
CSE/STAT 416
Assessing Performance

Hunter Schafer
University of Washington
June 26, 2019

Logistics ▪ Check Piazza for clarifications on assignments!
- Gradescope points changed

▪ Jupyter Notebooks (Local or Colab)

▪ Section tomorrow will give you practice writing some of the
code for HW1

- HW1 will be released shortly after lecture

2

Linear
Regression
Model

Assume the data is produced by a line.
𝑦 = 𝑤 +𝑤ଵ𝑥 + 𝜖

𝑤, 𝑤ଵ are the parameters of our model that need to be learned

▪ 𝑤 is the intercept ($ of the land with no house)

▪ 𝑤ଵ is the slope ($ increase per increase in sq. ft)

Learn estimates of these
parameters 𝑤ෝ, 𝑤ෝଵ and use
them to predict new value
for any input 𝑥!

𝑦ො = 𝑤ෝ + 𝑤ෝଵ𝑥

Why don’t we add 𝜖? 3

ML Pipeline

4

Training
Data

Feature
extraction

ML
model

Quality
metric

ML algorithm

y

x ŷ

f

Notation Important: Distinction is the difference between a data input and
a feature.

▪ Data inputs are columns of the raw data

▪ Features are the values (possibly transformed) for the model
(done after our feature extraction ℎ(𝑥))

Data Input: 𝑥 = (𝑥 1 , 𝑥 2 , … , 𝑥 𝑑)

Output: 𝑦

▪ 𝑥 is the 𝑖௧ row

▪ 𝑥[𝑗] is the 𝑖௧ row’s 𝑗௧ data input

▪ ℎ 𝑥 is the 𝑗௧ feature of the 𝑖௧ row

5

Linear
Regression
Recap

Dataset

𝑥, 𝑦 ୀଵ
 where 𝑥 ∈ ℝௗ, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑥 : ℝௗ → ℝ

ℎ 𝑥 = ℎ 𝑥 , ℎଵ 𝑥 , … , ℎ(𝑥)

Regression Model
𝑦 = 𝑓 𝑥 + 𝜖

 = 𝑤ℎ 𝑥 + 𝜖

ୀ

 = 𝑤்ℎ 𝑥 + 𝜖

Quality Metric

𝑅𝑆𝑆 𝑤 = 𝑦 − 𝑤்𝑥
ଶ

ୀଵ

Predictor
𝑤ෝ = min

௪
𝑅𝑆𝑆(𝑤)

ML Algorithm

Optimized using Gradient Descent

Prediction
𝑦ො = 𝑤ෝ ்ℎ(𝑥)

6

Assessing
Performance

7

Polynomial
Regression

How do we decide what the right choice of 𝑝 is?
8

Polynomial
Regression

Consider using different degree polynomials on the same dataset

Which one has a lower RSS on this dataset?

It seems like minimizing the RSS is not the whole story here…

9

𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 20

Performance Why do we train ML models?

We generally want them to do well on future data

If we choose the model that minimizes RSS on the data it learned
from, we are just choosing the model that can memorize, not the
one that generalizes well.

▪ Just because you can get 100% on a practice exam you’ve
studied for hours, it doesn’t mean you will also get 100% on
the real test that you haven’t seen before.

Key Idea: Assessing yourself based on something you learned
from generally overestimates how well you will do in the future!

10

Future
Performance

What we care about is how well the model will do in the future.

How do we measure this? True error

To do this, we need to understand uncertainty in the world

True Error

11

Sq. Ft. Price | Sq. Ft.

Model
Assessment

How can we figure out how well a model will do on future data if
we don’t have any future data?

▪ Estimate it! We can hide data from the model to test it later as
an estimate how it will do on future data

We will randomly split our dataset into a train set and a test set

▪ The train set is to train the model

▪ The test set is to estimate the performance in the future

12

Test Error What we really care about is the true error, but we can’t know
that without having an infinite amount of data!

We will use the test set to estimate the true error

Call the error on the test set the test error

𝑅𝑆𝑆௧௦௧ 𝑤 = 𝑦 − 𝑓௪ෝ 𝑥
ଶ

∈்௦௧

If the test set is large enough, this can approximate the true error

13

Train/Test Split If we use the test set to estimate future, how big should it be?

This comes at a cost of reducing the size of the training set though
(in the absence of being able to just get more data)

In practice people generally do train:test as either

▪ 80:20

▪ 90:10

Important: Never train your model on data in the test set!
14

Train Error What happens to training error as we increase model complexity?

▪ Start with the simplest model (a constant function)

▪ End with a very high degree polynomial

15

True Error What happens to true error as we increase model complexity?

▪ Start with the simplest model (a constant function)

▪ End with a very high degree polynomial

16

Train/True
Error

Compare what happens to train and true error as a function of
model complexity

17

Error

Low Model
Complexity

High Model
Complexity

Overfitting Overfitting happens when we too closely match the training data
and fail to generalize.

Overfitting happens when, you train a predictor 𝑤, but there exists
another predictor 𝑤′ from that model that has the following
properties

▪ 𝑒𝑟𝑟𝑜𝑟௧௨ 𝑤ᇱ < 𝑒𝑟𝑟𝑜𝑟௧௨ 𝑤

▪ 𝑒𝑟𝑟𝑜𝑟௧ 𝑤ᇱ > 𝑒𝑟𝑟𝑜𝑟௧ 𝑤

18
High Model
Complexity

Low Model
Complexity

Error

Bias-Variance
Tradeoff

19

Underfitting /
Overfitting

The ability to overfit/underfit is a knob we can turn based on the
model complexity.

