
Deep Learning

Sewoong Oh

CSE/STAT 416

University of Washington

• Feature engineering is critical in achieving good
performance

• e.g. seasonal trends captured by sinusoids

!2

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

Month

lo
g(
Pr
ic
e)

1997−01 1999−01 2001−01 2003−01 2005−01 2007−01 2009−01 2011−01 2013−01

f(x) = w0 + w1x+ w2x
2 + w3x

3 + w̃4 sin
⇣2⇡x

12

⌘
+ w̃5 cos

⇣2⇡x
12

⌘

<latexit sha1_base64="WqRNDuYhDNV9cK+2SUZE3uQIeVE=">AAAClHicfVHbatwwEJXdW7q9ZNNCX/oiuhQ2FBbbm5JCWtgmFPpUUugmgdXWyPJ4IyJfkMaNF+Ev6t/0rX9T2dmHNikZkHQ4M3NmNJNUShoMgt+ef+fuvfsPth4OHj1+8nR7uPPsxJS1FjAXpSr1WcINKFnAHCUqOKs08DxRcJpcHHX+0x+gjSyLb7iuYJnzVSEzKTg6Kh7+zMbNLmUHH9gBvYwD+sbdIW26J6LN96gnpg5NHWIIDfY1rYa0tQylSsFetvFeS5mRBTuUqzFlmebCRqyStKGtDaO243dvFXjrBERpbhWIh6NgEvRGb4JwA0ZkY8fx8BdLS1HnUKBQ3JhFGFS4tFyjFAraAasNVFxc8BUsHCx4DmZp+/5a+toxKc1K7U6BtGf/zrA8N2adJy4y53hurvs68n++RY3Zu6WVRVUjFOKqUFYriiXtNkRTqUGgWjvAhZauVyrOuZsIuj0O3BDC61++CU6iSTidRF/3RrPDzTi2yEvyioxJSPbJjHwmx2ROhLfj7Xsz76P/wn/vH/mfrkJ9b5PznPxj/pc/uTnE6g==</latexit>

Image classification

!3

Input: x
Image pixels

Output: y
Predicted object

• Feature engineering is extremely challenging

• For real-data that is high-dimensional and complex

• Neural networks allow us to learn features that are non-linear

Recall: linear classification

!4 w 0
+

w
1

x[
1]

 +
 w

2
x[

2]
 +

 …
 +

 w
d

x[
d]

=
0Score(x) > 0 Score(x) < 0

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]

• Input is d-dimensional data

• Output is a partition of the space into two, separated by a

hyperplane (line in 2-d)

• Training searches for the best line

Graph representation of classifier:
useful for defining neural networks

!5

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

w d
> 0, output 1
< 0, output 0 (or -1)

Input Output

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]

• We study an alternative representation of a linear classifier

• This graphical representation paves the way for designing

deep neural networks

• This allow one to compactly represent a function  

(as a composition of many simple operations)

Single-layer neural network

• This is a generic formula for one neuron:

• input: 1,x[1],..,x[d]

• We take weighted sum

• And pass it through an activation function g()!6

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd
dX

j=0

wjx[j] g =

⇢
1 if

Pd
j=0 wjx[j] > 0

�1 otherwise0
<latexit sha1_base64="LYGR+uKD65ytoLFTpbSYt3Eha6c=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnuIyI</latexit><latexit sha1_base64="LYGR+uKD65ytoLFTpbSYt3Eha6c=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnuIyI</latexit><latexit sha1_base64="LYGR+uKD65ytoLFTpbSYt3Eha6c=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnuIyI</latexit><latexit sha1_base64="LYGR+uKD65ytoLFTpbSYt3Eha6c=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWabq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDnuIyI</latexit>

