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At the end of lecture, we discussed a new topic that will serve as an under-pinning for a lot of
what we will talk about next week. This topic is generally pretty tedious with the math necessary to
do all the calculations. In our class, we don’t really care that you know the exact derivation, but do
care you get the big picture idea. In each section, the big idea will be put in a gray box like below
to emphasize what we want you to know for that section. We include the complete derivations and
their explanations for completeness, but we don’t expect you to know every detail from those.

Key Idea: This is a key idea you should know! If a section has a in
its name, that means that entire section is optional!

1 Math Review

Key Idea: Unless otherwise noted in this section, it is probably good
to know these concepts.

1.1 Logarithm Rules
Some useful properties of the logarithm:

• log(ab) = b log(a)

• log(ab) = log(a) + log(b)

• The more general form of this rule is:

log

(
n∏

i=1

xi

)
=

n∑
i=1

log(xi)

Where
∏n

i=1 xi = x1 · x2 · ... · xn

1.2 Probability
This section will have a basic probability review.

If events A and B are independent, then the probability of both A and B happening will be
P (AB) = P (A)P (B). Equivalently, this can be written as P (B|A) = P (B) where P (B|A) is the
probability of B happening given knowledge that event A has happened.
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1.3 Normal Distribution
The normal distribution (Gaussian distribution) is a continuous distribution that describes a normal
bell curve centered at some mean with some standard deviation. Because the normal distribution
is continuous, we talk about it having a "probability density function" (PDF) that indicates where
the probability density lives. The PDF for normally distributed variable X ∼ N (µ, σ2) (mean µ
and variance σ2) is:

PDFX(x) =
1√
2πσ2

e
−(x−µ)2

2σ2

A normal distribution PDF looks like the following

Figure 1: PDF of X ∼ N (µ, σ2)

1.4 Optimization
For many problems, we end up trying to find the value x that maximizes or minimizes some
function f(x). Sometimes, if the function is simple, we are able to solve the problem analytically
using calculus. Briefly, analyitcal solutions generally look like taking the derivative of the function
and finding the value that makes the derivative 0. We will not ask you to solve any problems
analytically in this class. Many times, we generally rely on using an optimization algorithm like
gradient descent or ascent that attempts to approximate the optimal value iteratively.

2 Estimating Probability of Heads
Suppose someone comes up to you with a coin and asks you to tell you the probability that it will
end up heads when flipped. You ask them to flip the coin five times, and they tell you they saw
HTHHT. You nicely try to end the conversation quickly and just tell them the probability of a heads
P (H) = 3/5.

However, this person has different plans for you today and they then ask you WHY you told
them the probability is 3/5. You ask them to flip the coin 50 times and when they get 29 heads, you
tell them your new estimate for P (H) = 29/50. Again, they ask why so you go to tell them about
maximum likelihood estimation.
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2.1 Maximum Likelihood Estimation (MLE)
For MLE, we are given a dataset D, this case a series of coin flips D = {HTHHT...} with n
flips, k of which are heads. We make the assumption that coin flips are independent and identically
distributed (i.i.d). This means that the coin flips all come from the same, but unknown distribution,
and the outcome of one flip does not impact the other.

We will have a hypothesis that each coin flip comes from a Bernoulli distribution. This means
that there is some θ ∈ [0, 1] such that P (H) = θ and P (T ) = 1− θ. The trick here is θ is unknown
to us so we must estimate it using data.

In our case of of 5 coin flips, this means the probability of seeing this particular series of flips
HTHHT for some parameter θ is

P (HTHHT ) = P (H)P (T )P (H)P (H)P (T )

= θ · (1− θ) · θ · θ · (1− θ) · θ
= θ3(1− θ)2

We will use this idea of computing the probability of seeing our data for some setting of θ to
help us identify the most likely setting of the parameter.

Key Idea: In general for MLE, we compute P (D|θ) to help us figure
out which setting of θ is the most likely. In the general case for our coin
flip example with k heads out of n flips the likelihood of a parameter θ is:

P (D|θ) = θk(1− θ)n−k

This formula tells us which values of θ are more likely and which are
less. For example, this could be visualized in Figure 2.

