
CSE/STAT 416
Recommender Systems

Hunter Schafer
University of Washington
Aug 14, 2019



Last Time…
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Personalization Personalization is transforming our experience of the world
Youtube
Netflix 
Amazon
Spotify
Facebook
Many more…

Almost all have share a common trait where there are users that 
use the system and items that we want the user to look at. 

A recommender system recommends items to a user based on 
what we think will be the most “useful” for the user.
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Challenges Types of Feedback (Explicit vs Implicit) 

Diverse Outputs

Cold Start

Context (i.e. time)

Scalability
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Solution 0 : 
Popularity

Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e. Avengers Endgame)

Limitations

▪ No personalization

▪ Feedback loop 
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Solution 1:
Classification 
Model

Train a classifier to learn whether or not someone will like an item

Pros

▪ Personalized

▪ Features can capture context (time of day, recent history, …) 

▪ Can even handle limited user history (age of user, location, …)

Cons

▪ Features might not be available or hard to work with

▪ Often doesn’t perform well in practice when compared to 
more advanced techniques like collaborative filtering 6



Co-occurrence 
Matrix

Solution 2
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Co-occurrence 
Matrix

Idea: People who bought this, also bought …

▪ E.g. people who buy diapers also buy baby wipes

Make co-occurrence matrix  𝐶 ∈ ℝ௠×௠ (𝑚 is the number of items) 
of item purchases. 𝐶௜௝ = # of users who bought both item 𝑖 and 𝑗

𝐶 will be symmetric (𝐶௜௝ = 𝐶௝௜) 8



Recommending Assume a user has purchased diapers.

1. Look at diapers row (or column) 

2. Recommend items with largest counts

Baby wipes, milk, baby food, …
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Normalization The count matrix 𝐶 needs to normalized, otherwise popular items 
will drown out others (will just reduce to popularity).

Normalize the counts by using the Jaccard similarity instead 

𝑆௜௝ =  
# purchased 𝑖 and 𝑗

# purchased 𝑖 or 𝑗

Could also use something like Cosine similarity, but Jaccard is 
popular
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Purchase 
History

What if I know the user 𝑢 has bought diapers and milk? 

Idea: Take the average similarity between items they have bought

𝑆𝑐𝑜𝑟𝑒 𝑢, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑝𝑒𝑠 =  
𝑆௕௔௕௬ ௪௜௣௘௦,ௗ௜௔௣௘௥௦ + 𝑆௕௔௕௬ ௪௜௣௘௦,௠௜௟௞
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Could also weight them differently based on recency of purchase! 

Then all we need to do is find the item with the highest average 
score! 
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Analysis Pros:

▪ It personalizes to the user

Cons

▪ Does not utilize 
- Context (e.g. time of day)
- User features (e.g. age)
- Product features (e.g. baby vs electronics)

▪ Scalability
- Similarity is size 𝑚ଶ where 𝑚 is the number of items

▪ Cold start problem 
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Matrix 
Factorization

Solution 4
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Matrix 
Completion

Want to recommend movies based
on user ratings for movies.

Challenge: Users have rated relatively
few of the entire catalog

Can think of this as a matrix of 
users and ratings with missing data!
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User Movie Rating
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Assumption

Matrix completion is an impossible task without some 
assumptions on data (unknowns could be anything otherwise).

Assume: There are 𝑘 types of movies (e.g. action, romance, etc.) 
which users have various interests in. 

This means we can describe a movie 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, drama, …

▪ Example: 𝑹𝒗 = 0.3,   0.01,   1.5,   …

We can describe each user 𝒖 with a feature vector 𝑳𝒖

▪ How much she likes action, romance, drama, ….

▪ Example: 𝐿௨ = [2.3,    0 ,  0.7   ,   … ]

Estimate rating for user 𝒖 and movie 𝒗 as
𝑅𝑎𝑡𝑖𝑛𝑔෣ 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 +  … 15



Brain Break
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Example Suppose we have learned the following user and movie features

Then we can predict what each user would rate each movie
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Matrix 
Factorization

Find 𝐿 and 𝑅 that when multiplied, achieve predicted ratings that 
are close to the values that we have data for.

Our quality metric will be (could use others)

𝐿෠, 𝑅෠  =  argmin
௅,ோ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩

 

௨,௩:௥ೠೡஷ?

ଶ
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Unique 
Solution?

Is this problem well posed? Unfortunately, there is not a unique 
solution 

For example, assume we had a solution

Then doubling everything in 𝐿 and halving everything in 𝑅 is also a 
valid solution. The same is true for all constant multiples.
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Coordinate 
Descent

20



Find & Remember, our quality metric is 

𝐿෠, 𝑅෠  =  argmin
௅,ோ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩

 

௨,௩:௥ೠೡஷ?

ଶ

Gradient descent is not used much in practice to optimize this, 
since it is much easier to implement coordinate descent (i.e. 
Alternating Least Squares) to find 𝐿෠ and 𝑅෠
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Coordinate 
Descent

Goal: Minimize some function 𝑔 𝑤 = 𝑔(𝑤଴, 𝑤ଵ, … , 𝑤஽)

Instead of finding optima for all coordinates, do it for one 
coordinate at a time! 

To pick coordinate, can do round robin or 
pick at random each time.

Guaranteed to find an optimal solution
under some constraints
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𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑤ෝ = 0 (𝑜𝑟 𝑠𝑚𝑎𝑟𝑡𝑙𝑦)
𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑:
        𝑝𝑖𝑐𝑘 𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑗
        𝑤ෝ௝=  argmin

௪
𝑔(𝑤ෝ଴ , … , 𝑤ෝ௝ିଵ , 𝑤,  𝑤ෝ௝ାଵ , …    ,  𝑤ෝ஽ ) 



Coordinate 
Descent for 
Matrix 
Factorization

𝐿෠, 𝑅෠  =  argmin
௅,ோ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩

 

௨,௩:௥ೠೡஷ?

