Clustered
Clustering

SPORTS

WORLD NEWS
Why is clustering useful?

- User preference is important to learn, but challenging
- If we know a user’s preference, we can recommend better

![Bar chart showing preferences](chart.png)

I don’t just like sports!
How do we learn a person’s preference

- When the topics are not even pre-defined
- Let alone knowing which article falls into which group
- Clustering: learns this from user feedback (rating, up/down)

Use feedback to learn user preferences over topics
Clustering
• What if labels are known?
 Training set of labeled docs

• Then we can use multiclass classification methods
Clustering

• What if labels are unknown?
 • We need to uncover the structure (or pattern) from just x
 • *Cluster* is one of the most important patterns in real data
 • Finding clusters help, personalized medicine, targeted advertisement, scientific discovery, many other machine learning tasks

• Input: x_1, \ldots, x_N

• Output: cluster label for each point z_i in \{1,2,\ldots,k\}

\begin{align*}
z_{23} &= 2 \\
Z_{12} &= 1 \\
Z_6 &= 3
\end{align*}
How is a cluster defined?

- In its simplest form, a cluster (on raw data) is defined by
 - The location of the **center**
 - shape and size of the **spread**

- An important step in defining what it means to be a cluster is
- Assign each observation x_i (doc) to cluster k (topic label) if
 - **Score** under cluster k is higher than under others
 - For simplicity, often define score as **distance to cluster center** (ignoring shape)
Clustering when distance of raw data captures the clusters

- Suppose the ground truth about the clusters is as follows.
- But data we are given do not have the ground truth labels.

Easy

Impossible

In between
The structure we are looking for can be quite complicated

- If the distance in the raw data does not reflect cluster structure
K-means clustering
K-means algorithm

- k-means uses the **Score** between a data point x_i, for some i in $\{1,\ldots,N\}$ and a center μ_j, for some cluster index j in $\{1,\ldots,k\}$ which is $\text{score}(x_i, \mu_j) = \text{distance}(x_i, \mu_j)$

- Smaller score is better

- Step 0: initialize cluster centers
- Repeat
 - Step 1: closest cluster to each **data point**
 - Step 2: update **cluster center** as the mean of assigned points
• idea: given that we use Euclidean distance as score
 • If we fix the current centers μ_j, then the **nearest neighbor clustering** gives the best cluster assignments z_i's

 ![Diagram showing nearest neighbor clustering with centers μ_1, μ_2, and μ_3.]

 - $z_{23} = 2$
 - $z_6 = 3$
 - $Z_{12} = 1$

• If we fix the assignments z_i's, then **finding center** gives the best cluster centers μ_j

 ![Diagram showing finding center with centers μ_1, μ_2, and μ_3.]
If I give you a set of centers and assignments, can you tell if it resulted from running k-means until termination?
Which clustering can result from k-means?

• Can the algorithm run indefinitely? No.
• Let’s say we ran k-means algorithm with some initial centers, until the center did not change any more.
Convergence of k-means

- Global optimum
- Local optimum
- Neither
Where k-mean converges, depends on the initialization

Trial 1

Trial 2
K-means ++
A smart initialization
k-means++

- Initialization of k-means algorithm is critical to quality of local optima found
- k-means++ proposes
 - Smart initialization
 - Followed by standard k-means algorithm

Smart initialization:

1. Choose first cluster center uniformly at random from data points
2. Repeat k times
 3. For each data point x_i, compute distance d_i to nearest cluster center
 4. Choose new cluster center from amongst data points, with probability of x_i being chosen proportional to $(d_i)^2$
k-means++

- Compared to simple random initialization, where you pick \(k \) random data points as initial centers,
- smart initialization is computationally more costly
- But subsequent k-means algorithm converges faster

- overall, tends to find a better local optimum,
- And takes shorter time also

- insight about k-means++:
 - 1st step of randomly choosing on center tends to find one in the largest cluster, because there are more points
 - Subsequent sampling steps tend to find a center far from current centers
How do we measure which cluster is better?

- What does k-means algorithm assume is a better cluster?
- k-means is one way of minimizing
 \[\sum_{j=1}^{k} \sum_{i: z_i = j} ||\mu_j - x_i||_2^2 \]
 which is how much you pay for **heterogeneity**.
K-means as coordinate descent

\[
\min_{\mu_1, \ldots, \mu_k, z_1, \ldots, z_N} \sum_{j=1}^{k} \sum_{i: z_i = j} \| \mu_j - x_i \|^2_2
\]

- k-means
 - Start with random initialization of the centers (chosen from the data points)
 - Repeat
 - Fix centers and find optimal assignments (z_i’s)
 - Fix assignments and find optimal centers (\(\mu_j \)’s)
- Note that we make the objective strictly smaller every step
- The algorithm converges in finite time
Is this the best measure of clustering error?

\[
\min_{\mu_1, \ldots, \mu_k, z_1, \ldots, z_N} \sum_{j=1}^k \sum_{i: z_i = j} \left\| \mu_j - x_i \right\|_2^2
\]
What k should we use?

- Increasing k eventually overfits.

- One extreme, when $k=N$
 - Each data point is its own cluster
 - Heterogeneity is zero, and we get the best score under k-means

![Graph showing the relationship between the number of clusters k and cluster heterogeneity, with a point indicating the knee as a good choice for k.]
Real world examples

- For search, group as:
 - Ocean
 - Pink flower
 - Dog
 - Sunset
 - Clouds
 - ...