This is a single-layer and one-neuron neural network

Input

Output
activation 
function

weights

f(x) = sign(w0 + w1x[1] + · · ·wdx[d])
<latexit sha1_base64="shHDVkaNmpnxmm2W+gb7DTuj3Ks=">AAACH3icbZDLSgMxFIYzXmu9VV26CRahRSgzKiqIUHTjUsFeYGYYMplMG0wyQ5LRlqFv4sZXceNCEXHn25heFtr6Q+DjP+dwcv4wZVRp2/625uYXFpeWCyvF1bX1jc3S1nZTJZnEpIETlsh2iBRhVJCGppqRdioJ4iEjrfD+alhvPRCpaCLudD8lPkcdQWOKkTZWUDqJK70q9M4vvHOYe5JDRTtiUHkMbHgAHwOn5zq+IQ9HiVbGiGDPjfxqUCrbNXskOAvOBMpgopug9OVFCc44ERozpJTr2Kn2cyQ1xYwMil6mSIrwPeoQ16BAnCg/H903gPvGiWCcSPOEhiP390SOuFJ9HppOjnRXTdeG5n81N9PxmZ9TkWaaCDxeFGcM6gQOw4IRlQRr1jeAsKTmrxB3kURYm0iLJgRn+uRZaB7WnKPa4e1xuX45iaMAdsEeqAAHnII6uAY3oAEweAIv4A28W8/Wq/VhfY5b56zJzA74I+v7B9Ipn8U=</latexit>

What can be represented by a linear classifier?

• x1 x2 y

• 0 0 0

• 0 1 1

• 1 0 1

• 1 1 1

!7

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

• x1 x2 y

• 0 0 0

• 0 1 0

• 1 0 0

• 1 1 1

W0

W1

W2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network of the above form

How can we get higher representation power?

!8

• How can we build upon the single-layer, one-neuron
function, to get a class of functions that can represent
more complex functions?

Hidden layer
• We compose neurons to create a network of neurons 

-> neural network

!9

x[1]

x[2]

x[d]

Σ…

1

v[1]

v[2]

v[d]

Σ…

1

x[1]

x[2]

x[d]

Σ…

1

…

hidden 
layer

input 
layer

output 
layer

hidden unit
h2(x) = sign(w20 + w21x[1] + · · ·w2dx[d]| {z }

wT
2 x

)

<latexit sha1_base64="iOAfzFRTgjqIzapbsl0hmzVJWO0=">AAACQHicbVDNS8MwHE39dn5NPXoJDmEijLYKCiKIXjwqOCe0taTpb1swTUuS6kbpn+bFP8GbZy8eFPHqyWzu4NeDwMt778cveVHGmdK2/WiNjU9MTk3PzFbm5hcWl6rLKxcqzSWFJk15Ki8jooAzAU3NNIfLTAJJIg6t6Pp44LduQCqWinPdzyBISEewNqNEGymstrqhW+9tYn//wN/HhS8TrFhHlHU/FzHISBIKxW1YuHaJt/CAOGXPcwJz8WmcajXU4hL3vDgoQxN1r8575WZYrdkNewj8lzgjUkMjnIbVBz9OaZ6A0JQTpTzHznRQEKkZ5VBW/FxBRug16YBnqCAJqKAYFlDiDaPEuJ1Kc4TGQ/X7REESpfpJZJIJ0V312xuI/3lertt7QcFElmsQ9GtRO+dYp3jQJo6ZBKp53xBCJTNvxbRLTGnadF4xJTi/v/yXXLgNZ7vhnu3UDo9GdcygNbSO6shBu+gQnaBT1EQU3aEn9IJerXvr2Xqz3r+iY9ZoZhX9gPXxCZ7frhg=</latexit>

f(x) = sign
⇣
(w(2))T sign

�
(W (1))Tx

�
| {z }

=h(x)

