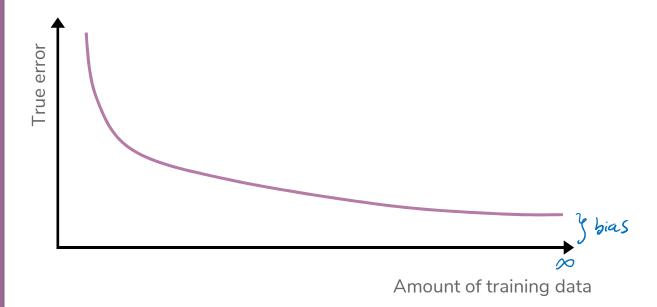
More complex models need more data



Learning Curve

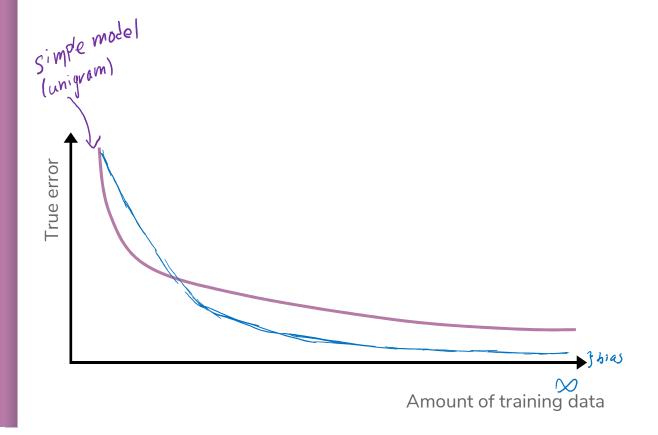
How does the true error of a model relate to the amount of training data we give it?

Hint: We've seen this picture before



Learning Curve

What if we use a more complex model?



Change Threshold

What if I never want to make a false positive prediction?

Always predict negative
$$(d=\infty)$$

What if I never want to make a false negative prediction?

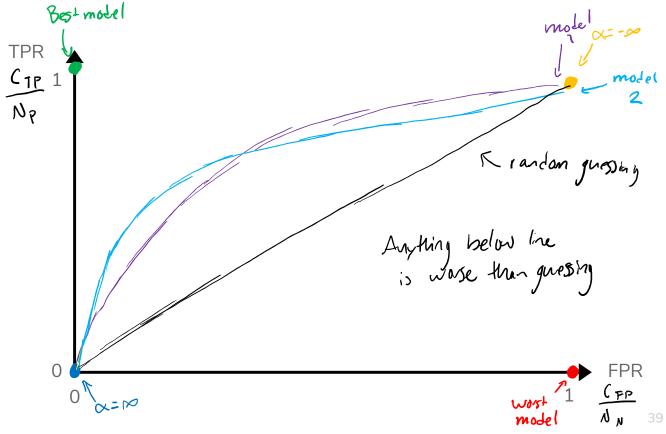
Always predict positive
$$(\alpha = -\infty)$$

One way to control for our application is to change the scoring threshold. (Could also change intercept!)

- If $Score(x) > \omega$.
 - Predict $\hat{y} = +1$
- Else:
 - Predict $\hat{y} = -1$

ROC Curve

What happens to our TPR and FPR as we increase the threshold?



Next Time

We will talk about learning classifiers that model the probability of seeing a particular class at a given input.

Normally assume some structure on the probability (e.g. linear) $P(y|x,w) \approx w^T x$

Use machine learning algorithm to learn approximate \widehat{w} such that $\widehat{P}(y|x) = P(y|x,\widehat{w})$

And P(y|x) and $\hat{P}(y|x)$ are close.

Recap

Theme: Describe high level idea and metrics for classification **Ideas**:

- Applications of classification
- Linear classifier
- Decision boundaries
- Classification error / Classification accuracy
- Class imbalance
- Confusion matrix
- Learning theory
- ROC Curve