Classification

Sewoong Oh

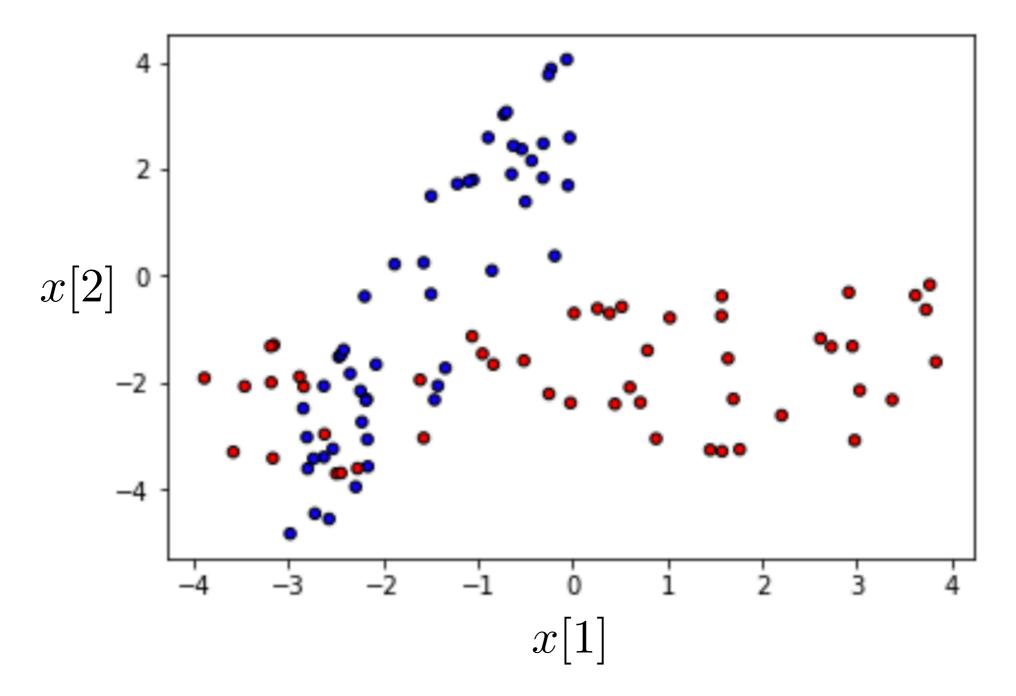
CSE/STAT 416 University of Washington

Boolean Classification

Boolean classification

- Supervised learning is training a predictor from labelled examples:
- There are two types of supervised learning
 - 1. Regression: the output variable y to be predicted is real valued scalar or a vector
 - 2. Classification: the output variable y to be predicted is categorical
 - 2.1 Boolean classification: there are two classes
 - 2.2 Multi-class classification: multiple classes
- We study Boolean classification in this chapter
- We denote two classes by -1 and 1, often corresponding to {FALSE,TRUE}
- for a data point (x_i, y_i) , the value $y_i \in \{-1, 1\}$ is called the **class** or **label**
- A Boolean classifier predicts label y given input x

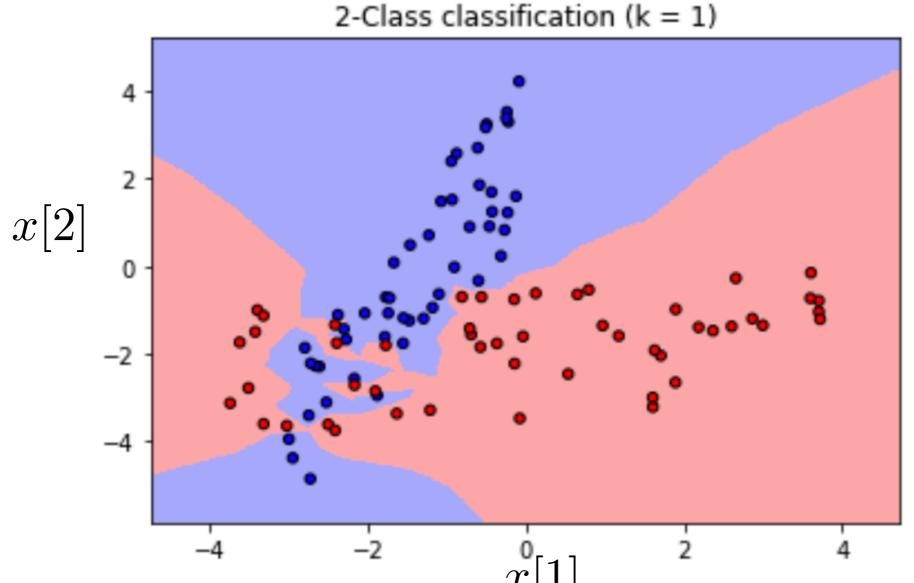
Classification



- in this example $x_i \in \mathbf{R}^2$
- Red points have label y_i=-1, blue points have label y_i=1
- We want a predictor that maps any ${\bf x}$ into prediction $\hat{y} \in \{-1,1\}$