⌘

<latexit sha1_base64="g4KbB004Ev1+o6jUnEMnvL+ZV9A=">AAACV3icbZFPT+MwEMWd0IVu91+BIxeLaqXkUiVlJZAQEoLLHovU0kpNqRx30lo4TmQ7LFWUL7niwlfhskxDDywwkqWnNz+P7ec4l8LYIHh03K3Gp+2d5ufWl6/fvv9o7+5dm6zQHIY8k5kex8yAFAqGVlgJ41wDS2MJo/j2ct0f3YE2IlMDu8phmrKFEongzKI1a6vEu/dpdHoWndIy0ik1YqGq6EIsPHS8Pzel1/Mr/2aADI0KNQcda8ahfAXHCHsjJMOavK9RNP1qVp4tcX5VOzjTn7U7QTeoi74X4UZ0yKb6s/bfaJ7xIgVluWTGTMIgt9OSaSu4hKoVFQZyxm/ZAiYoFUvBTMs6l4r+RGdOk0zjUpbW7usdJUuNWaUxkimzS/O2tzY/6k0Km5xMS6HywoLiLwclhaQ2o+uQ6Vxo4FauUDCuBd6V8iXD3Cx+RQtDCN8++b247nXDo27v6lfn/GITR5MckEPikZAck3Pym/TJkHDyQJ6cLafhPDr/3G23+YK6zmbPPvmv3N1nF+Kv6Q==</latexit>

Example: XOR function

!10

XOR = x[1] AND NOT x[2] OR NOT x[1] AND x[2]

v[1] v[2]

XOR as a 2-layer neural network

!11

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

y = x[1] XOR x[2]

v[1] = (x[1] AND ¬x[2])
= g(-0.5+x[1]-x[2])

v[2] = (x[2] AND ¬x[1])
= g(-0.5+x[2]-x[1])

y = v[1] OR v[2]
= g(-0.5+v[1]+v[2])

=(x[1] AND ¬x[2]) OR (x[2] AND ¬x[1])

Two-layer neural network (= one-hidden layer neural network)

!12

v[1]

v[2]

v[3]

Single unit:

1-hidden layer:

out(x) = g(w0 +
X

j

wjx[j])

out(x) = g(w0 +
X

k

wkg(w
k
0 +

X

j

wk
j x[j]))

Example of 2-layer neural network in action
1-layer neural networks  
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

a highly non-linear decision boundary can be learned from 2-layer neural networks

!13

Linear decision boundary

Representation power of a 2-layer neural network

• Can such function be
learned?

• If we are manually designing
functions, then 3 hidden
layer is enough.

• The reason is that there is
some simplicity or pattern in
the data that we want to
represent: it only has basis
vectors!

!14

!15

A 2-layer neural network can represent any function,  
if we allow enough units in the hidden layer

• We can compose step functions 
to approximate piece constant functions 
and use them to approximate any function

• More pieces (more hidden units) give better approximation

• demo: http://neuralnetworksanddeeplearning.com/chap4.html
!16

x

v[1]

v[2]

Σ

One-dimensional input/output example for illustration

http://neuralnetworksanddeeplearning.com/chap4.html

Example

!17

Example

!18

Example

!19

General neural networks
• Sign activation function is never used in practice 

because the gradient is zero almost everywhere

• instead, sigmoids can be used 
because it is differentiable, and can approximate the sign function

!20

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd g =
1

1 + e�Score(x)

dX

j=0

wjx[j]
-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activation functions
•Sigmoid

-Historically popular, but (mostly) fallen out of favor

•Neuron’s activation saturates

(weights get very large -> gradients get small)

•Not zero-centered -> other issues in the gradient steps

-When put on the output layer, called “softmax” because
interpreted as class probability (soft assignment)

•Hyperbolic tangent g(x) = tanh(x)

-Saturates like sigmoid unit, but zero-centered

•Rectified linear unit (ReLU) g(x) = x+ = max(0,x)

-Most popular choice these days

-Fragile during training and neurons can “die off”…

be careful about learning rates

-”Noisy” or “leaky” variants

•Softplus g(x) = log(1+exp(x))

-Smooth approximation to rectifier activation

!21

sigmoid

Hyperbolic
tangent

ReLU

General neural networks
•Layers and layers and layers of linear models and
non-linear transformations

•Around for about 50 years
-Fell in “disfavor” in 90s

•In last few years, big resurgence
-Impressive accuracy on several benchmark problems
-Powered by huge datasets, GPUs, & modeling/learning
algorithm improvements

!22

Overfitting
Are NNs likely to overfit?
 -Yes, they can represent arbitrary functions!!!

