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Boolean Classification



Boolean classification

* Supervised learning is training a predictor from labelled
examples:

* There are two types of supervised learning

* 1. Regression: the output variable y to be predicted is
real valued scalar or a vector

e 2. Classification: the output variable y to be predicted is
categorical

e 2.1 Boolean classification: there are two classes
e 2.2 Multi-class classification: multiple classes

* We study Boolean classification in this chapter

* We denote two classes by -1 and 1, often corresponding to
{FALSE,TRUE}

e for a data point (x;,y;), the value y; € {—1,1} is called the class or label
* A Boolean classifier predicts label y given input x
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* in this example z; € R?
* Red points have label yi=-1, blue points have label yi="1
e We want a predictor that maps any x into prediction y € {—1,1}
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Example: nearest neighbor

2-Class classification (k = 1)

e Trained on
100 samples

3 0
x|l
given x, let k = argmin; ||z [—]CBZ

|, then predict § = yx

Red region is the set of x for which prediction is -1
Blue region is the set of x for which prediction is 1

Zero training error, but overfitting



Example: linear classifier

of L1 o * Trained on
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e Treat it as linear regression problem on x
e Which trains a linear model: f(x) = Wo + wla?[l] + wga;'[Z]

on L2 loss, treating the labels as real values +1 and -1
e Then predicts: § = sign(f(x))
e 18% mis-classified in training data
* true positive=42,false negative=8,true negative=38,false negative=12



Example: sentiment analysis

List of positive List of negative
words words
great, awesome, bad, terrible,
X; g00d, amazing,... disgusting, sucks,...
Sushi was *
great, the
food was
awesome, y; = sign(number of positive words — number of negative words )

but the
service was
terrible.

e |f we have access to the list of positive and negative words,
then we could count them to give a score f(x) and take the sign for
estimating the sentiment in {positive,negative}



Example:

Sushi was

great, the
food was

awesome,
but the

service was
terrible.

sentiment analysis

h;(x) = how many times the word appears
w; = how positive is that word

yi = sign(wo + wihi () + waha(x) + -+ )

good 1.0
great 1.5
awesome 2.7
bad -1.0
terrible 2.1
awful 3.3
restaurant, the, we, where, ... 0.0

 Without manually constructed list, we can use ML to learn the sentiment
of the words ( parameters w), and then compute a score f(x)



Confusion Matrix
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Two types of error

* When measuring performance of a predictor on Boolean
classification

o each input data x; has a label y; € {—1,1}
o each corresponding prediction is g; € {—1,1}
 Only four possible combinations of (%;, ¥ ):
* true positive if y; =1 and y; =1
e true negative if y; = —1 and y;, = —1
« false negative of type Il error if y;, = —1 and y; = 1
. false positive of type I error if 4, =1 and y; = —1



11

We can represent the performance with a confusion matrix

 Define the confusion matrix: (some people use the
transpose of C)

( =

# true negatives # false negatives Cin, C fn-

# false negatives #f true positives | Crp Cip

¢ Otn+0fn—|—0fp—|—ctp:N

* N,, = Uy, + Cyp 1s the number of negative examples

* N, = Uy, + Oy 1s the number of positive examples

* Diagonal entries give numbers of correct prediction

e Off-diagonal entries give numbers of incorrect predictions



Some Boolean classification measures

e Confusion matrix Ctn e n
Cfp Ctp_

e The basic error measures are:
* False positive rateis tp/N
* False negative rate is C¢n /N (e.g. medical diagnosis)

* Errorrateis (Ctn+ Ctp)/N

.. Accuracy is (Cm n Ctp)/N -
* High accuracy does not always mean good classifier

* For example, 99% population does not have cancer,
and predicting always no cancer achieves accuracy 99%

* Error measures also used:
* True positive rate or sensitivity or recall is Ctp / N, (=0 in the example)
* False alarmrateis C'y, /N, (=0 in the example)
e Specificity or true negative rate is Ci,/N, (=1 in the example)
* Precisionis (C,,/(C, + Cy,) (=0 in the example)
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Neyman-Pearson error