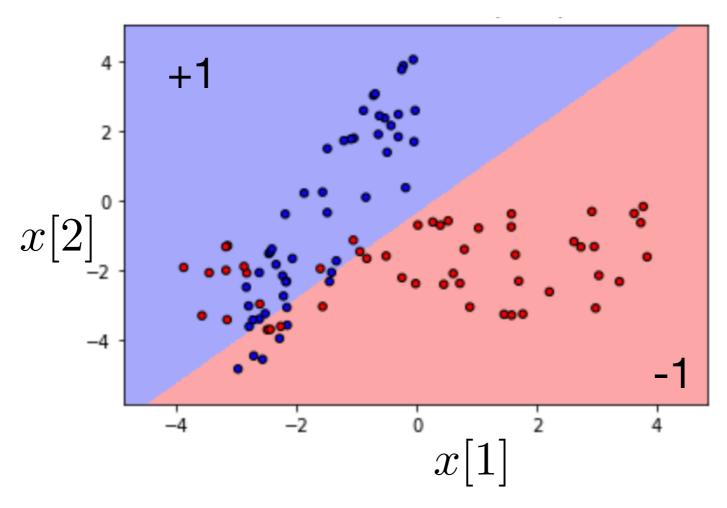
Example: nearest neighbor

Trained on 100 samples



- given x, let $k = \arg\min_i \|x^{[1]}x_i\|$, then predict $\hat{y} = y_k$
- Red region is the set of x for which prediction is -1
- Blue region is the set of x for which prediction is 1
- Zero training error, but overfitting

Example: linear classifier



Trained on 100 samples

- Treat it as linear regression problem on x
- Which trains a linear model: $f(x)=w_0+w_1x[1]+w_2x[2]$ on L2 loss, treating the labels as real values +1 and -1
- Then predicts: $\hat{y} = \operatorname{sign}(f(x))$
- 18% mis-classified in training data
- true positive=42,false negative=8,true negative=38,false negative=12

Example: sentiment analysis

List of positive words

great, awesome, good, amazing,...

List of negative words

bad, terrible, disgusting, sucks,...

Sushi was great, the food was awesome, but the service was terrible.

 x_i

 $\hat{y}_i = \text{sign}(\text{number of positive words} - \text{number of negative words})$

 If we have access to the list of positive and negative words, then we could count them to give a score f(x) and take the sign for estimating the sentiment in {positive,negative}

Example: sentiment analysis

Linear classifier

Sushi was great, the food was awesome, but the service was terrible.

 $h_j(x) = \text{how many times the word appears}$ $w_j = \text{how positive is that word}$

$$\hat{y}_i = \text{sign}(w_0 + w_1 h_1(x) + w_2 h_2(x) + \cdots)$$

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
•••	•••

 Without manually constructed list, we can use ML to learn the sentiment of the words (parameters w), and then compute a score f(x)

Confusion Matrix

Two types of error

- When measuring performance of a predictor on Boolean classification
- each input data x_i has a label $y_i \in \{-1, 1\}$
- each corresponding prediction is $\hat{y}_i \in \{-1, 1\}$
- Only four possible combinations of (\hat{y}_i, y_i) :
 - true positive if $\hat{y}_i = 1$ and $y_i = 1$
 - true negative if $\hat{y}_i = -1$ and $y_i = -1$
 - false negative of type II error if $\hat{y}_i = -1$ and $y_i = 1$
 - false positive of type I error if $\hat{y}_i = 1$ and $y_i = -1$

We can represent the performance with a confusion matrix

 Define the confusion matrix: (some people use the transpose of C)

$$C = \begin{bmatrix} \# \text{ true negatives} & \# \text{ false negatives} \\ \# \text{ false negatives} & \# \text{ true positives} \end{bmatrix} = \begin{bmatrix} C_{tn} & C_{fn} \\ C_{fp} & C_{tp} \end{bmatrix}$$

- $C_{tn} + C_{fn} + C_{fp} + C_{tp} = N$
- $N_n = C_{tn} + C_{fp}$ is the number of negative examples
- $N_p = C_{fn} + C_{tp}$ is the number of positive examples
- Diagonal entries give numbers of correct prediction
- Off-diagonal entries give numbers of incorrect predictions

Some Boolean classification measures

• Confusion matrix
$$egin{bmatrix} C_{tn} & C_{fn} \ C_{fp} & C_{tp} \end{bmatrix}$$

- The basic error measures are:
 - False positive rate is C_{fp}/N
 - False negative rate is C_{fn}/N (e.g. medical diagnosis)
 - Error rate is $(C_{fn} + C_{fp})/N$
 - Accuracy is $(C_{tn} + C_{tp})/N$
- High accuracy does not always mean good classifier
 - For example, 99% population does not have cancer, and predicting always no cancer achieves accuracy 99%
- Error measures also used:
 - True positive rate or sensitivity or recall is C_{tp}/N_p (=0 in the example)
 - False alarm rate is C_{fp}/N_n (=0 in the example)
 - Specificity or true negative rate is C_{tn}/N_n (=1 in the example)
 - **Precision** is $C_{tp}/(C_{tp}+C_{fp})$ (=0 in the example)

Neyman-Pearson error

Neyman-Pearson error over a data set is

$$\kappa C_{fn}/N + C_{fp}/N$$

- A scalarization of our two objectives,
 minimizing false positive and minimizing false negative rates
- A positive real values k is how much more false negative irritates us than false positives
- When k=1, the Neyman-Pearson error is the error rate
- A common and flexible measure of error

