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* Feature engineering is critical in achieving good
performance

e e.g. seasonal trends captured by sinusoids
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Image classification

Top Predictions

Labrador retriever

golden retriever

redbone

Input: X Output: vy

Image pixels Predicted object

 Feature engineering is extremely challenging
* For real-data that is high-dimensional and complex
* Neural networks allow us to learn features that are non-linear



Recall: linear classification

* |nput is d-dimensional data

 Qutput is a partition of the space into two, separated by a
hyperplane (line in 2-d)

* Training searches for the best line

Score(x) = wo+ wy X[1] + w, x[2] + ... + wy x[d]

Score(x) >0 of Score(x)<0
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Graph representation of classifier:
useful for defining neural networks

 We study an alternative representation of a linear classifier

* This graphical representation paves the way for designing
deep neural networks

* This allow one to compactly represent a function
(as a composition of many simple operations)

Input Output

>0, output 1
< 0, output 0 (or -1)




Single-layer neural network

This is a -layer and neural network

f(z) = sign(wg + wix|1] + - - wgx|d])

W, weights

W activation
function Output

. d .
if > i wsx|j] >0
otherwise

Input

* This is a generic formula for one neuron:
e input: 1,x[1],..,x[d]
 We take weighted sum
 And pass it through an activation function g()



What can be represented by a linear classifier?
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What should be the weights?
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Note that there47 a one-to-one correspondence between
a linear classifier and a neural network of the above form
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- What cannot be learned? 2 7




How can we get higher representation power?
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e How can we build upon the single-layer, one-neuron
function, to get a class of functions that can represent
more complex functions?



Hidden layer

* \WWe compose neurons to create a network of neurons
-> neural network

input hidden output
layer layer layer
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Example: XOR function

XOR = x[1] anp noT X[2] OR ot x[1] anp X[2]
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XOR as a 2-layer neural network

y =X[1] XOR x[2] =(x[1] AND -x[2]) or (x[2] AND -x[1])

v[1] = (x[1] AND -x[2])
= g(-0.5+x[1]-x[2])
v[2] = (x[2] AND -x[1])
= g(-0.5+x[2]-x[1])

vy =v[1] OR v|[2]
= g(-0.5+v[1]+v[2])
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Two-layer neural network ( = one-hidden layer neural network)

Single unit:

,') :\‘

2o o
TN X

Outputs

out(x) = g(wo + ijx[j])

1-hidden layer:

out(x) = g(wo + Y _ wilg(
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Example of 2-layer neural network in action

Linear decision boundary
|

1-layer neural networks
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

a highly non-linear decision boundary can be learned from 2-layer neural networks
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Output
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3 whe'd
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* 0 500 1000 1400
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Representation power of a 2-layer neural network

e (Can such function be
learned?

* |If we are manually designing
functions, then 3 hidden
layer is enough.

e The reason is that there is
some simplicity or pattern in
the data that we want to
represent: it only has basis
vectors!

A target function:
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Input
10000000
01000000

00100000

00010000

00001000

00000100

00000010

(( l

00000001

N A A A

Output
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001




A network:

Learned hidden layer representation:

Input Hidden Output
Valggs B

10000000 — .89 .04 .g} — 10000000
01000000 — .8 .17 .88 — 01000000
00100000 — €1 97 . — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .05 .05=.05 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .86 €1 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

( ¢ S
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A 2-layer neural network can represent any function,
if we allow enough units in the hidden layer

One-dimensional input/output example for illustration

/N Weighted output from hidden layer ~ /I Weighted output from hidden layer

* We can compose step functions
to approximate piece constant functions
and use them to approximate any function

* More pieces (more hidden units) give better approximation

* demo: http://neuralnetworksanddeeplearning.com/chap4.html



http://neuralnetworksanddeeplearning.com/chap4.html
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Example

2 /[ Weighted output from hidden layer
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Success!