Avoiding overfitting?
 -More training data
 -Fewer hidden nodes / better topology
 •Rule of thumb: 3-layer NNs outperform
 2-layer NNs, but going deeper rarely helps
 (different story for convolutional networks!)
 -Regularization
 -Early stopping

!23

Applications to vision problems
• Classical image processing 

manually extracts features

!24

Face!

Eye

Eye

Nose

Mouth

Features = local detectors
-Combined to make prediction
-(in reality, features are more low-level)

Typical local detectors look for locally “interesting points” in image

Image features: collections of locally interesting points
-Combined to build classifiers

Many hand created features exist 
 for finding interest points…

!25

Face!

SIFT [Lowe ‘99]

Classical image classification

!26

Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created
features

• Critically relies on having good features manually chosen

Instead, neural network (implicitly) discovers those features from data

!27

Layer 1 Layer 2 Layer 3 Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

• Each layer learns increasingly complex features,  
as we go higher in the layers

!28

Convolutional neural networks

!29

The challenge of applying regular neural networks
(multilayer perceptrons) to images
• Interesting images are very high-dimensional

• And images have particular structures

• Invariance to shift, scale, rotation

!30

Convolutional Neural Networks (CNN)
Main building block of CNN:  

convolutional layer
Main building block of NN:  

fully connected layer

Depth =
filters

output
volume

x[1] x[2]

h1(x)
<latexit sha1_base64="9e7Px3xD4JPLawGpHl7B1aU1WLQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz249UaSbFvZnE1I/wULCQEWys1Br1vfLTeb9YcivuHGiVeBkpQYZGv/jVG0iSRFQYwrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtFTii2k/n107RmVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDKT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQAUbgrf88ippVSterVK9uyjVr7M48nACp1AGDy6hDrfQgCYQeIBneIU3RzovzrvzsWjNOdnMMfyB8/kDl7+Oew==</latexit>

h7(x)
<latexit sha1_base64="2vPakMbQLeJiK1gFEaU7QD0tM8A=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFeqx6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz249UaSbFvZnE1I/wULCQEWys1Br1a+Wn836x5FbcOdAq8TJSggyNfvGrN5AkiagwhGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKnBEtZ/Or52iM6sMUCiVLWHQXP09keJI60kU2M4Im5Fe9mbif143MeGVnzIRJ4YKslgUJhwZiWavowFTlBg+sQQTxeytiIywwsTYgAo2BG/55VXSqla8i0r17rJUv87iyMMJnEIZPKhBHW6hAU0g8ADP8ApvjnRenHfnY9Gac7KZY/gD5/MHoOmOgQ==</latexit>

hi(x) = g(wi0 + wi1x[1] + wi2x[2])
<latexit sha1_base64="OY65yTGMSa44x4FRmG7R/TlPY2Y=">AAACH3icbVDLSsNAFJ3UV62vqEs3g0VoUUoSRd0IRTcuK9gHtCFMptN26GQSZibaEvonbvwVNy4UEXf9GydtFlo9MHDuOfdy5x4/YlQqy5oauaXlldW1/HphY3Nre8fc3WvIMBaY1HHIQtHykSSMclJXVDHSigRBgc9I0x/epH7zgQhJQ36vxhFxA9TntEcxUlryzPOBR0ujMryC/RLsnMBHL6HWBB7PiD2Bo7btZpWTVo6bdpU9s2hVrBngX2JnpAgy1Dzzq9MNcRwQrjBDUrZtK1JugoSimJFJoRNLEiE8RH3S1pSjgEg3md03gUda6cJeKPTjCs7UnxMJCqQcB77uDJAayEUvFf/z2rHqXboJ5VGsCMfzRb2YQRXCNCzYpYJgxcaaICyo/ivEAyQQVjrSgg7BXjz5L2k4Ffu04tydFavXWRx5cAAOQQnY4AJUwS2ogTrA4Am8gDfwbjwbr8aH8TlvzRnZzD74BWP6DfpPnpo=</latexit>

Activation function of choice

x[1,1,1]

x[32,32,3]