[Images of ocean, flowers, dogs, sunsets, and clouds]
Structuring web search results

• Search terms can have multiple meanings
• Example: “cardinal”

• Use clustering to structure output
• You can use it to partition patients based on medical condition, to be used in more targeted studies

• Combinations of patients and seizures are diverse

- The electrode placement is unique in each patient
- Each patient has a different number of seizures that themselves often display quite different dynamics within each seizure
- the thumbprint of each seizure with a colored box shows how a particular feature changes in each channel over the course of the seizure.
• We can place these observed signal in lower dimensional space according to their clusters, which provides important visualization and insights that can be used following clinical decisions and studies.
Amazon

• Discover product categories from purchase histories

• Or discovering groups of users
Discover similar neighborhoods

- **Task 1:** Estimate price at a small regional level
- **Challenge:**
 - Only a few (or no!) sales in each region per month
- **Solution:**
 - Cluster regions with similar trends and share information within a cluster
Discover similar neighborhoods

• Task 2: Forecast violent crimes to better task police
• Again, cluster regions and share information!
• Leads to improved predictions compared to examining each region independently
Limitations and failure modes of k-means
Learning user preferences

Set of clustered documents read by user

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Use feedback to learn user preferences over topics

- In reality, articles are not about just one topic
- HARD clustering misses nuanced soft membership
Shapes of the clusters

• K-means algorithm is essentially fitting or assuming spherically symmetric clusters because we use Euclidean distance, and all points at the same Euclidean distance are paying the same cost

\[z_i \leftarrow \arg \min_j ||\mu_j - x_i||_2^2 \]

• How can we resolve this? Use weighted Euclidean distance
Typical failure modes

- Disparate cluster sizes
- Overlapping clusters
- Different shaped/oriented clusters
• Provides soft assignments of observations to clusters (uncertainty in assignment) – e.g., 54% chance document is **world news**, 45% **science**, 1% **sports**, and 0% entertainment

• Accounts for cluster **shapes** not just **centers**

• Enables **learning weightings** of dimensions – e.g., how much to weight each word in the vocabulary when computing cluster assignment
Diffusion maps

- Non-linear dimensionality reduction

Two spirals
Hierarchical clustering
Lots of data are hierarchical in nature

- Image types
- Product categories
- Species
- Scientific concepts
• Nouns

https://index.pocketcluster.io/facebookresearch-poincare-embeddings.html
- Species
Other motivations for hierarchical clustering

- Avoid choosing # clusters beforehand

- **Dendrograms** help visualize different clustering granularities
 - No need to rerun algorithm

- Most algorithms allow user to **choose any distance metric**
 - k-means restricted us to Euclidean distance
Can often find more complex shapes than k-means or Gaussian mixture models

k-means: spherical clusters

Gaussian mixtures: ellipsoids

What about these?
Two-types of approaches

Divisive, a.k.a. top-down: Start with all data in one big cluster and recursively split.
- Example: *recursive k-means*

Agglomerative a.k.a. bottom-up: Start with each data point as its own cluster. Merge clusters until all points are in one big cluster.
- Example: *single linkage*
Divisive clustering
Divisive in pictures – level 1

• Cluster all the data into, say, 3 clusters first
Divisive in pictures – level 2

- For data in each cluster, run a new clustering algorithm of choice
Divisive: Recursive k-means

- For example, we could run k-means, recursively
Divisive choices to be made

• Which algorithm to recurse

• How many clusters per split

• When to split vs. stop
 – Max cluster size:
 number of points in cluster falls below threshold
 – Max cluster radius:
 distance to furthest point falls below threshold
 – Specified # clusters:
 split until pre-specified # clusters is reached
Agglomerative clustering
Agglomerative: Single linkage

1. Initialize each point to be its own cluster

Step 0

Step 1
2. Define distance between clusters to be:

\[\text{distance}(C_1, C_2) = \min d(x_i, x_j) \]
Agglomerative: Single linkage

3. Merge the two closest clusters

Next closest two clusters
Agglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster
Agglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster
Agglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster
4. Repeat step 3 until all points are in one cluster
Agglomerative: Single linkage

4. Repeat step 3 until all points are in one cluster
Clusters of clusters

Just like our picture for divisive clustering...
The dendrogram

• x-axis shows data points (carefully ordered)
• y-axis shows distance between pair of clusters
The dendrogram

• x axis shows data points (carefully ordered)
• y-axis shows distance between pair of clusters

Height here indicates min distance between blue pts and green pts (2 clusters)
The dendrogram

Path shows all clusters to which a point belongs and the order in which clusters merge
Extracting a partition

Choose a distance D^* at which to cut dendogram

How many clusters do we get, with threshold D^*?
Extracting a partition

Every branch that crosses D^* becomes a separate cluster
Agglomerative choices to be made

- Distance metric: \(d(x_i, x_j) \)
- Linkage function: e.g., \(\min_{x_i \text{ in } C_1, x_j \text{ in } C_2} d(x_i, x_j) \)
- Where and how to cut dendrogram
More on cutting dendrogram

• For visualization, smaller # clusters is preferable
• For tasks like outlier detection, cut based on:
 – Distance threshold
 – Inconsistency coefficient
• Compare height of merge to average merge heights below
• If top merge is substantially higher, then it is joining two subsets that are relatively far apart compared to the members of each subset internally
• Still have to choose a threshold to cut at, but now in terms of "inconsistency" rather than distance
• No cutting method is "incorrect", some are just more useful than others
Computational considerations

• Computing all pairs of distances is expensive
 – Brute force algorithm is $O(N^2 \text{log}(N))$

• Smart implementations use triangle inequality to rule out candidate pairs

• Best known algorithm is $O(N^2)$
Statistical issues

Chaining: Distant points clustered together if there is a chain of pairwise close points between

Other linkage functions can be more robust, but restrict the shapes of clusters that can be found

- Complete linkage: max pairwise distance between clusters
- Ward criterion: min increase in within-cluster variance at each merge