Average deviation: 0.40

l Reset

3 /_\ Weighted output from hidden layer

-1.6

=1

8

‘ Tower function

-0.9

.\, .\ .\, .\
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General neural networks

e Sign activation function is never used in practice
beCause the gradient is zero almost everywhere

* instead, sigmoids can be used
because it is djfferentiable, and can approximate the sign function

oo + 3w = i o /f

\/\ > 0.4}
d @ 1 Zz j
wX[]] — o1}
jZO ’ g 1 4+ e—Score(x) A

C——
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Activation functions

-Sigmoid
-Historically popular, but (mostly) fallen out of favor
‘Neuron’s activation saturates 0 1
(weights get very large -> gradients get small) sigmoid
‘Not zero-centered -> other issues in the gradient steps .1
-When put on the output layer, called “softmax” because -1 0
interpreted as class probability (soft assignment) 1 Hyperbolic

tangent
‘Hyperbolic tangent g(x) = tanh(x) 0
-Saturates like sigmoid unit, but zero-centered
-Rectified linear unit (ReLU) g(x) = x*+ = max(0,x) iy o
-Most popular choice these days 1
-Fragile during training and neurons can “die off”...
be careful about learning rates
-’Noisy” or “leaky” variants 0

RelLU

-Softplus g(x) = log(1+exp(x))
-Smooth approximation to rectifier activation
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General neural networks

*Layers and layers and layers of linear models and
non-linear transtormations

*Around for about 50 years
—Fell 1n “distavor” 1in 90s

In last few years, big resurgence

—Impressive accuracy on several benchmark problems

-Powered by huge datasets, GPUs, & modeling/learning
algorithm improvements
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Overfitting
Are NN likely to overfit?

—Yes, they can represent arbitrary functions!!!

Avoiding overfitting?
—More training data

-Fewer hidden nodes / better topology
*Rule of thumb: 3-layer NNs outperform
2-layer NNs, but going deeper rarely helps
(different story for convolutional networks!)

—Regularization
—-Early stopping
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Applications to vision problems

e Classical image processing
manually extracts features

Features = local detectors
—Combined to make prediction
—(in reality, features are more low-level)
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Typical local detectors look for locally “interesting points™ in 1mage

Image features: collections of locally interesting points

—Combined to build classifiers -

LN l ‘ iv
m‘w'u-wi\, y . |t > T 7 «
- %ﬁ‘w, s &y /\.‘\“,. I »E
8 iy f, v/‘f o ot - < ) M S ol S )
e | A e |y |
NEEH =AY, 7‘< %
NS e e
Image gradients Keypoint descriptor
N N
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A
Many hand created features exist o

for finding interest points... =y § >
>G> Difference of

Gaussian Gaussian (DOG)

SIFT [Lowe “99]




Classical image classification

Input Extract features Use simple classifier
/ e.g., logistic regression, SVMs

>

- \-\.bb\-—ﬁ\y

Hand-created
features

AR AT

-

N

e (Critically relies on having good features manually chosen

20



Instead, neural network (implicitly) discovers those features from data

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus “13]

 Each layer learns increasingly complex features,
as we go higher in the layers

27
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Convolutional neural networks



The challenge of applying regular neural networks
(multilayer perceptrons) to images

e |nteresting images are very high-dimensional
* And images have particular structures
e |nvariance to shift, scale, rotation

Convolutional Neural Networks (CNN)

Main building block of NN: Main building block of CNN:
fully connected layer convolutional layer
h
(@) pr(a) 7 11,142
Hidden ST >0 x[1,1,1] —

Ve x11  x[2]

I e
ayer \Qi gg iz / /,,@;>QQQQQ
Depth =
Input ‘ /I # filters

x[32,32,3]  output h32,32,24(7)

hz’ X) — g\ W;o + w;1x 1 + W;oX ) volume
o ( ! 2) Both input and output are

30 \ Activation function of ChOice_ 3-dimensional arrays called tensors
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Convolution