Both input and output are  
3-dimensional arrays called tensors

h1,1,1(x)
<latexit sha1_base64="WJAMsYs1H+c/fm7VJuPTk6sA1Og=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJUkLJbBT0WvXisYD+gXUo2nbah2eySZMWy9G948aCIV/+MN/+NabsHbX3DwOO9GTJ5QSy4Nq777aysrq1vbOa28ts7u3v7hYPDho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGt1O/+YhK80g+mHGMfkgHkvc5o8ZKnWE39c5tTUpPZ91C0S27M5Bl4mWkCBlq3cJXpxexJERpmKBatz03Nn5KleFM4CTfSTTGlI3oANuWShqi9tPZzRNyapUe6UfKtjRkpv7eSGmo9TgM7GRIzVAvelPxP6+dmP61n3IZJwYlmz/UTwQxEZkGQHpcITNibAllittbCRtSRZmxMeVtCN7il5dJo1L2LsqV+8ti9SaLIwfHcAIl8OAKqnAHNagDgxie4RXenMR5cd6dj/noipPtHMEfOJ8/FtiQaQ==</latexit>

h32,32,24(x)
<latexit sha1_base64="q8Gj0RrNyJ9ZhQEJugQ0MGZfprg=">AAAB+HicbVDLSsNAFL3xWeujUZdugkWoICVJC7osunFZwT6gDWEynbRDJ5MwMxFr6Je4caGIWz/FnX/jtM1CWw/3wuGce5k7J0gYlcq2v4219Y3Nre3CTnF3b/+gZB4etWWcCkxaOGax6AZIEkY5aSmqGOkmgqAoYKQTjG9mfueBCEljfq8mCfEiNOQ0pBgpLflmaeRnNfdCl1ufVh7PfbNsV+05rFXi5KQMOZq++dUfxDiNCFeYISl7jp0oL0NCUczItNhPJUkQHqMh6WnKUUSkl80Pn1pnWhlYYSx0c2XN1d8bGYqknESBnoyQGsllbyb+5/VSFV55GeVJqgjHi4fClFkqtmYpWAMqCFZsognCgupbLTxCAmGlsyrqEJzlL6+Stlt1alX3rl5uXOdxFOAETqECDlxCA26hCS3AkMIzvMKb8WS8GO/Gx2J0zch3juEPjM8f9UGRVQ==</latexit>

Convolution
• Consider a one-dimensional signal (a sequence or a vector)

• For example, speech recognition

• A popular method for extracting features from a sequential
data is convolution

!31

Time

x[1]

x[2]

x[3]

Convolution
• Consider the task of classifying whether the signal x is

high pitch (high frequency) or low pitch (low frequency)

• We use a filter w and convolve x and w to get x w

!32

Time

x[1]

x[2]

Time

x[1]

Time

w[1]

w[2]

Example of length 2 filter  
w=(w[1],w[2])

• Convolving high pass filter with a high pitch signal

• Slide the filter from left to right and compute the inner-product (entrywise product and sum)

!33

x

w

x whigh pitch
signal

high pass
filter

x

w

x whigh pitch
signal

high pass
filter

• Convolution

• How high frequency is x?

• Pooling operation aggregates the data

• max-pooling: max(x w)
• Average pooling: (1/N)(|(x w)[1]| + … + |(x w)[N]|)

• Convolved and Pooled value will be large for high-frequency
data

!34

x

w

x whigh pitch
signal

high pass
filter

high-freq. signal vs. low-freq. signal

!35

Time

x[1]

x[2]

Time

x[1]

x w

x w

Time

Two-dimensional convolution
• Consider a task of classifying 0’s and 1’s

• One manual way is to use some 2-d filters

!36

-1 1
-1 1
-1 1
-1 1
-1 1

-1 -1 -1 -1 -1
1 1 1 1 1

W1=

W2=

Convolve

Convolve

Pooling

Pooling

-

+
Declare “Zero” if small 

or “One” if large

0 1 2
2 2 0
0 1 2

Example of convolutional layer with 3x3 filter (9 parameters)

