Non-quadratic Regularizers

Sewoong Oh

CSE/STAT 416
University of Washington



Regularizers

consider a linear predictor

f(z) = wo+wiz|l] + wezx|2] + - - - + wyx|d|

if |wilis large then the predictor is very to
small changes in Z; lead to large changes in the prediction

this suggests that we would like w or (wy.q4 if [0] = 1)
not to be large

recall Ridge regression with or
r(w) = wi4ws+--+wg

this penalizes having large parameters



L1 Regularizer

o or uses
r(w) = |wi| + [wa] + -+ [wql
e thisis the same as of the weight vector

|wialli £ |wi] + |we] + -+ + |wq]

e we write (the ) as

|wiall2 = Vwi+ w3+ -+ wg

such that the quadratic regularizer is
r(w) = [lwral3

e they are both members of the , defined as

lwigll, = (Jwi]P + -+ Jwg|P)/P



Lasso regression

we use squared loss MSE = % Zf\;l(yAz — yi)2
with L2 regularizer is called
minimize,, = MSE(w) + AlJwl|3

with L1 reqgularizer is called

minimize,, = MSE(w) + Aljw]|;

widely used in machine learning
since it is a convex function, can be efficiently minimized

it has interesting properties, making it attractive in
practice (sparsification)



Sparse coefficient vectors via L1 regularization



Sparse coefficient vector

* SUPPOSE W IS sparse, Ii.e. many of its entries are zero

e prediction § = w!x does not depend on features of x;
for which w; = 0

e this means we select features to use
(i.e. those with w; # 0 )

* (potential) practical benefits of W
* true model might be sparse in real applications

o Sparsity (i.e. the number of features used in prediction) is
the simplest measure of complexity of a model

* Makes prediction model

 But manually engineering correct sparse set of features is
extremely challenging



Using L1 regularization leads to sparse coefficient vectors

o r(w) = ||wl|; is called a sparsifying regularizer

* rough idea:

e for L2 regularizer, once w; is small, w; is very small
e SO not much incentive to make coefficients
oo all the way to zero

e for L1 regularizer, incentive to make w; smaller
keeps up all the way until it is zero




Example: house price

test error i1s red and train error is blue
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Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

e sometimes sparse features are desired in practice

* consider running the following sparse feature selection
method

e run Ridge regression, with optimal lambda

e Set to zero (shrink) those parameters that are smaller than
a threshold
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e Set threshold in order to keep the top 5, for example, parameters
e What is wrong with this approach?



Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

e sometimes sparse features are desired in practice

e consider running the following sparse feature selection
method

* run Ridge regression, with optimal lambda
e shrink parameters that are smaller than a threshold
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* nothing measuring bathrooms is included!!
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Selecting sparse features based on Ridge regression (L2 regularizer)
can be problematic

* |f only one of the features were included when running
Ridge regression, it would have survived
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e thresholding Ridge regression parameters unnecessarily
penalizes multiple similar features

 |Lasso is a more principled way of selecting sparse features



Lasso regression naturally gives sparse features

e feature selection with Lasso regression
* choose lambda based on regularization path with test data
e keep features with largest parameters in w
e retrain with lambda=0

Ridge Lasso
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e at optimal lambda, the sorted |wi|’s are
 |asso has only 35 non-zero components
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After retrain

* Retrain with only 9 features identified by lasso
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* The test error is small and robust for broad range of lambda



 What if we use p-norm regularizer with p<1 ?

Ridge Lasso
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Example: piecewise-linear fit

* We use Lasso on the piece-wise linear example
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* de-biasing is critical!
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but only use selected features



Slow but optimal model selection &
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* The best single-feature might not be included in best pair-of-features
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Greedy algorithm: matching pursuit

e Choose how many features to select, say k

e Repeat for i=1,...,K

e Choose a single feature, such that minimizes the loss
when optimized together with (i-1) features chosen
from the previous steps

e | et fi denote this feature
* 5 ¢ Si—1U



