CSE/STAT 416 Section 7, 5/16

May 16, 2019

CSE/STAT 416

- Lecture Recap: Pros and Cons of K-means
- Intro to Spectral Clustering
- Spectral Clustering vs. K-means demo
- Time for questions/review

Recall from Class...

The k-means algorithm

- Start with k randomly initialized centers, μ_j .
- Repeat until the centers stop moving:
 - Fix centers and assign each point to the closest center (update each datapoints's *z_i* value
 - Fix the z_i and update the centers μ_j (set μ_j as the centroid of all points with z_i = j.

At every step, the objective

$$\sum_{j=1}^{k} \sum_{i:z_i=j} ||\mu_j - x_i||_2^2$$

gets smaller (clusters get more homogeneous in terms of distance)

• Problem: Sensitive to initial conditions

- Problem: Sensitive to initial conditions
 - **Solution:** Try many initial conditions and compare performance, pick initial conditions intelligently (k-means++)

- Problem: Sensitive to initial conditions
 - **Solution:** Try many initial conditions and compare performance, pick initial conditions intelligently (k-means++)
- Problem: Must select K in advance

- Problem: Sensitive to initial conditions
 - **Solution:** Try many initial conditions and compare performance, pick initial conditions intelligently (k-means++)
- **Problem:** Must select K in advance
 - Solution: Can try many ks and compare cluster heterogeneity
 - Be careful of overfitting: clusters always get more homogeneous as K gets larger
 - Should penalize large k.

- Problem: Sensitive to initial conditions
 - **Solution:** Try many initial conditions and compare performance, pick initial conditions intelligently (k-means++)
- Problem: Must select K in advance
 - Solution: Can try many ks and compare cluster heterogeneity
 - Be careful of overfitting: clusters always get more homogeneous as K gets larger
 - Should penalize large k.
- **Problem:** Assumes linear cluster boundaries, and assumes minimizing within-node distance is best objective.

- Problem: Sensitive to initial conditions
 - **Solution:** Try many initial conditions and compare performance, pick initial conditions intelligently (k-means++)
- Problem: Must select K in advance
 - Solution: Can try many ks and compare cluster heterogeneity
 - Be careful of overfitting: clusters always get more homogeneous as K gets larger
 - Should penalize large k.
- **Problem:** Assumes linear cluster boundaries, and assumes minimizing within-node distance is best objective.
 - Solution: Use a new algorithm, or at least a new representation of the data

Kmeans interactive demo

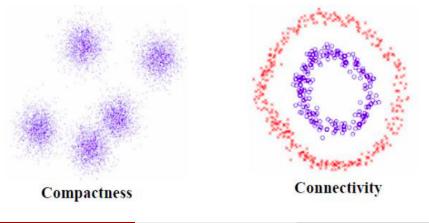
• https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Motivation for Spectral Clustering

• $\sum_{j=1}^{k} \sum_{i:z_i=j} ||\mu_j - x_i||_2^2$ is not necessarily the best objective function

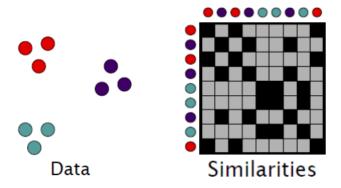
Motivation for Spectral Clustering

∑_{j=1}^k∑_{i:zi=j} ||µ_j − x_i||₂² is not necessarily the best objective function
Kmeans prioritizes compactness; what if we want to prioritize connectivity?



Input for Spectral Clustering

First, turn the data into a similarity matrix, or affinity matrix.



Entry (i,j) = 1 tells us how similar datapoint *i* is to datapoint *j*. Matrix should be symmetric and non-negative.

⁰Figure credit: www.cs.cmu.edu/~aarti/Class/10701/slides/Lecture21_2.pdf

Examples of similarity measures

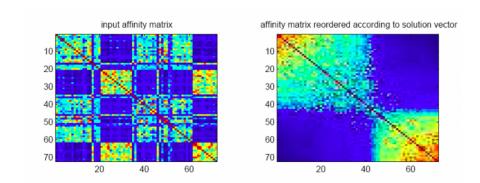
- If the data are represented as vectors:
 - Entry (i, j) = 1 if datapoint j is one of the k nearest neighbors of datapoint i.
 - Entry $(i,j) = e^{-||x_i x_j||^2/(2\sigma^2)}$ (Gaussian Kernel Function)
 - Cosine similarity
 - 1/(distance) for any measure of distance

Examples of similarity measures

- If the data are represented as vectors:
 - Entry (i, j) = 1 if datapoint j is one of the k nearest neighbors of datapoint i.
 - Entry $(i,j) = e^{-||x_i x_j||^2/(2\sigma^2)}$ (Gaussian Kernel Function)
 - Cosine similarity
 - 1/(distance) for any measure of distance
- A cool thing about a similarity matrix is that you can define one even if your data are not vectors.
 - Context specific notions of similarity
 - Co-authorship, friendship, etc.

Spectral Clustering Algorithm

Main idea: rearrange the rows and columns of the matrix to get a block diagonal form.



Maximize total similarity within the blocks, minimize total similarity outside of the blocks.

Xing et al 2001

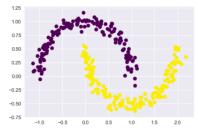
How does it work?

Algorithm:

- Encode data as similarity matrix
- Compute eigenvalues of similarity matrix, use the first few to obtain low-dimensional representation of similarity matrix
 - (the low dimensional representation that keeps as much information about similarity as possible)
- Apply K-means (or a similar algorithm) in this low dimensional space to get clustering

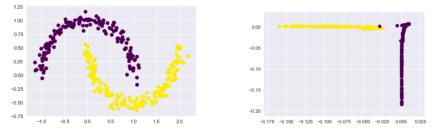
Discussion

If we end up applying K-means anyways, how does it draw non-linear decision boundaries?



Discussion

If we end up applying K-means anyways, how does it draw non-linear decision boundaries?



The boundaries it draws *are* linear, but they are linear in a transformed space

KMeans and Spectral Clustering Demo

Demo notebook

Pros and Cons of Spectral Clustering

Pros:

- Can handle arbitrary cluster shapes
- Mathematically elegant, and run time is reasonable for medium-sized problems
- Allows for interesting, context-specific definitions of similarity
- Cons:
 - Still need to pick K in advance (either know it or test several different Ks)
 - Results highly dependent on what similarity metric is chosen