!37

Depth =
filters

output
volume

Input image

Filter 
represented by a matrix W

Output image

0 1 2
2 2 0
0 1 2

W =

Sub-region in 
input image
3 3 2
0 0 1
3 1 2

Output
Image (pixel)

12

Key aspect of convolutional layer is that  
it applies the same filter (with the same weights) 
to all sub-regions [also known as weight sharing]

This gives efficiency  
+ shift invariance

To understand the convolution of 3-dimensional arrays (tensors), 
let’s consider the convolution of 2-dimensional arrays (matrices)

In this example, we consider a 3x3 convolution

0 0 1
3 1 2
2 0 0

0 1 2
2 2 0
0 1 2

= inner product of two
matrices of the same size

<latexit sha1_base64="mwTHWQOtarLipJT6xFbU3P0ol34=">AAACJnicbVDLTgIxFO3gC/GFunTTSExckRlc6IaE6MYlJvJIGEI6nTvQ0GknbUeDhK9x46+4cYExxp2fYhlYKHiTNifn3ptz7gkSzrRx3S8nt7a+sbmV3y7s7O7tHxQPj5papopCg0ouVTsgGjgT0DDMcGgnCkgccGgFw5tZv/UASjMp7s0ogW5M+oJFjBJjqV6x6gvJRAjC4CpmQoDCiZJhSg2WETaP0vdxISZGMQo6owaANYntx56gVyy5ZTcrvAq8BSihRdV7xakfSprGVo9yonXHcxPTHRNlGOUwKfiphoTQIelDx0JhhXR3nJ05wWeWCXEklX3Wb8b+3hiTWOtRHNhJ63igl3sz8r9eJzXRVXfMRJIaEHQuFKUcG4lnmeGQKaCGjywgVDHrFdMBUYQam2zBhuAtn7wKmpWyd1Gu3FVKtetFHHl0gk7ROfLQJaqhW1RHDUTRM3pFU/TuvDhvzofzOR/NOYudY/SnnO8fdp6lJA==</latexit>

Convolution
• What is the output image?

!38

0 1

2 0

Filter (2x2)

1 1 0

0 1 1

1 1 1

Image (3x3)

3 3

3 4

0 7

14 0

1 2

3 3

0 2 2 0
1 1 2 2
0 3 3 2
1 1 1 0

Option A

Option C
Option D

Option B

Input

W =

X =

In practice,
• We commonly use convolution with zero-padding and

stride

• Zero-padding:
• Pad zeros around the boundary  

to preserve information  
and avoid boundary effect

• Stride:
• skip patches periodically to 

reduce redundancy  
and increase efficiency, 
and capture different resolutions

!39

If we have 7x7 filter, how many zeros do
we need to pad on one row on one side?

This is an example with 3x3 filter and stride 2

1 6 5 6 6

0 1 2
2 2 0
0 1 2

0 1 2
2 2 0
0 1 2

!40

Depth =
filters

output
volume

Component in CNN: Convolutional layer

0 1 2
2 2 0
0 1 2

Input image

Output image

In image processing, convolution is typically an operation over three-dimensional arrays

each scalar output = inner product of two
tensors of the same size (3x3x3)

<latexit sha1_base64="z1J3o36vT72m+FKFgrS7fKOY3vs=">AAACa3icbVFNb9NAEF2brxKgBHoAAYcRaaX2EtnpoUgVUmkvHItE2kpxFK3X43rV/bB2x5TU8oWfyI1/wIX/wCaNBLTMaFdP781oZt/mtZKekuRHFN+5e+/+g7WHvUePn6w/7T97fuJt4wSOhVXWneXco5IGxyRJ4VntkOtc4Wl+cbTQT7+g89KazzSvcar5uZGlFJwCNet/y4yVpkBDgFxU4AVX3IFtqG4I3oM0Bh3UzhaNILAl0KXNMuhldcUNWd1+6FrYzPb/5GaXVb7mAtuR0EHsCI23zi+bKwTPdbjkFcL27teQO7P+IBkmy4DbIF2BAVvF8az/PSusaHRYWiju/SRNapq23JEUCrte1ngMC1zwc5wEaMJAP22XXnWwFZgCSuvCCY9esn93tFx7P9d5qNScKn9TW5D/0yYNle+mrTTBNzTielDZKCALC+OhkA4FqXkAXDgZdgVRcccFhe/pBRPSm0++DU5Gw3R3OPo0GhwcruxYY6/ZW7bNUrbHDthHdszGTLCf0Xr0InoZ/Yo34lfxm+vSOFr1bLB/It76DZTXuP0=</latexit>

