

16.55

CSE/STAT 416

Course Wrap Up

Hunter Schafer University of Washington Aug 19, 2019 0 </>

Slides borrowed from Emily Fox

One Slide

- Regression
- Overfitting
- Training, test, and generalization error
- Bias-Variance tradeoff
- Ridge, LASSO
- Cross validation
- Gradient descent
- Classification
- Logistic regression
- Decision trees
- Boosting
- Precision and recall
- Nearest-neighbor retrieval, regression, and classification
- Kernel regression
- Locality sensitive hashing
- Dimensionality reduction, PCA

- k-means clustering
- Hierarchical clustering
- Unsupervised v. supervised learning
- Recommender systems
- Matrix factorization
- Coordinate descent
- Neural networks
- Convolutional neural networks
- Transfer learning for deep learning

Case Study 1: Predicting house prices

Regression $\mathfrak{F}_{i} = \mathfrak{F}(\mathbf{x}_{i})^{+} \mathcal{E}_{i}$ $\mathfrak{G}_{i} = \mathfrak{F}(\mathbf{x}_{i})^{+}$ Case study: Predicting house prices

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)

Including many features:

- Square feet
- # bathrooms
- # bedrooms
- Lot size

- ...

Models

- Year built

LASSO => Sparse

Regression Case study: Predicting house prices

$$RSS(\omega) = \sum_{i=1}^{\infty} (\omega^{T}h(x_{i}) - y_{i})^{2}$$

Algorithms

• Gradient descent

$$RSS(w_0, w_1) = (\$_{house 1} - [w_0 + w_1 \text{sq.ft.}_{house 1}])^2 + (\$_{house 2} - [w_0 + w_1 \text{sq.ft.}_{house 2}])^2 + (\$_{house 3} - [w_0 + w_1 \text{sq.ft.}_{house 3}])^2 + \dots [include all houses]$$

STAT/CSE 416: Intro to Machine Learning

Case Study 2: Sentiment analysis

stars / +/-

ra

STAT/CSE 416: Intro to Machine Learning

Classification Case study: Analyzing sentiment

Classification Case study: Analyzing sentiment

Accwacy is class imbelance

Case Study 3: Document retrieval

416: Intro to Machine Learning

Case Study 3++: Dimensionality reduction

Clustering & Retrieval Case study: Finding documents

Locality-sensitive hashing (LSH)NN regression and classification

• k-means , K-means ++

- Kernel regression
- Agglomerative and divisive clustering
- PCA

Data points

Case Study 4: Image classification

INPUT

(28 x 28 x 1)

STAT/CSE 416: Intro to Machine Learning

n3 units

9

OUTPUT

n2 channels

(4 x 4 x n2)

n2 channels

(8 x 8 x n2)

n1 channels

(12 x 12 x n1)

n1 channels

(24 x 24 x n1)

Deep Learning

Case study: Image classification

Algorithms

- Convolutions
- Backpropagation (high level only)

Case Study 5: Product recommendation

Recommender Systems & Matrix Factorization

Case study: Recommending Products

Recommender Systems & Matrix Factorization

Case study: Recommending Products

Recommender Systems & Matrix Factorization

Case study: Recommending Products

 Matrix completion, cold-start problem

Concepts

Big Picture

Improving the performance at some task through experience!

 Before you start any learning task, remember fundamental questions that will impact how you go about solving it

What is the learning problem?

What model?

With what optimization algorithm?

How will you evaluate the model?

From what experience?

What loss function are you optimizing?

Are there any guarantees?

Congrats on finishing CSE/STAT 416! Thanks for the hard work!