The goal of Maximum Likelihood Estimation (MLE) is to find the
value θ̂MLE that yields the highest value of P (D|θ̂MLE). In other words,
MLE finds

θ̂MLE = max
θ

P (D|θ)

This corresponds to the value of θ in Figure 2 that has the highest
value of P (D|θ).

As a technical note, we generally find the value with the maximum
log-likelihood since it tends to be easier to work with analytically and
results in numerically stable computations for approximation methods
like gradient ascent. It’s the same idea, but instead we say

θ̂MLE = max
θ

log (P (D|θ))
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Figure 2: PDF of X ∼ N (µ, σ2)

2.2 MLE Derivation
In this section, we do the actually step-by-step computation to find the maximum likelihood esti-
mate of the probability of flipping a heads in this scenario θ.

θ̂MLE = max
θ

P (D|θ)

= max
θ

logP (D|θ)

= max
θ

log
(
θk(1− θ)n−k

)
= max

θ
k log θ + (n− k) log(1− θ)

This is something that can be solved analytically, so we take the derivative with respect to θ
and then set that to 0 to find the maximum point.

d

dθ
logP (D|θ) = d

dθ
(k log θ + (n− k) log(1− θ))

=
k

θ
− n− k

1− θ

We know that optimal value θ̂MLE will occur when the derivative is 0 so we set this to 0 when
θ is θ̂MLE and rearrange to solve the θ̂MLE . Technically we also need to do what is called a second
derivative test to make sure the point is a maxima and not a minima, but we leave that out for this
exercise.
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k

θ̂MLE

− n− k

1− θ̂MLE

= 0

k

θ̂MLE

=
n− k

1− θ̂MLE

k(1− θ̂MLE) = (n− k)θ̂MLE

k − kθ̂MLE = nθ̂MLE − kθ̂MLE

θ̂MLE =
k

n

3 MLE: Linear Regression
Remember that in the linear regression model, we were given a dataset {(xi, yi)}ni=1 where we
assumed yi = wTxi + ϵi for some unknown coefficients w. We made a special assumption that the
noise ϵi were drawn i.i.d. from ϵ ∼ N (0, σ2). This forms a probability distribution over the values
yi ∼ N (wTxi, σ

2)

P (yi|xi, w) =
1√
2πσ2

e
−(yi−wT xi)

2

2σ2

Key Idea: Under these assumptions, the most likely estimate of ŵMLE

will be

ŵMLE = min
w

n∑
i=1

(yi − wTxi)
2

Which is exactly the Ordinary Least Squares solution we saw last
week! This means the reason we used RSS in the first place was because
it was actually finding the MLE under the assumptions we made!
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3.1 MLE Derivation
In this section, we derive the MLE for the linear regression setup.

ŵMLE = max
w

P (D|w)

= max
w

logP (D|w)

= max
w

log

(
n∏

i=1

P (yi|xi, w)

)

= max
w

n∑
i=1

log (P (yi|xi, w))

= max
w

n∑
i=1

log

(
1√
2πσ2

e
−(yi−wT xi)

2

2σ2

)
= max

w

n∑
i=1

log

(
1√
2πσ2

)
− (yi − wTxi)

2

2σ2
log (e)

= max
w

n∑
i=1

−(yi − wTxi)
2

= min
w

n∑
i=1

(yi − wTxi)
2

The third to last line is true by our properties of logarithms. The second to last line comes
from the fact that we can drop constant terms and multiples in our maximization problem without
changing the result

max
x

a+ bf(x) = max
x

f(x)

The last line is true because

max
x

−f(x) = min
x

f(x)

This means that ŵMLE is the w that minimizes the residual sum of squares, which was exactly
the quality metric we used before!

We do not show the derivation to find what the formula for ŵMLE is as the calculations are
much more tedious. There is technically an analytical solution for the least squares objective,
but we have not discussed it since we have just used gradient descent to solve this minimization
problem.
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