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Recall Regression
• Recall parametric models for regression

• A parametric model is fitting data with a model defined by a 

fixed number of parameters, independent of data size
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Constant model Quadratic model

Higher degree polynomial model
When real data is not a polynomial,  
and polynomial fit can be mis-leading

Oftentimes local structures better capture the trends



• How can we capture local structures ? 
(similarities and patterns among near-by data points)


• Use nearest neighbors
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Nearest Neighbor methods  
for regression
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Fit locally to training data

• 1-nearest neighbor regression

• Predict a value y using the nearest neighbor’s label


• This is what people naturally do all the time

• Real estate agents assess value of home using  

recent houses sale prices on similar houses
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1-nearest neighbor regression
• input: 

• Training data (x1,y1), … , (xN,yN)

• Query point xq


• output: prediction yq

• 1. Find the nearest neighbor xnn of xq


• 2. Predict using ynn
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1-nearest neighbor regression visualized
• Decision rules of 1-Nn regression can be visualized as a 

Voronoi tesselation

• This is never explicitly computed when using -NN regression 

for prediction

• But good for understanding what is going on
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Voronoi tesselation
(or diagram):
- Divide space into N regions, 

each containing 1 datapoint
- Defined such that any x in 

region is “closest” to region’s 
datapoint



Different distance metrics lead to different prediction surfaces
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Euclidean distance Manhattan distance

Manhattan distance

Euclidean distance



1-nearest neighbor classification
• Exactly same algorithm for 1-nearest neighbor 

classification
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1-nearest neighbor regression
• Weaknesses

• Inaccurate if sparse data

• Can wildly overfit
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Fit looks good for data dense 
in x and low noise
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Not great at interpolating 
over large regions…
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Model complexity
• A pretty good guess for complexity of a model is

• How many real values do I need to tell you in order to 

explain my model?

• For example, a degree 5 polynomial requires 6 numbers  

(= the number of parameters, if it is a parametric model)


• What is the “complexity” of a 1-nearest neighbor 
regression?

• I have to give you all N data points

• The complexity grows with N 
• Such models are called non-parametric models
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parametric models  
can over fit too,  
and we used regularization

How do we regularize 
non-parametric  
models?
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k-Nearest Neighbor methods 



k-nearest neighbor methods
• Insight: 

• using more nearest neighbor should be more robust to 

noise 


• Input: 

• Train data (x1,y1),…,(xN,yN)

• Query point xq


• 1. Find k closest xi to xq

• 2. Predict using the average of the labels of those points

•
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$ = ???
$ = 850k

$ = 749k

$ = 833k
$ = 901k



k-nearest neighbor search

!14

• Query house:

• Dataset:

• Specify: Distance metric
• Output: Most similar houses



k-nearest neighbor algorithm
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Initialize Dist2kNN = sort(δ1,…,δk)        
= sort(      ,…,      )

For i=k+1,…,N
Compute: δ = distance(        ,         )

If δ < Dist2kNN[k]
find j such that δ > Dist2kNN[j-1] but δ < Dist2kNN[j]
remove furthest house and shift queue:

[j+1:k] =      [j:k-1]     
Dist2kNN[j+1:k] = Dist2kNN[j:k-1] 

set Dist2kNN[j] = δ and       [j] = 
Return k most similar houses 

i

query house

closest houses to 
query house

q

i

1 k

sort first k houses by distance to query house

list of sorted distances

list of sorted houses



k-nearest neighbor in practice
• 1-nearest neighbor predictor
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• 30-nearest neighbor predictor

• Averaging over larger k reduces variance 
making it robust to noise


• But increases bias 
which is particularly prominent at the 
boundaries and for large k 

• still discontinuous (as a neighbor is in or out)



Discontinuous predictions are bad…
• If you care about accuracy, it does not matter that much

• but, if you are pricing your house, then it is very sensitive 

at the discontinuous point, for example 2640sq.ft. vs 
2641sq.ft


• This seems unrealistic or unintuitive
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Solution to discontinuity
• Weighted k-nearest neighbors

• idea:

• Weigh each neighbor according to how similar it is to the 

query


• We want the weights to satisfy


• What would be a good choice?
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cqNNj

cqNN1yNN1 + cqNN2yNN2 + cqNN3yNN3 +…+ cqNNkyNNk

kX

j=1

ŷq =

weights on NN

Want weight cqNNj to be small when
  distance(xNNj,xq) large

and cqNNj to be large when
  distance(xNNj,xq) small



Kernel methods
• Give weight according to some function fo the distance,  

which is inversely related with the distance

• Such functions are called kernel functions

• Example with 1-dimensional x

Define: cqNNj = Kernelλ(|xNNj-xq|)

0-λ λ (|xNNj-xq|) 

Gaussian kernel:
Kernelλ(|xi-xq|) = exp(-(xi-xq)2/λ)

Note: never exactly 0!