Linear (Boolean) classifier

You train a linear model of the form

$$f(x) = w_0 + w_1 h_2(x) + w_2 h_x(x) + \cdots$$

Prediction is

$$\hat{y} = \operatorname{sign}(f(x))$$

 Ideally, we would like to find the weights w, that minimizes error rate or more generally Neyman-Pearson error

$$\frac{\kappa C_{fn} + C_{fp}}{N} =$$

$$\frac{1}{N} \sum_{i=1}^{N} \left\{ \kappa \mathbf{I}(\operatorname{sign}(x_i) = -1 \text{ and } y_i = 1) + \mathbf{I}(\operatorname{sign}(x_i) = -1 \text{ and } y_i = 1) \right\}$$

Notations

So far we used the notation

$$f(x) = w_0 + w_1 h_2(x) + w_2 h_x(x) + \cdots$$

for the linear model, and

$$\hat{y} = \operatorname{sign}(f(x))$$

for the (discrete) prediction

• From now on, we will also use \hat{y} to denote the continuous valued model:

$$\hat{y} = f(x) = w_0 + w_1 h_2(x) + w_2 h_x(x) + \cdots$$

to not introduce additional notation

• It should be clear from context which one we mean by \hat{y}

Training a linear classifier

Given a linear model

$$\hat{y} = f(x) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

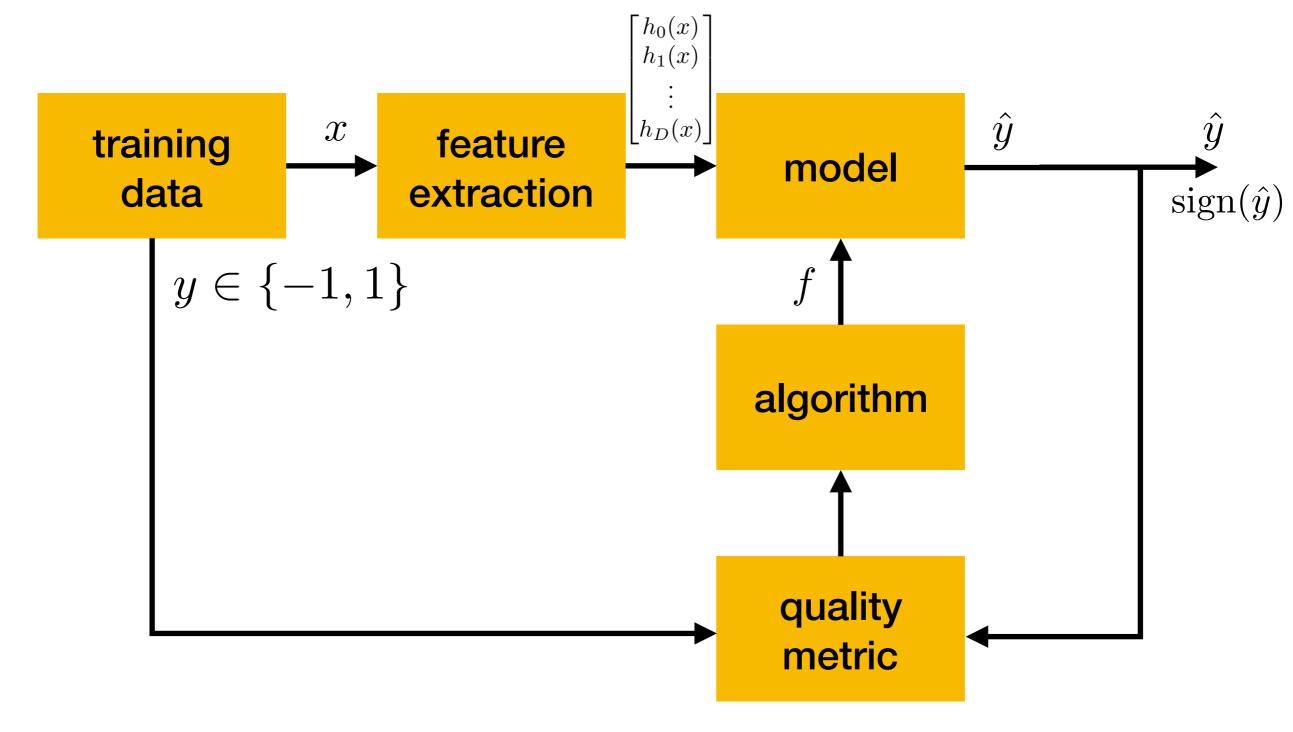
- Neayman-Pearson error cannot be directly optimized (more on this later)
- Instead, in training classifiers, we minimize a loss of the form

$$\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\underbrace{\hat{y}_i}_{w^T x}, y_i)$$

 And find parameters w, that minimize a particular choice of loss function

$$\ell(\hat{y},y)$$

- The choice depends on the application
- One can use regularization: $\min ie_w \mathcal{L}(w) + \lambda r(w)$



- Recipe for training classifiers
 - 1. Train a continuous valued model, as if regression but with special choices of the loss
 - 2. For prediction take sign(f(x))
 - 3. The score f(x) tells us how confident we are in the prediction

