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Embedding high-dimensional data

Embedding high-dimensional data into lower dimensional space
helps us make sense of the data

One prominent example is data visualization

Each image is very high-dimensional (thousands or millions of
pixels, each pixel taking 3 real values, each for Red, Green, Blue

Can we give each image coordinates,
such that similar images are near each other?

Can we give each image coordinates,
such that each coordinate 1s meaningful?

—> (X,y,2,...)



e Embed each data point (an image) in 2-dimensional space (embedding)

Input tha image 2-dimensional embedding
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e Similar looking images are close together
* Horizontal coordinate corresponds to “smile”, and vertical to “rotation”

* These two properties are learned automatically
3 (because they are prominent in training data)



Word embedding

e Word embedding is extremely important application, because

 Natural Language Processing (NLP) is one of the most important
applications in machine learning with high impact
(translation, Siri, Alexa, Google home, etc.)

* Yet, words are in such a high dimensions, it is critical to find good
embedding

Seattle—> (x,y,z,...




Word embedding zoomed in shows similar words clustered together

e This shows one cluster which contain names

e Within this cluster, name of the months, name of people, name of places

are clustered together.
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Word embedding captures analogies between words,
as directions in the embedded space

Country and Capital Vectors Projected by PCA
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https://skymind.ai/wiki/word2vec

 Word Analogy
 Kking:queen::man:? woman
 house:roof::.castle:? dome
* Duilding:architect::software:?  programmer


https://skymind.ai/wiki/word2vec

Dimensionality reduction

 High dimensional input data such as books, images, videos go

through dimensionality reduction, which represents each

data in a much smaller dimensions

* We want a good representation, that captures the pattern in
the original data such as relations, clusters, distances

e 1. This can be used In training,

as lower dimensional data is faster to train
e 2. Can be used to visualize the data for human assessment

e 3. Can be used to discover the intrinsic dimensionality of data
e.g. for MNIST hand written digits, we really only need a five or

ten real values per data to represent it
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Popular idea: linear projection

 Linear projection:

e mathematical term from linear algebra

e e.g. given x=(x[1],x[2],...,x[d]), an example of a linear
projection onto 2-D might be

S [1] — 0.1x;(2] -

e In linear algebraic terminology,

I 0633@ [d]

projection is defined by a projection matrix U, such that
when a sample point x; is projected to z;, we write as
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_#awful

Linear projection

* |n this example, a data point is in 2-D, and we choose to project it to 1-D

* The projection coefficients can be visualized as a line,
and projection operation of projecting x onto z amounts to finding the

closest point on the line

* This example shows: u[1] = [4, 3]
e z=u[1]™x =4"x[1] + 3*Xx[2]

Project onto
1-dimension

— Xi=(4,1), then zi=( )

Hawesome
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Linear projection and reconstruction

o z=u[1]™x = 4*x[1] + 3"%x[2]

e Can we get back x[1],x[2] from z ?
Why?

_#awful

If z=11, then what is x?



What if we project onto 2-D?

* As long as those two projections are different
(i.e. linearly independent), we can recover the original coordinates back

e 7[1] = 4*x[1] + 3"X[2] u[1] = [4, 3]
e 7[2] = 3*x[1] - 4*X[2] ul2] = [3, -4]

&YV\/’\M

#Hawful

Perfect reconstruction!

If z=(11,2), then what is x?

 But using 2 lines does not give us dimensionality reduction that we want
. (the dimension is still 2-D)



 We ask the following fundamental question:
if | want to choose one line, which one should | choose?

e \We should choose one with less reconstruction error

Hawesome

* What is a reconstruction of z = 11 for the green line z= 4*x[1] + 3*x[2] ?
e x=(2,1), x=(33/28,44/21), (0,11/3), etc.
* \What is the reconstruction error of x=(2,1)"?
 Which one has less reconstruction error?
e Green
o, If the variation on the linear projection is large, then size of the error is small
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-#awful

If I had to choose one of these vectors, which do I prefer?

 QOver all possible lines?

e Extreme example
on a lower dimensional subspace:

Hawesome



Principal component analysis (PCA) —
Basic 1dea

Project d-dimensional data into k-dimensional space
while preserving as much information as possible:
- e.g., project space of 10000 words into 3-dimensions

Main idea:
Choose projection with minimum reconstruction error

14
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Visual explanation of PCA

http://setosa.io/ev/principal-component-analysis/

Choosing principal components

Which of the following pictures show the top two principal components (pcl, pc2) of the dataset?

P

0 5
——

= . 0 5
zZ T T T 1
-10 -5 0] 5 10
pcl T T Q 1
-10 -5 0 5 10
2 1 1
-10 -5 0 10
pc3 ,—,————-ﬁ—“
-10 -5 0 5 10

Option 3

&
< kino 7Y

Option 1

O s m— e
-10 -5 0 5 10

O S R e —
-10 -5 0 5 10

T T i e —
0 5 10

c2 0-
\\J// N
-10
10

Option 2



http://setosa.io/ev/principal-component-analysis/

Basic PCA algorithm

Form data matrix X
— Each row is a different data point...like our typical data tables

Recenter: subtract the mean from each row of X =2 X_

Spread/orientation calculation: Compute the covariance matrix x:

1 N
Zts = N Zxc,i[t]xc,i[s]
i=1

Find basis:
— Compute eigendecomposition of X
— Select (u1,ug,--- ,ux) to be eigenvectors with

Project data: Project each data point onto each vector
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Reconstruction

Using our principal components, reconstruct
observation in original domain:

21 d] = Z[1 : d] + > zlj] U

N — 1~ N~

add back subtracted mean 7= amount each principal direction



Eigenfaces [Turk, Pentland ’91]

Input images: Principal components:
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Image generation from eigenfaces

A face from
Average face weighted addition of principal components

!e reconostruction from eigenfaces
§ 3._ Real face . :
10 principal components give
a pretty good reconstruction of the face

Im