ଶ

Fix movie factors 𝑅௩ and optimize for 𝐿௨

First key insight:
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Coordinate 
Descent for 
Matrix 
Factorization

Holding movies fixed, we can solve for each user separately! 

For each user 𝑢

𝐿෠௨ =  min
௅ೠ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩
ଶ

 

௩∈௏ೠ

Second key insight:

Looks like linear regression!
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Overall 
Algorithm

Want to optimize

𝐿෠, 𝑅෠  =  argmin
௅,ோ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩
ଶ

 

௨,௩:௥ೠೡஷ?

Fix movie factors, and optimize for user factors separately

▪ Independent least squares for each user

𝐿෠௨ =  min
௅ೠ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩
ଶ

 

௩∈௏ೠ

Fix user factors, and optimize for movie factors separately

▪ Independent least squares for each movie

𝑅෠௩ =  min
௅ೠ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩
ଶ

 

௨∈௎ೡ

System might be underdetermined: Use regularization

Converges to: local optima
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Think

pollev.com/cse416

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current residual sum of squares loss? (number)

If the next step of coordinate descent updates the user factors, 
which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None

26
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Pair

pollev.com/cse416

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current residual sum of squares loss? (number)

If the next step of coordinate descent updates the user factors, 
which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None
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Using 
Results

Use movie factors 𝑅෠ to discover “topics” for movie 𝑣: 𝑅෠௩ 

Use user factors 𝐿෠ to discover “topic preferences” for user 𝑢: 𝐿෠௨ 

Predict how much a user 𝑢 will like a movie 𝑣
𝑅𝑎𝑡𝑖𝑛𝑔෣ 𝑢, 𝑣 = 𝐿෠௨ ⋅ 𝑅෠௩

Recommendations: Sort movies user hasn’t watched by 
𝑅𝑎𝑡𝑖𝑛𝑔෣ 𝑢, 𝑣

▪ Recommend movies with highest predicted rating
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Brain Break
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Topics The “features” found by matrix factorization don’t always 
correspond to something meaningful (like film genre), but 
sometimes they do! 

▪ Remember, the exact values are meaningless since we can 
scale them an infinite number of ways, but directions might 
mean something

30

≈ L
R’

=

Application to text data:



Think

pollev.com/cse416

Which of the following are true about matrix factorization for 
recommendation systems? 

A. Provides personalization

B. Captures context (e.g. time of day)

C. Solves the cold start problem

31
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Pair

pollev.com/cse416

Which of the following are true about matrix factorization for 
recommendation systems? 

A. Provides personalization

B. Captures context (e.g. time of day)

C. Solves the cold start problem

32
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Blending Models: 
Featurized Matrix 
Factorization

Final Solution
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Cold Start 
Again

Consider a new user 𝑢′ and we want to predict their ratings

No previous ratings for them so: ∀௩𝑟௨ᇲ௩ = ?

Objective

𝐿෠, 𝑅෠  =  argmin
௅,ோ

෍ 𝐿௨ ⋅ 𝑅௩  − 𝑟௨௩
ଶ

 

௨,௩:௥ೠೡஷ?

+ 𝜆௎ 𝐿
ி

ଶ
+ 𝜆௏ 𝑅

ி

ଶ

Optimal user factor: 𝐿௨ᇱ = 0 because there is only penalty

Therefore, ∀௩ 𝑟̂௨ᇲ௩ = 0 which seems like a problem
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Blend Models Idea: Learn a classification model to supplement the matrix 
factorization model! 

Create a feature vector for each movie 

Define weights on these features for all users 
𝑤 ∈ ℝௗ

Fit linear model
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Add 
Personalization

Of course, not all users have same preferences. 

Include a user-specific deviation from global model

Can also add user specific features to model
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Featurized
Matrix 
Factorization

Feature-based approach 

▪ Feature representation of user and movie fixed

▪ Can address cold start problem

Matrix factorization approach

▪ Suffers from cold start problem

▪ User & Movie features are learned from data

A unified model
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Evaluating 
Recommendations
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Accuracy? Could we use classification accuracy to identify which 
recommender system is performing best? 

▪ We don’t really care to predict what a person does not like

▪ Instead, we want to find the relatively few items from the 
catalog that they will like

▪ Sort of a class imbalance 

Instead, we want to look at our set of recommendations and ask:

▪ How many of our recommendations did the user like?

▪ How many of the items that the user liked did we 
recommend?

Sound familiar?
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Precision -
Recall

Precision and recall for recommender sytems

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

# 𝑠ℎ𝑜𝑤𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 =  
#𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

#𝑙𝑖𝑘𝑒𝑑 

For a given recommender system, plot precision and recall for 
different number of recommended items 
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Which 
Algorithm is 
Best?

In general, it depends

▪ What is true always is that for a given precision, we want 
recall to be as large as possible (and vice versa)

▪ What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision 
(precision at k)
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Recap

Now you can:

▪ Describe the goal of a recommender system

▪ Provide examples of applications where recommender 
systems are useful

▪ Implement a co-occurrence based recommender system

▪ Describe the input (observations, number of “topics”) and 
output (“topic” vectors, predicted values) of a matrix 
factorization model

▪ Implement a coordinate descent algorithm for optimizing the 
matrix factorization objective presented

▪ Exploit estimated “topic” vectors to make recommendations

▪ Describe the cold-start problem and ways to handle it (e.g., 
incorporating features)

▪ Analyze performance of various recommender systems in 
terms of precision and recall 

▪ Use AUC or precision-at-k to select amongst candidate 
algorithms 42