 Consider a one-dimensional signal (a sequence or a vector)
e For example, speech recognition

x[1]

[2]

Time

x[3]
e A popular method for extracting features from a sequential
data is convolution



Convolution

 Consider the task of classifying whether the signal x is
high pitch (high frequency) or low pitch (low frequency)

x[1]

[ [ ] ] ] x[1]
Time I|I Time

x[2]

* We use a filter w and convolve x and w to get xew

Example of length 2 filter
w=(w[1],w[2])
w[i]

Time

32 w[2]



* Convolving high pass filter with a high pitch signal
* Slide the filter from left to right and compute the inner-product (entrywise product and sum)

high pitch X X oW
signal

high pass W
filter 1,

high pitch
signal X_I[I ‘ Hl ‘ ‘ )EW

high pass |,
filter | B

33
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e (Convolution

high pitch

signal X ‘ ‘ ‘ I_Il ‘ ‘ xow
high pass .,

filter _I_I_,

e How high frequency is x?
* Pooling operation aggregates the data
e max-pooling: max(x ¢w)
* Average pooling: (1/N)(|(x gW)[1]| + ... + |(x gW)[N]|)

* Convolved and Pooled value will be large for high-frequency
data



high-freq. signal vs. low-freq. signal

x[1]

x[1]
‘ ‘ | I I Time I|I Time

x[2]

Tlme

J]JT%-#% EURNARE



Two-dimensional convolution

 Consider a task of classifying O’s and 1’s

e One manual way is to use some 2-d filters

— Pooling
1111 1 \
" Declare “Zero” if small
W2= + or “One” if large
-1
Convolve -1
-9 — Pooling
-1
-1

bt b A

36



Example of convolutional layer with 3x3 filter (9 parameters)

To understand the convolution of 3-dimensional arrays (tensors),
let’s consider the convolution of 2-dimensional arrays (matrices)

/ Input image Output image
01 2
— 220 .
//'@7>OOOO<> 0 1.2
Depth =
/ # filters
\?;Epr;‘z In this example, we consider a 3x3 convolution
Sub-region in Filter _ Output
input image represented by a matrix W Image (pixel)
3 3 9 W=|0 1 2
0 0 A ® 2 2 0 — 19 — inner product of two
3 1 o 0o 1 2 matrices of the same size
O 0 1 O 1 2
3 1 2 @ 2 2 o )
2 0 O o 1 2

Key aspect of convolutional layer is that
it applies the same filter (with the same weights) —}
to all sub-reaions [also known as weiaght sharinal

This gives efficiency

37 + shift invariance



Convolution

e What is the output image?

38

Option A O 2 2 O Option B
Filter (2x2)
111122 3
0332 3
:rrll%léte (3x3) 1 1 1 O Option D
O Option C
1| 2 0
1
3|3 14
1
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In practice,

* We commonly use convolution with zero-padding and
stride

e Zero-padding: 11 8.9.8.5
 Pad zeros around the boundary
to preserve information
and avoid boundary effect

t0r0r0r0r0r0OrO
Ledeclecbadaala ol od

If we have 7x7 filter, how many zeros do
we need to pad on one row on one side?

e Stride: 0,000, 010 0 : 0
. . . 0 :
e skip patches periodically to :HI. 0

reduce redundancy 0 k

laun

0
and increase efficiency, : 0
and capture different resolutions o

0,
0,

:
[
I
|
|
r - =

tO0r"0r0r0rO0r0ron

Ledeaaslacsbadacalccdad

This is an example with 3x3 filter and stride 2



Component in CNN: Convolutional layer

S~
”E =0 0000

Depth =
# filters

output
volume

In image processing, convolution is typically an operation over three-dimensional arrays

each scalar output = inner product of two
tensors of the same size (3x3x3)