Loss function for Boolean classification

- We need to design loss function $\ell(\hat{y},y)$
- Note that
 - prediction $\hat{y} = w^T x$ can take any values
 - but y can only take +1 or -1
- So in order to specify $\ell(\hat{y},y)$, we only need to give two functions (of scalar \hat{y})
 - $\ell(\hat{y}, -1)$ is how much \hat{y} irritates us when y = -1
 - $\ell(\hat{y}, 1)$ is how much \hat{y} irritates us when y = 1
- typically, one chooses those two functions to be symmetric, but appropriately scaled to reflect that false negatives irritates us factor *k* more than false positives:

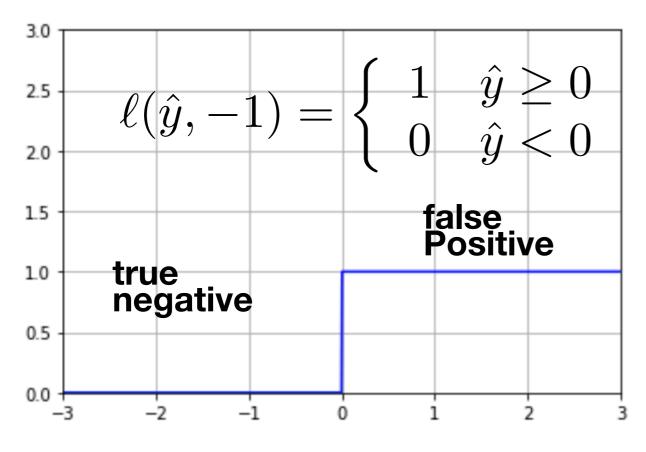
$$\ell(\hat{y}, 1) = \kappa \, \ell(-\hat{y}, -1)$$

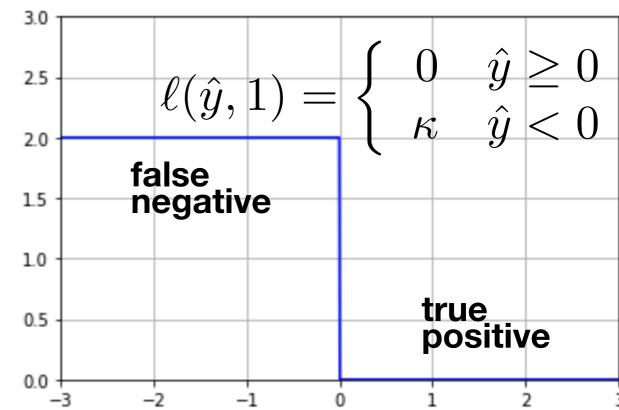
Neyman-Pearson loss

Neayman-Pearson loss is

$$\ell(\hat{y}, -1) = \begin{cases} 1 & \hat{y} \ge 0 \\ 0 & \hat{y} < 0 \end{cases} \qquad \ell(\hat{y}, 1) = \begin{cases} 0 & \hat{y} \ge 0 \\ \kappa & \hat{y} < 0 \end{cases}$$

 Neayman-Pearson loss computed on the training data is (training) Neayman-Pearson error





Problem with Neyman-Pearson loss

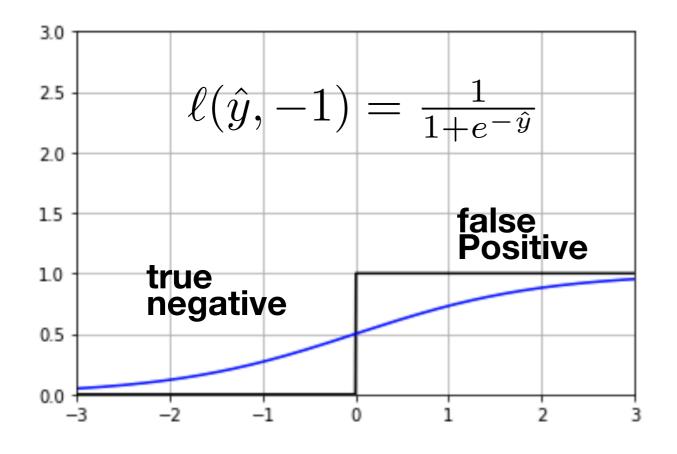
- Neyman-Pearson loss is not differentiable, or even continuous (And certainly not convex)
- Its gradient is zero or does not exist
- Gradient based optimizer does not know how to improve the model

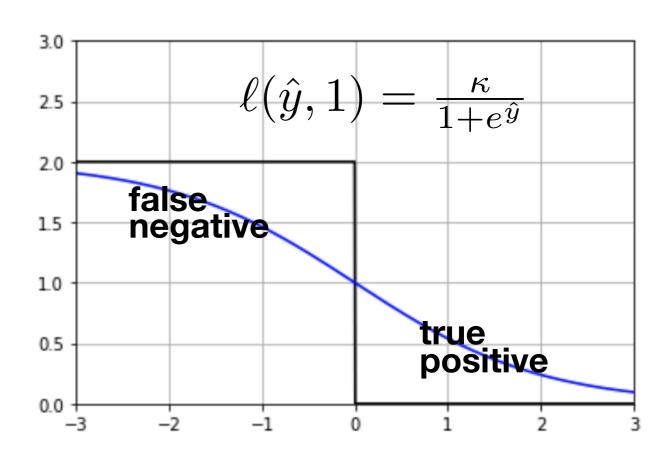
Ideas of proxy loss

- We get better results using proxy losses that
 - approximate, or captures the flavor of, the Neyman-Pearson loss
 - Is more easily optimized (e.g. convex or non-zero derivatives)
- concretely, we want proxy loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - Which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss

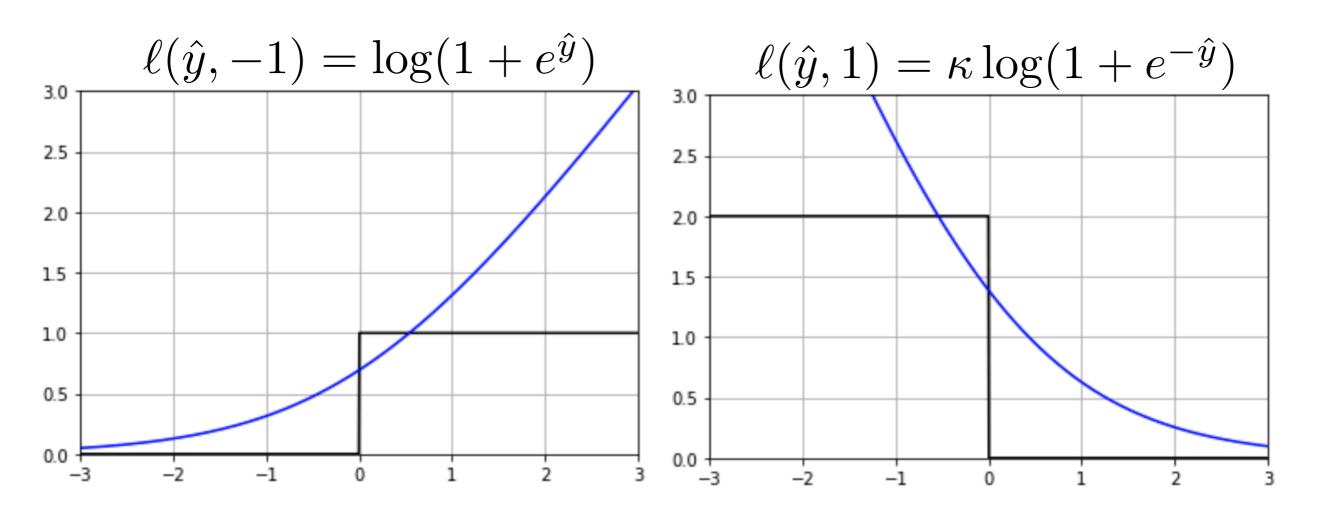
- Differentiable approximation of Neyman-Pearson loss
- But not convex in \hat{y}
- The two losses sum to one, if k=1
- Softer (or smoothed) version of the N-P loss





