
Nearest Neighbor Methods

Sewoong Oh

CSE/STAT 416

University of Washington

Recall Regression
• Recall parametric models for regression

• A parametric model is fitting data with a model defined by a

fixed number of parameters, independent of data size

!2

y

sq.ft.

pr
ice

 ($
)

x

y

sq.ft.

pr
ice

 ($
)

x

y

sq.ft.

pr
ice

 ($
)

x

y

sq.ft.

pr
ice

 ($
)

x

Constant model Quadratic model

Higher degree polynomial model
When real data is not a polynomial,  
and polynomial fit can be mis-leading

Oftentimes local structures better capture the trends

• How can we capture local structures ? 
(similarities and patterns among near-by data points)

• Use nearest neighbors

!3

Nearest Neighbor methods
for regression

!4

Fit locally to training data

• 1-nearest neighbor regression

• Predict a value y using the nearest neighbor’s label

• This is what people naturally do all the time

• Real estate agents assess value of home using  

recent houses sale prices on similar houses
!5

y

sq.ft.
pr

ice
 ($

)
x

Here
, th

is i
s

th
e c

los
es

t

da
tap

oin
t

Here, this is the
closest
datapoint

He
re

, t
his

 is

th
e c

los
es

t
da

ta
po

int

Here, th
is i

s th
e

clo
sest

data
point

y

sq.ft.

pr
ice

 ($
)

x

1-nearest neighbor regression
• input:

• Training data (x1,y1), … , (xN,yN)

• Query point xq

• output: prediction yq

• 1. Find the nearest neighbor xnn of xq

• 2. Predict using ynn

!6

Here
, th

is i
s

the
 cl

os
es

t

da
tap

oin
t

Here, this is
the closest
datapoint

He
re

, t
his

is

th
e

clo
se

st
da

ta
po

int

Here, th
is i

s

the clo
sest

data
point

y

sq.ft.

pr
ice

 ($
)

x

1-nearest neighbor regression visualized
• Decision rules of 1-Nn regression can be visualized as a

Voronoi tesselation

• This is never explicitly computed when using -NN regression

for prediction

• But good for understanding what is going on

!7

Voronoi tesselation
(or diagram):
- Divide space into N regions,

each containing 1 datapoint
- Defined such that any x in

region is “closest” to region’s
datapoint

Different distance metrics lead to different prediction surfaces

!8

Euclidean distance Manhattan distance

Manhattan distance

Euclidean distance

1-nearest neighbor classification
• Exactly same algorithm for 1-nearest neighbor

classification

!9

1-nearest neighbor regression
• Weaknesses

• Inaccurate if sparse data

• Can wildly overfit

!10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Nearest Neighbors Kernel (K = 1)

Fit looks good for data dense
in x and low noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Nearest Neighbors Kernel (K = 1)

Not great at interpolating
over large regions…

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Nearest Neighbors Kernel (K = 1)

Fits can look quite wild…
Overfitting?

Model complexity
• A pretty good guess for complexity of a model is

• How many real values do I need to tell you in order to

explain my model?

• For example, a degree 5 polynomial requires 6 numbers  

(= the number of parameters, if it is a parametric model)

• What is the “complexity” of a 1-nearest neighbor
regression?

• I have to give you all N data points

• The complexity grows with N
• Such models are called non-parametric models

!11

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Nearest Neighbors Kernel (K = 1)

parametric models  
can over fit too,  
and we used regularization

How do we regularize 
non-parametric  
models?

!12

k-Nearest Neighbor methods

k-nearest neighbor methods
• Insight:

• using more nearest neighbor should be more robust to

noise

• Input:

• Train data (x1,y1),…,(xN,yN)

• Query point xq

• 1. Find k closest xi to xq

• 2. Predict using the average of the labels of those points

•

!13

$ = ???
$ = 850k

$ = 749k

$ = 833k
$ = 901k

k-nearest neighbor search

!14

• Query house:

• Dataset:

• Specify: Distance metric
• Output: Most similar houses

k-nearest neighbor algorithm

!15

Initialize Dist2kNN = sort(δ1,…,δk)
= sort(,…,)

For i=k+1,…,N
Compute: δ = distance(,)

If δ < Dist2kNN[k]
find j such that δ > Dist2kNN[j-1] but δ < Dist2kNN[j]
remove furthest house and shift queue:

[j+1:k] = [j:k-1]
Dist2kNN[j+1:k] = Dist2kNN[j:k-1]

set Dist2kNN[j] = δ and [j] =
Return k most similar houses

i

query house

closest houses to
query house

q

i

1 k

sort first k houses by distance to query house

list of sorted distances

list of sorted houses

k-nearest neighbor in practice
• 1-nearest neighbor predictor

!16

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Nearest Neighbors Kernel (K = 30)

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Nearest Neighbors Kernel (K = 1)

• 30-nearest neighbor predictor

• Averaging over larger k reduces variance 
making it robust to noise

• But increases bias 
which is particularly prominent at the
boundaries and for large k

• still discontinuous (as a neighbor is in or out)

Discontinuous predictions are bad…
• If you care about accuracy, it does not matter that much

• but, if you are pricing your house, then it is very sensitive

at the discontinuous point, for example 2640sq.ft. vs
2641sq.ft

• This seems unrealistic or unintuitive

!17

Solution to discontinuity
• Weighted k-nearest neighbors

• idea:

• Weigh each neighbor according to how similar it is to the

query

• We want the weights to satisfy

• What would be a good choice?
!18

cqNNj

cqNN1yNN1 + cqNN2yNN2 + cqNN3yNN3 +…+ cqNNkyNNk

kX

j=1

ŷq =

weights on NN

Want weight cqNNj to be small when
 distance(xNNj,xq) large

and cqNNj to be large when
 distance(xNNj,xq) small

Kernel methods
• Give weight according to some function fo the distance,  

which is inversely related with the distance

• Such functions are called kernel functions

• Example with 1-dimensional x

Define: cqNNj = Kernelλ(|xNNj-xq|)

0-λ λ (|xNNj-xq|)

Gaussian kernel:
Kernelλ(|xi-xq|) = exp(-(xi-xq)2/λ)

Note: never exactly 0!