Neyman-Pearson error over a data set is

/inn/N—l— Cfp/N

A scalarization of our two objectives,
minimizing false positive and minimizing false negative rates

A positive real values k is how much more false negative
irritates us than false positives

When k=1, the Neyman-Pearson error is the error rate

A common and flexible measure of error
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Commonly used loss functions for Classification
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Linear (Boolean) classifier

* You train a linear model of the form
f(x) = Wo + wth(Qj‘) —+ wzhx(x) 4o

e Prediction is
g = sign( f(x))

e |deally, we would like to find the weights w,
that minimizes error rate or more generally
Neyman-Pearson error

kCsn + Crp
N

N

1

N Z {"31 sign(x;) = —1 and y; = 1) + I(sign(z;) = —1 and y; = 1)}
1=1
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Notations

e So far we used the notation

f(x) = Wo + wth(Qj‘) | wzhx(x) 4.

for the linear model, and

g = sign( f(z))

for the (discrete) prediction

e From now on, we will also use ¥ to denote the
continuous valued model:

A

Yy = f(x) = wo+w1h2(x)+w2hm(x)+...

to not introduce additional notation
* |t should be clear from context which one we mean by ¥
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Training a linear classifier

e Given a linear model

g = f(x) = wo+wihi(z) + waha(x) + - -

e Neayman-Pearson error cannot be directly optimized (more
on this later)

* |nstead, in training classifiers, we minimize a loss of the form
N
1 A
L(w) = N ;5( Ui i)
‘= wT x

* And find parameters w, that minimize a particular choice of
loss function )
((9,y)

* The choice depends on the application
* One can use regularization: minimize,, L(w) + A7 (w)
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* Recipe for training classifiers

1. Train a continuous valued model, as if regression
but with special choices of the loss

e 2. For prediction take sign(f(x))
e 3. The score f(x) tells us how confident we are in the prediction
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Loss function for Boolean classification

* We need to design loss function £(7, y)

* Note that
e prediction § = w
e but y can only take +1 or —1

'z can take any values

* So in order to specify (Y,y)
we only need to give two functions (of scalar ¥ )

* /(y,—1) is how much ¢ irritates us when y = —1
* {(y,1) is how much g irritates us when y =1

e typically, one chooses those two functions to be
symmetric, but appropriately scaled to reflect that false
negatives irritates us factor k more than false positives:

g(:&v 1) — /{6(—@7 _1)



Neyman-Pearson loss

* Neayman-Pearson loss is

i (1 g>0 . [0 §>0
é(ya_l)_io ?)<O f(y,l)—{/{ ﬁ<0

e Neayman-Pearson loss computed on the training data is
(training) Neayman-Pearson error

(
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Problem with Neyman-Pearson loss

* Neyman-Pearson loss is not differentiable, or even
continuous (And certainly not convex)

e |ts gradient is zero or does not exist

 Gradient based optimizer does not know how to improve
the model
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ldeas of proxy loss

* We get better results using proxy losses that

e approximate, or captures the flavor of, the Neyman-
Pearson loss

* |s more easily optimized (e.g. convex or non-zero
derivatives)

* concretely, we want proxy loss function
e with £(y, —1) small when y < 0 and larger when ¢ > 0

e with ¢(¢, 1) small when ¢ > 0 and larger when ¢ < 0

* Which has other nice characteristics, e.g.,
differentiable or convex
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Sigmoid loss

e Differentiable approximation of Neyman-Pearson loss
e But not convex in Y
* The two losses sum to one, if k=1
e Softer (or smoothed) version of the N-P loss
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Logistic loss

e Differentiable and convex in ¥

e approximation of Neyman-Pearson
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Hinge loss

* Non-differentiable but convex approximation of Neyman-

Pearson loss
(g, —1)=[1+9]"
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Square loss

* Not only is it convex, square loss is easy to minimize

(has a closed form solution)