Logistic loss

- Differentiable and convex in \hat{y}
- approximation of Neyman-Pearson

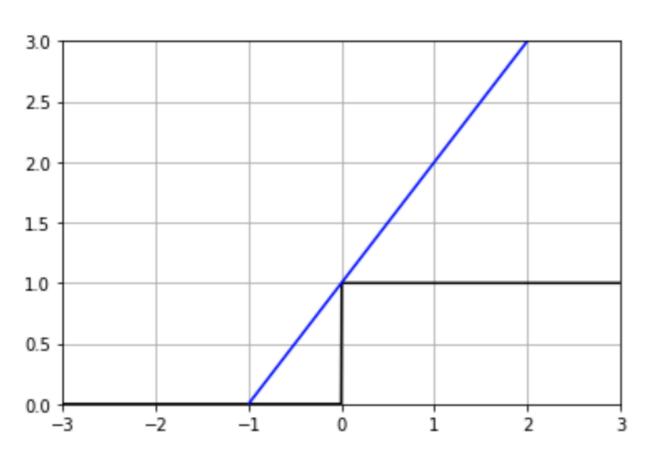


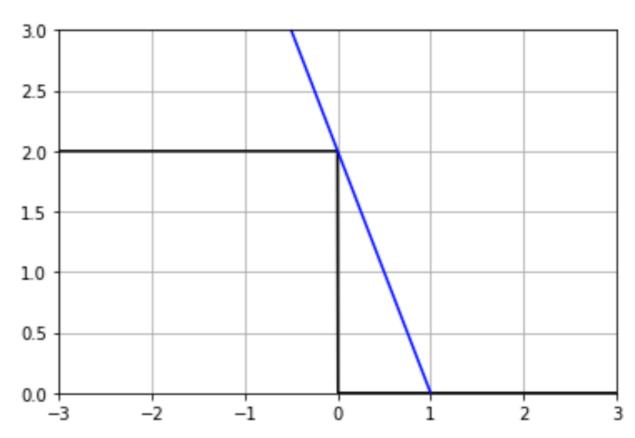
Hinge loss

 Non-differentiable but convex approximation of Neyman-Pearson loss

$$\ell(\hat{y}, -1) = [1 + \hat{y}]^+$$

$$\ell(\hat{y}, 1) = \kappa[1 - \hat{y}]^+$$

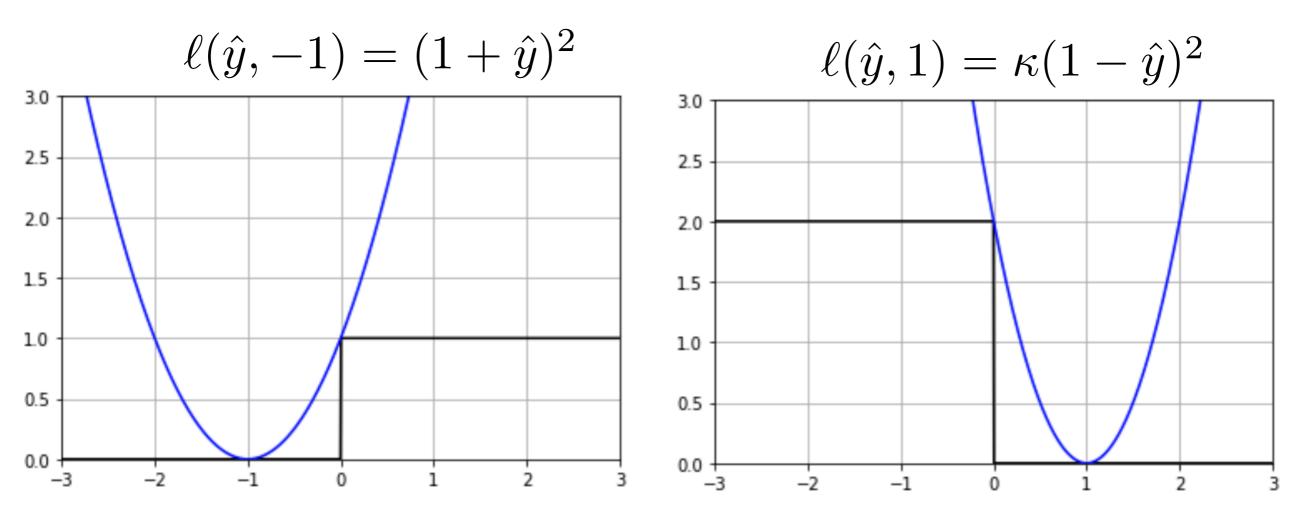




where
$$[x]^+ = \max\{0, x\}$$

Square loss

 Not only is it convex, square loss is easy to minimize (has a closed form solution)



Commonly used Boolean classifiers

Squared loss classifier

 Uses sum of squares loss (a.k.a. L2 loss, Mean Squared Error (MSE), Residual Sum of Squares (RSS))

minimize_w
$$\mathcal{L}(w) = \frac{1}{N} \left(\sum_{i:y_i=-1} (1+\hat{y}_i)^2 + \kappa \sum_{i:y_i=1} (1-\hat{y}_i)^2 \right)$$

together with a choice of your regularizer

 This is particularly easy to optimize, if the regularizer is also L2 regularizer

Logistic regression

Uses logistic loss

minimize_w
$$\mathcal{L}(w) = \frac{1}{N} \left(\sum_{i:y_i=-1} \log(1 + e^{\hat{y}_i}) + \kappa \sum_{i:y_i=1} \log(1 + e^{-\hat{y}_i}) \right)$$

with a choice of a regularizer

 Is a convex optimization if the regularizer is convex, and the minimizer can be found efficiently

Support vector machine (SVM)

Uses hinge loss

minimize_w
$$\mathcal{L}(w) = \frac{1}{N} \left(\sum_{i:y_i=-1} [1+\hat{y}_i]^+ + \kappa \sum_{i:y_i=1} [1-\hat{y}_i]^+ \right)$$

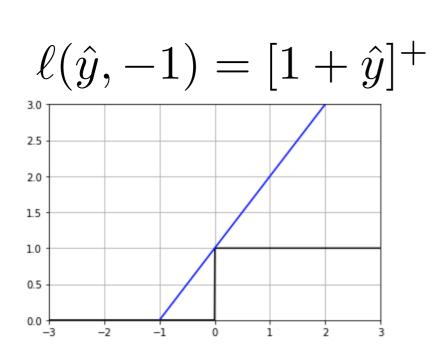
with sum of squares regularizer where $[x]^+ = \max\{0, x\}$

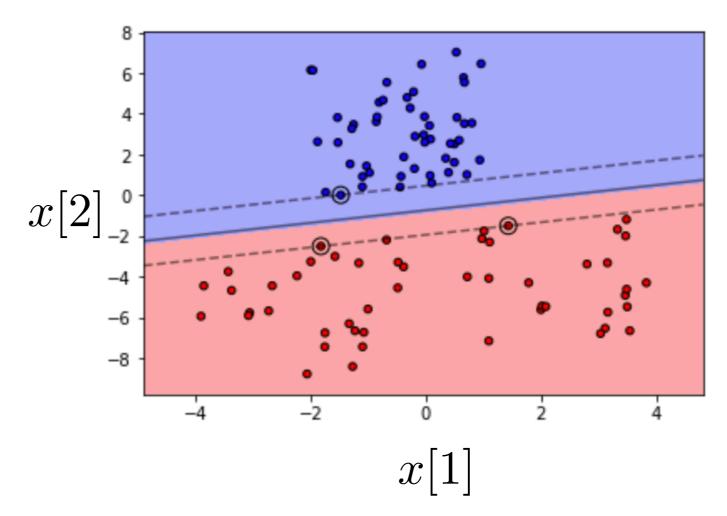
It is a convex minimization

Support vector machine (SVM)

$$\ell(\hat{y}, 1) = \kappa[1 - \hat{y}]$$

- $\ell(\hat{y},1) = \kappa[1-\hat{y}]^+$ Linear model is trained on the hinge loss shown on the left with k=1
 - Resulting prediction is shown below