Component in CNN: Pooling layer
 • Downsampling the spatial dimensions

 • Common to insert between successive conv layers

 • Typically, max pooling of size 2x2 with stride 2
- Applied separately to each depth slice
- Tends to work better than average pooling

!41

Input image Output image
after max-pooling

Performance of deep learning
• LeNet, 1990’s

!42

• 82 error made by LeNet on MNIST

!43

35 error made by Ciresan et al.  
further, most of the time the true answer is in the top-2 prediction
idea: train with transformed samples [data augmentation]

!44

!45

ImageNet 2012 competition: 1.2M training images
Challenging dataset:

High-dimensional data from previous 28 ︎x28 grey-scale to now 256x256 color  
10 classes to 1,000 classes  
multiple objects  
natural 3-d scene

!46

ImageNet 2012 competition:

1.2M training images, 1000 categories

Winning entry: SuperVision

8 layers, 60M parameters [Krizhevsky et al. ’12]

Achieving these amazing results required:

• New learning algorithms

• GPU implementation

A
le

xN
e

t

0

0.05

0.1

0.15

0.2

0.25

0.3

SuperVision ISI OXFORD_VGG

Er
ro

r
(b

es
t

of
 5

 g
ue

ss
es

)

Huge
gain

Exploited hand-coded features like SIFT

Top 3 teams

!47

!48

Going even deeper…

GoogLeNet, 2014

Won 2014 ImageNet challenge with
6.66% top-5 error rate

Huge CNN depth has proven helpful in recognition systems… Maybe because images
contain hierarchical structure (faces contain eyes contain edges, etc.)

What happens when we train convolutional neural networks?

• First convolutional layer trained on natural images looks like the
following

• Simple geometric patterns are “detected” or “matched” in the
first layer

!49

!50

!51

Returning to our example…
“Detectors” are the learned filters

Layer 1 Layer 2 Layer 3 Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]
Filter W at layer 1 Feature map at layer 3 shown on image space

Performance of deep learning

!52

German traffic sign
recognition benchmark
- 99.5% accuracy (IDSIA team)

House number recognition
- 97.8% accuracy per character

[Goodfellow et al. ’13]

House number recognition
- 97.8% accuracy per character

[Goodfellow et al. ’13]

German traffic sign
recognition benchmark
- 99.5% accuracy (IDSIA team)

• Image classification

• Scene parsing

!53

Input: x
Image pixels

Output: y
Predicted object

[Farabet et al. ‘13]

• Object detection

• Retrieving similar objects

!54

You Only Look Once:

Unified, Real-Time Object Detection

Joseph Redmon
University of Washington

pjreddie@cs.washington.edu

Santosh Divvala
Allen Institute for Artificial Intelligence

santoshd@allenai.org

Ross Girshick
Facebook AI Research

rbg@fb.com

Ali Farhadi
University of Washington
ali@cs.washington.edu

Abstract

We present YOLO, a new approach to object detection.

Prior work on object detection repurposes classifiers to per-

form detection. Instead, we frame object detection as a re-

gression problem to spatially separated bounding boxes and

associated class probabilities. A single neural network pre-

dicts bounding boxes and class probabilities directly from

full images in one evaluation. Since the whole detection

pipeline is a single network, it can be optimized end-to-end

directly on detection performance.