▪ More complex => easier to overfit

▪ Less complex => easier to underfit

In a bit, we will talk about how to chose the “just right”, but now
we want to look at this phenomena of overfitting/underfitting from
another perspective.

Underfitting / Overfitting are a result of certain types of errors

20

Signal
vs.
Noise

Learning from data relies on balancing
two aspects of our data

▪ Signal

▪ Noise

Complex models make it easier to fit
too closely to the noise

Simple models have trouble picking
up the signal

21

Bias A model that is too simple fails to fit the signal. In some sense, this
signifies a fundamental limitation of the model we are using to fail
to fit the signal. We call this type of error bias.

Low complexity (simple) models tend to have high bias.* 22

Variance A model that is too complicated for the task overly fits to the
noise. The flexibility of the complicated model makes it capable of
memorizing answers rather than learning general patterns. This
contributes to the error as variance.

High complexity models tend to have high variance.*
23

Bias-Variance
Tradeoff

It turns out that bias and variance live on a spectrum, increasing
one tends to decrease the other

▪ Simple models: High bias + Low variance

▪ Complex models: Low bias + High variance

In the case for squared error with regression

𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠ଶ + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑁𝑜𝑖𝑠𝑒

Noise comes from the regression model (𝜖) and is impossible to
avoid!

24

Bias-Variance
Tradeoff

Visually, this looks like the following!
𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠ଶ + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑁𝑜𝑖𝑠𝑒

25
Low Model
Complexity

High Model
Complexity

Error

Dataset Size So far our entire discussion of error assumes a fixed amount of
data. What happens to our error as we get more data?

26
Small Train Set Large Train Set

Error

Brain Break

27

Choosing
Complexity

So far we have talked about the affect of using different
complexities on our error. Now, how do we choose the right one?

28

Think

pollev.com/cse416

▪ Goal: Get you actively participating in your learning

▪ Typical Activity
- Question is posed
- Think (1 min): Think about the question on your own
- Pair (2 min): Talk with your neighbor to discuss question

- If you arrive at different conclusions, discuss your
logic and figure out why you differ!

- If you arrived at the same conclusion, discuss why
the other answers might be wrong!

- Share (1 min): We discuss the conclusions as a class

▪ During each of the Think and Pair stages, you will respond to
the question via a Poll Everywhere poll

- The poll will only be open for the last 15 seconds of each
of the stage

- Not worth any points, just here to help you learn!

29

1 min

Think

pollev.com/cse416

Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

▪ Train a model with degree p on the training set, pick p that
has the lowest test error

▪ Train a model with degree p on the training set, pick p that
has the highest test error

▪ Train a model with degree p on the test set, pick p that has the
lowest test error

▪ Train a model with degree p on the test test set, pick p that
has the highest test error

▪ None of the above

30

1 min

Pair

pollev.com/cse416

Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

▪ Train a model with degree p on the training set, pick p that
has the lowest test error

▪ Train a model with degree p on the training set, pick p that
has the highest test error

▪ Train a model with degree p on the test set, pick p that has the
lowest test error

▪ Train a model with degree p on the test set, pick p that has the
highest test error

▪ None of the above

31

2 min

Choosing
Complexity

We can’t just choose the model that has the lowest train error
because that will favor models that overfit!

It then seems like our only other choice is to choose the model that
has the lowest test error (since that is our approximation of the
true error)

▪ This is almost right, but now we don’t have a good estimate of
the true error anymore.

▪ We didn’t technically train the model on the test set (that’s
good), but we chose which model to use based on the
performance of the test set.

- It’s no longer a stand in for “the unknown” since we
probed it many times to figure out which model would
be best.

32

Choosing
Complexity

We will talk about two ways to pick the model complexity without
ruining our test set.

▪ Using a validation set

▪ Doing cross validation

33

Validation Set So far we have divided our dataset into train and test

We can’t use Test to choose our model complexity, so instead,
break up Train into ANOTHER dataset

34

Train Test

Train Validation Test

Validation Set The process generally goes

train, validation, test = split_data(dataset)

for each model complexity p:

model = train_model(model_p, train)

val_err = error(model, validation)

keep track of p with smallest val_err

return best p + error(model, test)

35

Validation Set Pros

Easy to describe and implement

Pretty fast

▪ Only requires training a model and predicting on the validation
set for each complexity of interest

Cons

Have to sacrifice even more training data!

36

Cross-Validation Clever idea: Use many small validation sets without losing too
much training data.

Still need to break off our test set like before. After doing so, break
the training set into 𝑘 chunks.

For a given model complexity, train it 𝑘 times. Each time use all but
one chunk and use that left out chunk to determine the validation
error.

37

Train Test

Chunk1 Chunk2 Chunk3 Chunk4 Test

Cross-Validation The process generally goes

chunk_1, …, chunk_k, test = split_data(dataset)

for each model complexity p:

for i in [1, k]:

model = train_model(model_p, chunks - i)

val_err = error(model, chunk_i)

avg_val_err = average val_err over chunks

keep track of p with smallest avg_val_err

return model trained on train with best p +
error(model, test)

38

Cross-Validation Pros

Don’t have to actually get rid of any training data!

Cons

Can be a bit slow. For each model complexity, trains 𝑘 models!

For best results, need to make 𝑘 really big

▪ Theoretical best estimator is to use 𝑘 = 𝑛

- Called "Leave One Out Cross Validation”

▪ In practice, people use 𝑘 = 5 to 10

39

Recap Theme: Assess the performance of our models

Ideas:

▪ Model complexity

▪ Train vs. Test vs. True error

▪ Overfitting and Underfitting

▪ Bias-Variance Tradeoff

▪ Error as a function of train set size

▪ Choosing best model complexity
- Validation set
- Cross Validation

40