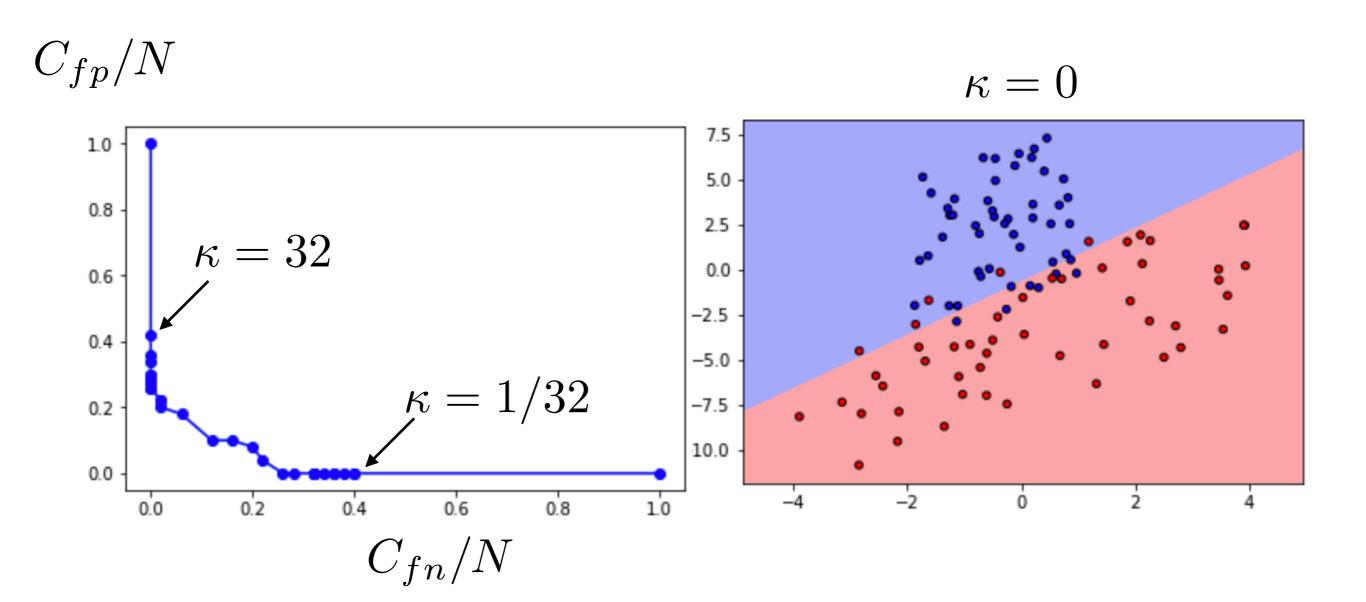
- As we predict with $\operatorname{sign}(\hat{y})$, the decision boundary is at $w^Tx=0$
- black lines show the points where $w^T x = \pm 1$
- What is the training error?

Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic (ROC)

