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Deep learning
• So far we studied Deep Supervised Learning

• Classification

• Regression


• How do we do Unsupervised Learning with Deep Neural 
Networks?

• Breakthrough:

• Generative Adversarial Networks (GANs)


• We start with a slightly different story: adversarial examples

!2



Adversarial Examples
Consider a case where an adversary knows some combination of 

• ︎  the training data 

• ︎  the trained mode weights 

• ︎       the trained model as a black box 

• the goal of an adversary is to make the classifier fail (sometimes with 
emphasis on particular classes or examples)

• Timeline: 
• ︎  "Adversarial Classification" Dalvi et al 2004: fool spam filter 

• ︎  "Evasion Attacks Against Machine Learning at Test Time" Biggio  
2013: fool neural nets 

• ︎  Szegedy et al 2013: fool ImageNet classifiers imperceptibly 

• ︎  Goodfellow et al 2014: cheap, closed form attack  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Adversarial testing examples
Consider computing the gradient, 
but not on the weights as we do in training,  
instead on the input example, which itself is hard to interpret 
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Adversarial testing examples
• consider an experiment where we do gradient 
ascent on the cross-entropy loss to minimize the 
probability that it is correctly classified

• concretely, perturb the image slightly by taking the 
sign of the gradient with a small scaling constant 
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Adversarial testing examples
•  In another experiment, you can start with a random noise 

and take one gradient step

•  this often produces a confident classification

•  the images outlined by yellow are classified as "airplane" 

with >50% confidence
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Adversarial testing examples
•  In another experiment, you can have targeted 

adversarial examples, to misclassify examples to a 
specific target class 


•  the adversarial examples are misclassified as ostriches, 
and in the middle we show the perturbation times ten. 
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Adversarial testing examples
•  consider a variational autoencoder for images, whose 

goal is to compress the image and then reconstruct it 
back 


•  one can create adversarial images that is reconstructed 
(after compression) as an entirely different image 
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Adversarial testing examples
•  First reported in ["Intriguing properties of neural networks", 

2013, by Christian Szegedy, Wojciech Zaremba, Ilya 
Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob 
Fergus]


•  Led to serious concerns for security as, for example, 

•  one can create road signs that fools a self-driving car to 

act in a certain way 

•  this is serious as 

•  	 there is no reliable defense against adversarial examples 

• adversarial examples transfer to different networks, 

trained on disjoint subset of training data 

• you do not need the access to the model parameters; you 

can train your own model and create adversarial 
examples  


• you only need a black-box access via APIs (MetaMind, 
Amazon, Google)
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 Adversarial testing examples 
•  ["Practical Black-Box Attacks against Machine Learning", 

2016, Nicolas Papernot, Patrick McDaniel, Ian 
Goodfellow, Somesh Jha, Z. Berkay Celik, Ananthram 
Swami] 


•  no access to the actual classifier, only treat as a black-
box 
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 Adversarial testing examples 
•  ["Adversarial examples in the physical world", 2016, 

Alexey Kurakin, Ian Goodfellow, Samy Bengio] 

•  You can fool a classifier by taking picture of a print-out. 

•  one can potentially print over a stop sign to fool a self-

driving car 
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This 3-dimensional turtle is designed to be classified as “rifle”

!12



 Defense mechanism to adversarial testing examples 

•  Brute force: include adversarial testing examples (but 
with the correct classes) in the training data. 
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 Defense mechanism to adversarial testing examples 

•  Defensive distillation: 

• 	 ︎  Two models are trained 


• 	 ︎  model 1: trained on the training data in as standard manner 


• 	 ︎  model 2 (the robust model) : is trained on the same training data,  
but uses soft classes which is the probability provided by the first  
model 


• 	 ︎  This creates a model whose surface is smoothed in the 
directions  
an adversary will typically try to exploit, making it difficult for them to 
discover adversarial input tweaks that lead to incorrect 
categorization 


• 	 ︎  [Distilling the Knowledge in a Neural Network, 2015, Geoffrey 
Hinton, Oriol Vinyals, Jeff Dean] 


• 	 ︎  original idea came from model compression


• 	 both are vulnerable against high-power adversary
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 Why are modern classifiers vulnerable  

•  small margin due to overfitting 
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