(g, —1) = (1+9)°

30

25 -

20

15 1

10 4

0.5 -

0.0




27

Commonly used Boolean classifiers
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Squared loss classifier

e Uses sum of squares loss (a.k.a. L2 loss, Mean Squared
Error (MSE), Residual Sum of Squares (RSS) )

minimize,, L(w) = %( Z 1+ 3:)* + & Z (1 - ?3@)2)

i:yi:—l i:yi:].

together with a choice of your regularizer

* This is particularly easy to optimize, if the regularizer is
also L2 regularizer
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Logistic regression
 Uses logistic loss
. 1 i Y
minimize,, L(w) = N( Z log(1+e%) + K Z log(1+e y))
1:y;=—1 1:y; =1

with a choice of a regularizer

* |s a convex optimization if the regularizer is convex, and
the minimizer can be found efficiently



Support vector machine (SVM)

 Uses hinge loss

minimize,, L(w) = %( Z 143" + & Z 1- ?Qz]Jr)

’i:yi:—l ’Lyzzl

with sum of squares regularizer
where [2]T = max{0, x}

e |tiIs a convex minimization



Support vector machine (SVM)

/(y,1) = k[1 — g]™ ¢ Linear model is trained on the hinge loss
§ shown on the left with k=1

* Resulting prediction is shown below

e As we predict with sign(%) , the decision boundary is at wZ'z = 0

black lines show the points where w!z = +1

- What is the training error?

3
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Receiver Operating Characteristic (ROC)
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Receiver Operating Characteristic (ROC)

* Always abbreviated as ROC, comes from WWII

e Explores the tradeoff between false negative and false
positive rates

e Typical recipe for evaluating performance of a classifier
1. Construct a classifier for many values of k

* For each k, select the regularization hyper-parameter
via cross-validation, that minimizes Neyman-Pearson
loss on test data set

e 2. Plot the computed pair (false negative rate, false
positive rate) on a 2-D plot.

 Connecting all the dots gives you ROC curve (when
viewed upside-down)



Cfp/N
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Example: ROC curve
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e Left hand plot shows training error pairs (C'rr/IN Ctp/N )
e Right hand plot shows minimum error classifier (i.e. k=1)







Probabilistic interpretation of

* When Kk = 1, we get the following losses for each data point x

(— L

l+e w14 ew'a
N e’ e’
| (y,-1) £(9,1)

when using sigmoid loss that is trained with a linear model
e They are

* Non-negative

e sum to one, and

* they measure how likely it is that the point x has label +1 (or
-1) respectively

 One can view it as an estimation of the probability

(P(y: = +1|2), P(yi = —1[x))



Probabilistic interpretation of

* Then taking the sign of the linear predictor to make final
decision is simply taking a label that is more likely:

A . T ~ ( —|_:“ i-wTa: > ]’z-uTaz
y = sign(w' x) — Y= - 14e T 1+te
—1  otherwise

\

 and logistic regression can be interpreted as
Maximum Likelihood Estimator under the probabillistic
model with sigmoid function:

1 1

1] +ewhz’ ] 4 ew'a
—— N——
Plyi=+1|z;) P(y;=—1|z;)

. (

)
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Maximum Likelihood Estimator (MLE)

1 1
* model: (1—|-€ wT 1—|—6wT )

J/

P(y; +1|a:) P(yi=—1];)
* |og-likelihood on a data point (xi,yi):

log ( T if y; = +1
log-likelihood = log (P(yi[z;) ) = WL
log(1_|_ ,LluTm. ifyi:—l

e Maximum Likelihood Estimator is the one that maximizes the sum of all
likelihoods on training data points

o 1 1
maximize, ) ;. 1 log (He@i) + 2 iy, =1108 (1—|—e_@i>

* Notice that this is exactly the logistic regression without any
regularizers and with k=1

1

minimize,, L(w) = N( Z log(1 + €%) + & Z log(1 + 6—3?7;))

38 i:yi:—l i:yi:].