• is called bandwidth 
and is a hyper parameter  
controlling the width  
of the kernel

• Play similar role as k  
in k-nearest neighbor

λ

Kernel with d>1
• Use a choice of distance as input to the kernel

!20

Define: cqNNj = Kernelλ(distance(xNNj,xq))

0-λ λ

!21

Kernel regression

k-NN vs. kernel
• Weighted k-nearest neighbor

• Take only k-nearest neighbors

• Weigh them according to similarity 

 
prediction:

!22

cqNNj

cqNN1yNN1 + cqNN2yNN2 + cqNN3yNN3 +…+ cqNNkyNNk

kX

j=1

ŷq =

weights on NN

• Kernel regression

• Take all points

• Weigh them with kernel 

 
prediction:

ŷq =

weight on each datapoint

cqi

cqiyi

NX

i=1

NX

i=1

Kernelλ(distance(xi,xq))

Kernelλ(distance(xi,xq)) * yi

NX

i=1

NX

i=1=

Nadaraya-Watson
kernel weighted

average

Kernel regression in practice
• Bandwidth lambda is 0.2

• The kernel has bounded support

!23 0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Epanechnikov Kernel (lambda = 0.2)

How to choose bandwidth lambda
• Often, choice of kernel matters much less than choice of lambda

• Use cross validation to choose bandwidth lambda and/or k in k-
nearest neighbor

!24

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Epanechnikov Kernel (lambda = 0.4)

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Epanechnikov Kernel (lambda = 0.04)

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Epanechnikov Kernel (lambda = 0.2)
λ = 0.04 λ = 0.4

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Boxcar Kernel (lambda = 0.2)
λ = 0.2

Boxcar
kernel

• Small bandwidth 
results in
fluctuations and
sensitivity to noise

• Large bandwidth 
results in
oversmoothing and
large bias

Local fit
• Both k-NN and kernel regression are embodying a idea of local fit
• For example, a global constant fit will be

• We can use kernel to do a local constant fit, for example  
(and make it smooth by using smooth kernels)

!25

ŷq =

equal weight on each datapoint

c

c yi

NX

i=1

NX

i=1

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Boxcar Kernel (lambda = 1)

yi

NX

i=1

1
N =

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Boxcar Kernel (lambda = 0.2)

ŷq =
Kernelλ(distance(xi,xq))

Kernelλ(distance(xi,xq)) * yi

NX

i=1

NX

i=1

0 0.1 0.2 0.3 0.4 x0 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

1.5

 f(x0)

Epanechnikov Kernel (lambda = 0.2)

You can take this idea of local fit further
• And combine local methods (k-NN or kernel regression) 

and global methods () we learned so far

• So far, we fit constant function locally at each point 
-> locally weighted average

• We can instead fir a polynomial locally at each point 
-> locally weighted linear regression (with polynomial features)

-Local linear fit reduces bias at boundaries with minimum increase in
variance

-Local quadratic fit doesn’t help at boundaries and increases variance,
but does help capture curvature in the interior

!26

Recommended default choice:
local linear regression

!27

Non-parametric regression

Non-parametric approaches
• K-nearest neighbor method and kernel regression 

requires one to store all training data points to  
store the predictor

• This requires storage space scaling proportional to N,  
the number of samples in training data

• Such models are called non-parametric

• They are

• Flexible

• Make few assumptions about the true f(x)

• Complexity of storing the predictor and making

prediction grows with N

• There are many other examples:

• splines, locally weighted structures, etc

!28

How does nearest neighbor method behave?

• To answer this question, people looked at the case  
where the number of training examples N grows to infinity

• Such process of analyzing in the limit is called
asymptotic analysis

• For example, even with k=1, as N goes to infinity,  
and let’s say there is no noise in the training data, i.e.
y=f(x) for some nice function f(x)

• Then the MSE (Mean Squared Error) goes to zero as N

grows

!29
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Nearest Neighbors Kernel (K = 1)

Fit looks good for data dense
in x and low noise

• This is not true for parametric models

• Parametric models have non-zero test error,  

even when there is no noise in training data 
and N goes to infinity

!30 # data points in training set

Er
ro

r

When there is noise,
• In the limit of getting infinite data,  

MSE (Mean Squared Error) goes to zero,  
if k grows with N (usually choose k= log N)

!31

1-NN fit 200-NN fit Quadratic fit

• Parametric model 
had non-vanishing  
error

• Non-parametric model  
with large enough k 
has vanishing error

• Non-parametric  
model with  
small k 
have non-vanishing  
error

Is non-parametric perfect?
• Non-parametric methods require sample size N>exp(d), 

when data x is in d dimensions

• because, samples have to cover the volume of the space

• So depending on the sample size

• If it is less, parametric models work better

• If it is plenty, non-parametric models work well

• Non-parametric methods build upon local structure

• Nearest neighbor search is central building block

• Exact k-NN search takes N log(k) time

• Can be improved with

• KD-trees

• Locality Sensitive Hashing

!32