Input image

Output image



Component in CNN: Pooling layer

* Downsampling the spatial dimensions

* Common to insert between successive conv layers

« Typically, max pooling of size 2x2 with stride 2
— Applied separately to each depth slice

— Tends to work better than average pooling
Output image

Input image after max-pooling
T 1 0o 2 3
X
4 6 6 8
—>
3 1 1 0 3
1 2 2 4

A4

41
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Performance of deep learning

e | eNet, 1990’s

C3: f. maps 16@10x10
C1: feature maps e S4:f. maps 16@5x5
INPUT 6@ 28x28 2 —
32x32 S2: 1. maps | . C5: layer pg. OUTPUT
6@14x14 | 120 yhndd

10

.l ; l |
e " Full connection | Gaussian
Subsampling Convolutions  Subsampling Full connection

Convolutions



e 82 error made by LeNet on MNIST
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35 error made by Ciresan et al.
further, most of the time the true answer 1s in the top-2 prediction

1dea: train with transformed samples [data augmentation]

qg SST

/9 3 o &

9 4 02z 35
{6 ql-)l
56 79 74
79 )? Ll
79 17 6 1
éﬁ f4‘?o

65 94 =

N P—-—DOIONN
NCOCRNORQRLA~ o

k.
&
b
5
Z
/
q
Ly
2
I

VY RAVWWhoNu3-90 4L
-t BOoNWwE 0O
YRAQPAMPDRN &N
WW-s LW YO X




ImageNet 2012 competition: 1.2M training images

Challenging dataset:

High-dimensional data from previous 28 x28 grey-scale to now 256x256 color
10 classes to 1,000 classes

multiple objects
natural 3-d scene

snow leopard

Egyptian cat

45

passenger car

subway train

electric locomotive

lcissor*
han+ glass

fr*ing pan

lt+thoscope




ImageNet 2012 competition:
1.2M training images, 1000 categories

Winning entry: SuperVision
8 layers, 60M parameters [Krizhevsky et al. "12]

55 N .
27
13 13 13
N

L
Q [ Nk 1
N & "o paal 3 -
Z N 5 S SN ~ - -4 —p| .
IN || X &1 : o iy 13 2Tt |aa 3 — 13 dense | [dense
27 o 3 -~
X 224 S\.|~ N\ 1 P
Q - 384 384 256 1000
Ma
256 4096 1001
<E M Max pooling 4096
Stride\| o¢ | P°ling pooling

224 of 4

0.25

Error (best of 5 guesses)
o
_
Ul

SuperVision ' ISl OXFORD_VGG ,

i
46 Exploited hand-coded features like SIFT
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container ship

motor scooter

e
.......
- 1

mite |

container ship |

black widow
cockroach

lifeboat
amphibian

fireboat

motor scooter legpard
go-kart jaguar
moped | cheetah
bumper car snow leopard
golfcart

griiie mushroom ) cnerry adagascar cat
~ convertible | agaric dalmatiah squirrel monkey
grille | mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine

dead-man’'s-fingers

currant

howler monkey




48

Going even deeper...