Our unified architecture is extremely fast. Our base

YOLO model processes images in real-time at 45 frames

per second. A smaller version of the network, Fast YOLO,

processes an astounding 155 frames per second while

still achieving double the mAP of other real-time detec-

tors. Compared to state-of-the-art detection systems, YOLO

makes more localization errors but is far less likely to pre-

dict false detections where nothing exists. Finally, YOLO

learns very general representations of objects. It outper-

forms all other detection methods, including DPM and R-

CNN, by a wide margin when generalizing from natural im-

ages to artwork on both the Picasso Dataset and the People-

Art Dataset.

1. Introduction

Humans glance at an image and instantly know what ob-
jects are in the image, where they are, and how they in-
teract. The human visual system is fast and accurate, al-
lowing us to perform complex tasks like driving with little
conscious thought. Fast, accurate, algorithms for object de-
tection would allow computers to drive cars in any weather
without specialized sensors, enable assistive devices to con-
vey real-time scene information to human users, and unlock
the potential for general purpose, responsive robotic sys-
tems.

Current detection systems repurpose classifiers to per-
form detection. To detect an object, these systems take a

Dog: 0.30

Person: 0.64

Horse: 0.28

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448⇥ 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

classifier for that object and evaluate it at various locations
and scales in a test image. Systems like deformable parts
models (DPM) use a sliding window approach where the
classifier is run at evenly spaced locations over the entire
image [10].

More recent approaches like R-CNN use region proposal
methods to first generate potential bounding boxes in an im-
age and then run a classifier on these proposed boxes. After
classification, post-processing is used to refine the bound-
ing box, eliminate duplicate detections, and rescore the box
based on other objects in the scene [13]. These complex
pipelines are slow and hard to optimize because each indi-
vidual component must be trained separately.

We reframe object detection as a single regression prob-
lem, straight from image pixels to bounding box coordi-
nates and class probabilities. Using our system, you only
look once (YOLO) at an image to predict what objects are
present and where they are.

YOLO is refreshingly simple: see Figure 1. A sin-
gle convolutional network simultaneously predicts multi-
ple bounding boxes and class probabilities for those boxes.
YOLO trains on full images and directly optimizes detec-
tion performance. This unified model has several benefits
over traditional methods of object detection.

First, YOLO is extremely fast. Since we frame detection
as a regression problem we don’t need a complex pipeline.
We simply run our neural network on a new image at test

1

Redmon et al. 2015
http://pjreddie.com/yolo/

Input Image Nearest neighbors

Deep Learning practice
• Pros

• Instead of manually engineering features, enable

automated learning of features

• Impressive performance gains in practice

• Image processing

• Natural language processing

• Speech recognition

• Making huge impacts in many applications in many fields

!55

Deep Learning practice

!56

Lots of
labeled

data

Training set

Validation
set

Learn
deep

neural net

Validate

Adjust
parameters,

network
architecture,…

• Cons

• Requires a lot of data

• Computationally really expensive

• Hard to tune hyper-parameters

• Choice of architecture

• Learning algorithm

• Hyper-parameters

Transfer Learning

!57

Transfer Learning
• Transfer Learning

• Use data from one task to help learn on another task

• Old idea, explored for deep learning by Donahue et al.

’14 & others

•

!58

Lots of data:
Learn

neural net
Great accuracy

on cat v. dog

Some data: Neural net as
feature extractor

+
Simple classifier

Great accuracy
on 101

categories

vs.

What is learned in a neural networks
• Initial layers are not too sensitive/specific to the task at training

!59

Very specific
to Task 1

Should be ignored
for other tasks

More generic
Can be used as feature extractor

vs.

Neural net trained for Task 1: cat vs. dog

Transfer learning
• For the second task of predicting 101 categories, 

(re)-train only the last layer of the neural network

!60

Very specific
to Task 1

Should be ignored
for other tasks

More generic
Can be used as feature extractor

Use simple classifier
e.g., logistic regression,
SVMs, nearest neighbor,…

Class?

Neural net trained for Task 1: cat vs. dog

Keep weights fixed! Re-train

Transfer learning
• Need to be careful about where you cut,  

as latter layers may be too task specific

!61

Layer 1 Layer 2 Layer 3 Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

Too specific
for new taskUse these!

!62