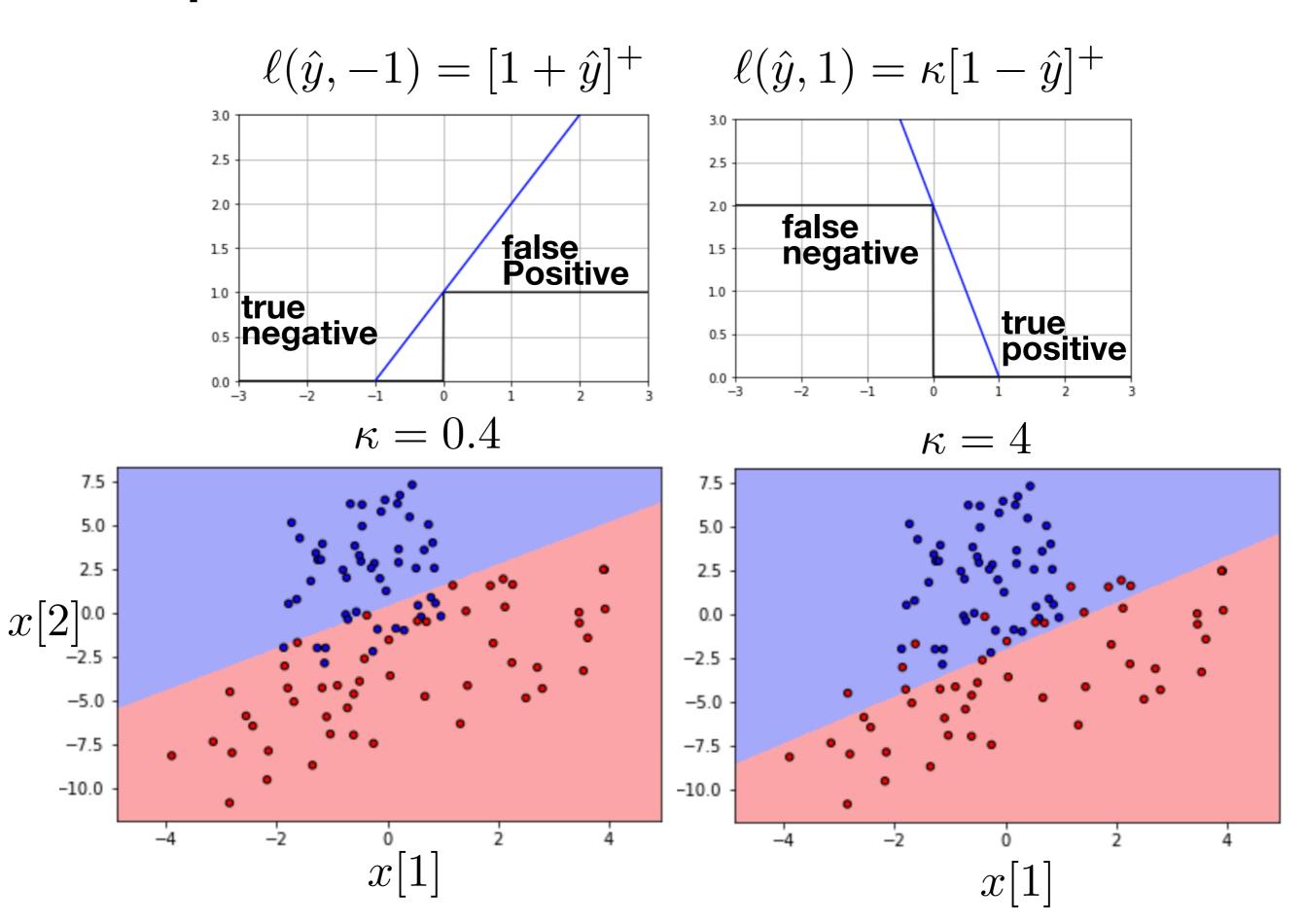
- Always abbreviated as ROC, comes from WWII
- Explores the tradeoff between false negative and false positive rates
- Typical recipe for evaluating performance of a classifier
 - 1. Construct a classifier for many values of k
 - For each k, select the regularization hyper-parameter via cross-validation, that minimizes Neyman-Pearson loss on test data set
 - 2. Plot the computed pair (false negative rate, false positive rate) on a 2-D plot.
- Connecting all the dots gives you ROC curve (when viewed upside-down)

Example: ROC curve



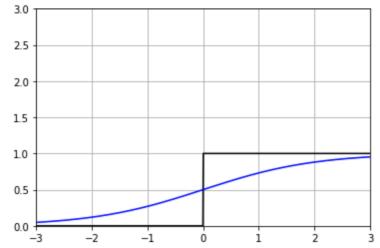
- SVM with various k
- ullet Left hand plot shows training error pairs (C_{fn}/N , C_{fp}/N)
- Right hand plot shows minimum error classifier (i.e. k=1)

Example



Probabilistic interpretation of logistic regression

• When $\kappa = 1$, we get the following losses for each data point x



$$(\underbrace{\frac{1}{1+e^{-w^Tx}}, \underbrace{\frac{1}{1+e^{w^Tx}}}_{\ell(\hat{y},-1)}, \underbrace{\frac{1}{\ell(\hat{y},1)}}_{\ell(\hat{y},1)})$$

when using sigmoid loss that is trained with a linear model

- They are
 - Non-negative
 - sum to one, and
 - they measure how likely it is that the point x has label +1 (or -1) respectively
- One can view it as an estimation of the probability

$$(\mathbb{P}(y_i = +1|x), \mathbb{P}(y_i = -1|x))$$

Probabilistic interpretation of logistic regression

 Then taking the sign of the linear predictor to make final decision is simply taking a label that is more likely:

$$\hat{\hat{y}} = \operatorname{sign}(w^T x) \qquad \iff \qquad \hat{\hat{y}} = \begin{cases} +1 & \frac{1}{1 + e^{-w^T x}} > \frac{1}{1 + e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$

 and logistic regression can be interpreted as Maximum Likelihood Estimator under the probabilistic model with sigmoid function:

$$(\underbrace{\frac{1}{1+e^{-w^Tx}}, \underbrace{\frac{1}{1+e^{w^Tx}}}_{1+e^{w^Tx}})$$

$$\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$$

Maximum Likelihood Estimator (MLE)

model:

$$\left(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}}\right)$$

$$\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$$

log-likelihood on a data point (xi,yi):

$$\log\text{-likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all likelihoods on training data points

$$\text{maximize}_w \sum_{i:y_i=-1} \log \left(\frac{1}{1+e^{\hat{y}_i}} \right) + \sum_{i:y_i=1} \log \left(\frac{1}{1+e^{-\hat{y}_i}} \right)$$

 Notice that this is exactly the logistic regression without any regularizers and with k=1

minimize_w
$$\mathcal{L}(w) = \frac{1}{N} \left(\sum_{i:y_i=-1} \log(1 + e^{\hat{y}_i}) + \kappa \sum_{i:y_i=1} \log(1 + e^{-\hat{y}_i}) \right)$$