Won 2014 ImageNet challenge with
6.66% top-5 error rate

[Shr+1x1 (ST +5%5 (SIT+EXE (ShT+1xT

[SH+EXE (SHT+1xT (SIT+TxT
ST +ExE (ShT+1xT (ShT+1xT

IS+ 1xT IS+ 1xT

POd Py

ISHL *EXE IShr+xt IShr+1xt

wuodydag

wuooudag
(SK +ExE
100gx &y

(SR +ExE
100gx Fiy
ISht+xt IShT+5xs ISH *EXE IS+ 1xt

(ST +1T (SIT +5%5 (SIT +EXE (ShT+1xT
A A A
SIT+ExE [Shr+1xt [Shr+1xt

(ST +EXE (SIT+TxT (SI+1xT

ST
24
u -
ey 08

[NE*SXS
100g e s vy

(SIT+1xT (SIT+5 x5 (SIT +EXE (SHT+TxT

(SIT+1T (SIT +5%5 (SIT +E%E (ShT+1xT
A A A A

(SIT+TxT (SIT +5 x5 (SIT +EXE (SHT+TxT

[SI +EXE (Sh +1xt (Sh +1xt
(SIT+EXE (SH +TxT (S +TxT
(SH +ExE (Sh +1xt (Sh +1xt

g
3
¥
]
]
:
s

(ShT+1xT

w
>
n
»
w
-~
<

GoogleNet, 2014

Huge CNN depth has proven helpful in recognition systems... Maybe because images
contain hierarchical structure (faces contain eyes contain edges, etc.)
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What happens when we train convolutional neural networks?

* First convolutional layer trained on natural images looks like the
following

e Simple geometric patterns are “detected” or “matched” in the
first layer



RELU RELU
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Returning to our example...
“Detectors” are the learned filters

Example
detectors
learned

Example
interest points

detected

[Zeiler & Fergus ‘13]
Filter W at layer 1 Feature map at layer 3 shown on image space

51
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Performance of deep learning

German traffic sign House number recognition
recognition benchmark — 97.8% accuracy per character
— 99.5% accuracy (IDSIA team) [Goodfellow et al. "13]



* |Image classification

Top Predictions

Labrador retriever

golden retriever

%

redbone

bloodhound

! Rhodesian ridgeback

Input: X Output: vy

Image pixels Predicted object

* Scene parsing

53

[Farabet et al. ‘13]
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e Object detection

Horse: 0.28

* Retrieving similar objects

Input Image Nearest neighbors

S 82804
|
\
»

2213
INLN
roy

&

e K=

S
Y

29

Redmon et al. 2015
http://pjreddie.com/yolo/
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Deep Learning practice

e Pros

e |nstead of manually engineering features, enable
automated learning of features

* |Impressive performance gains in practice
e |mage processing
 Natural language processing
* Speech recognition

* Making huge impacts in many applications in many fields
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Deep Learning practice

e Cons
e Requires a lot of data
 Computationally really expensive
 Hard to tune hyper-parameters
e Choice of architecture
* |earning algorithm
* Hyper-parameters
DBl

Tl s -
% G Esl Training set

Lots of
labeled
data

Validation
set

Learn
deep

Adjust
parameters,
network

architecture,...

neural net

Validate
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Transfer Learning
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Transfer Learning

* Transfer Learning

e Use data from one task to help learn on another task
 Old idea, explored for deep learning by Donahue et al.

14 & others

Learn
neural net

Lots of data:

Neural net as
feature extractor

+

Simple classifier

Great accuracy
on cat v. dog

Great accuracy
on 101
categories




What is learned In a neural networks

e |nitial layers are not too sensitive/specific to the task at training

Neural net trained for Task 1: cat vs. dog

27
13 13 13

_\__‘ — = 3&\—\"‘ — >
> 3 | i & 3 . dense dense
_ - Q: R 13 3 .- 13 & = 13
384 384 256 100(¢
Max
256 : 096 1091
ot n pooling 4096 4096

pooling pooling

\

| I J

! !
More generic Very specific
Can be used as feature extractor to Task 1

Should be ighored
for other tasks

59



Transfer learning

* For the second task of predicting 101 categories,
(re)-train only the last layer of the neural network

Neural net trained for Task 1: cat vs. dog

55
27
13 13 13
AN
N -+
- B N | |
11 2 3
4

Use simple classifier
e.g., logistic regression,
SVMs, nearest neighbor,...

| i
More generic Very specific

Can be used as feature extractor to Task 1
Should be ignored
for other tasks

Keep weights fixed!

60
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Transfer learning

* Need to be careful about where you cut,
as latter layers may be too task specific

Too specific
for new task

Use these!

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

. Prediction
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