•     is called bandwidth 
and is a hyper parameter  
controlling the width  
of the kernel


• Play similar role as k  
in k-nearest neighbor

λ



Kernel with d>1
• Use a choice of distance as input to the kernel
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Define: cqNNj = Kernelλ(distance(xNNj,xq))

0-λ λ



!21

Kernel regression



k-NN vs. kernel
• Weighted k-nearest neighbor

• Take only k-nearest neighbors

• Weigh them according to similarity 

 
prediction:
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cqNNj

cqNN1yNN1 + cqNN2yNN2 + cqNN3yNN3 +…+ cqNNkyNNk

kX

j=1

ŷq =

weights on NN

• Kernel regression

• Take all points

• Weigh them with kernel 

 
prediction:

ŷq =

weight on each datapoint

cqi

cqiyi

NX

i=1

NX

i=1

Kernelλ(distance(xi,xq))

Kernelλ(distance(xi,xq)) * yi

NX

i=1

NX

i=1= 

Nadaraya-Watson 
kernel weighted 

average 



Kernel regression in practice
• Bandwidth lambda is 0.2

• The kernel has bounded support
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How to choose bandwidth lambda
• Often, choice of kernel matters much less than choice of lambda


• Use cross validation to choose bandwidth lambda and/or k in k-
nearest neighbor
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kernel

• Small bandwidth 
results in 
fluctuations and 
sensitivity to noise

• Large bandwidth 
results in 
oversmoothing and 
large bias



Local fit
• Both k-NN and kernel regression are embodying a idea of local fit 
• For example, a global constant fit will be


• We can use kernel to do a local constant fit, for example  
(and make it smooth by using smooth kernels)
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ŷq =
Kernelλ(distance(xi,xq))

Kernelλ(distance(xi,xq)) * yi
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You can take this idea of local fit further
• And combine local methods (k-NN or kernel regression) 

and global methods () we learned so far


• So far, we fit constant function locally at each point 
-> locally weighted average 

• We can instead fir a polynomial locally at each point 
-> locally weighted linear regression (with polynomial features) 

-Local linear fit reduces bias at boundaries with minimum increase in 
variance

-Local quadratic fit doesn’t help at boundaries and increases variance, 
but does help capture curvature in the interior
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Recommended default choice: 
local linear regression
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Non-parametric regression



Non-parametric approaches
• K-nearest neighbor method and kernel regression 

requires one to store all training data points to   
store the predictor


• This requires storage space scaling proportional to N,  
the number of samples in training data


• Such models are called non-parametric

• They are

• Flexible

• Make few assumptions about the true f(x)

• Complexity of storing the predictor and making 

prediction grows with N


• There are many other examples: 

• splines, locally weighted structures, etc
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How does nearest neighbor method behave?

• To answer this question, people looked at the case  
where the number of training examples N grows to infinity


• Such process of analyzing in the limit is called 
asymptotic analysis


• For example, even with k=1, as N goes to infinity,  
and let’s say there is no noise in the training data, i.e. 
y=f(x) for some nice function f(x)

• Then the MSE (Mean Squared Error) goes to zero as N 

grows
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• This is not true for parametric models

• Parametric models have non-zero test error,  

even when there is no noise in training data 
and N goes to infinity
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When there is noise, 
• In the limit of getting infinite data,  

MSE (Mean Squared Error) goes to zero,  
if k grows with N (usually choose k= log N)

!31

1-NN fit 200-NN fit Quadratic fit

• Parametric model 
had non-vanishing  
error

• Non-parametric model  
with large enough k 
has vanishing error

• Non-parametric  
model with  
small k 
have non-vanishing  
error



Is non-parametric perfect?
• Non-parametric methods require sample size N>exp(d), 

when data x is in d dimensions

• because, samples have to cover the volume of the space


• So depending on the sample size

• If it is less, parametric models work better

• If it is plenty, non-parametric models work well


• Non-parametric methods build upon local structure

• Nearest neighbor search is central building block

• Exact k-NN search takes N log(k) time

• Can be improved with 

• KD-trees

• Locality Sensitive Hashing
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