Nearest Neighbor Methods

Sewoong Oh

CSE/STAT 416
University of Washington

Recall Regression

* Recall parametric models for regression

* A parametric model is fitting data with a model defined by a
fixed number of parameters, independent of data size

YA

Y4 Constant model Quadratic model 0
o 2
¢ o
Q@ /0
@@ - i
N ¢ v Q0
Qv & - U v O e
=) OO = o ,\O
B_ OOO Q) .
OO o
® @)
>
>
sq.ft. X sq.ft. X
When real data is not a polynomial,
yl-Aigher degree polynomial model and polynomial fit can be mis-leading
9 Y4
C
©
@) O
o
& §° ’
- a ¢ _
Q (\OO‘O()OOQOOO N L 0 .0 ® o
O "y Q ¢ 0©
S 0 %0 L:’
OO o
o @)
f X »
sq.ft. g

ft.
Oftentimes local structursgs better capture the trends

* How can we capture local structures ?
(similarities and patterns among near-by data points)

 Use nearest neighbors

Nearest Neighbor methods
for regression

Fit locally to training data

* 7-nearest neighbor regression
* Predict a value y using the nearest neighbor’s label

Y 4
yA
@)
— ®)
— %\Q/ n °
~— & &P QO O oOoOOOooooo
Q Q}Q/\Q\’o 'o\’\\ Q}Q/‘Q,‘}é\é& O o ®
2| 5 9 RS (5 .
S_ ° o ° Here, this is the o
\»‘S\,,‘,Z‘f"u O closest
O KA $ datapoint
g
5§
>
sq.ft. X sq.ft.

* This is what people naturally do all the time

* Real estate agents assess value of home using
recent houses sale prices on similar houses

1-nearest neighbor regression

input:

e Training data (x1,y1), ..., (XN,YN)
e Query point Xq

output: prediction yq

1. Find the nearest neighbor xnn of Xq

2. Predict using ynn

<
>

price (S)

1-nearest neighbor regression visualized

e Decision rules of 1-Nn regression can be visualized as a

Voronol tesselation

* This is never explicitly computed when using -NN regression

for prediction

e But good for understanding what is going on

Voronoi tesselation

(or diagram):

— Divide space into N regions,
each containing 1 datapoint

— Defined such that any x in
region is “closest” to region’s
datapoint

Different distance metrics lead to different prediction surfaces

uclidean distance

Manhattan distance

>

Euclidean distance Manhattan distance

1-nearest neighbor classification

 Exactly same algorithm for 1-nearest neighbor
classification

1.4

1.2

0.8

0.6

0.4

0.2

10

1-nearest neighbor regressi

* \Weaknesses
e |naccurate if sparse data
e Can wildly overfit

Nearest Neighbors Kernel (K = 1)

Fit looks good for data dense

in x and low noise

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

121

0.8

0.6

0.4

0.2

on

Nearest Neighbors Kernel (K = 1)
T T T

Not great at interpolating
over large regions...

!
0.1

!
0.2

!
0.3

! ! ! ! ! !
0.4 0.5 0.6 0.7 0.8 0.9 1

Nearest Neighbors Kernel (K = 1)
T

i Fits can look quite wild...
N

Overfitting?

(x

!
0.1

!
0.2

!
0.3

! ! ! ! !
0.4 x0 0.6 0.7 0.8 0.9 1

Model complexity

e A pretty good guess for complexity of a model is
e How many real values do | need to tell you in order to

explain my model?

* For example, a degree 5 polynomial requires 6 numbers
(= the number of parameters, if it is a parametric model)

How do we regularize-

non-parametric

models?

eeeeeeeeeeeeeeeeeeeeee (K=
T T T

e —— Y
- '~ &
T T TN Y
N ‘

1)
T

\\

parametric models
can over fit too,
and we used regularization

* What is the “complexity” of a 1-nearest neighbor

regression?

* | have to give you all N data points
* The complexity grows with N
* Such models are called non-parametric models

11

12

k-Nearest Neighbor methods

13

k-nearest neighbor methods

* Insight:

e using more nearest neighbor should be more robust to
noise

e |nput:

e Query point xq
1. Find k closest xi to xq
e 2. Predict using the average of the labels of those points

14

k-nearest neighbor search

* Query house:

e Dataset:

e Specify: Distance metric

. i , X X
* Output: Most similar houses gh.\ %.\ é"\ gh.‘

15

k-nearest neighbor algorithm

sort first k houses by distance to query house

Initialize Dist2kNN = sort(d,,...,0,) <— list of sorted distances

//\ /N :
= SOrt(N, @R <— list of sorted houses

For i=k+1,...,N \ query house
Compute: & = distance(L A
If O < Dist2kNN[K]
find j such that O > Dist2kNN[j-1] but O < Dist2kNN[j]
remove furthest house and shift queue:
AG+1k = k1)
Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
set Dist2kNN[j] = ® and /ﬁl
Return k most similar houses #&

<«— closest houses to
query house

B s e

k-nearest neighbor in practice

* 1-nearest neighbor predictor

Nearest Neighbors Kernel (K = 1)

0.5 "

I
\..

0.2 0.3

16

 30-nearest neighbor predictor

Nearest Neighbors Kernel (K = 30)

T T T T T T T T T

1.5F ® o © .
O 8
o)
Oo)
) |
B
()
oC .
O N
o) o ©
O od
o)
o)
o)
%
-0.5+

-1+ 5 .

O

| | | | | | | | |
0 0.1 0.2 0.3 04 x0 0.6 0.7 0.8 0.9 1

Averaging over larger k reduces variance
making it robust to noise

But increases bias
which is particularly prominent at the
boundaries and for large k

still discontinuous (as a neighbor is in or out)

17

Discontinuous predictions are bad...

* |f you care about accuracy, it does not matter that much

e but, if you are pricing your house, then it is very sensitive
at the discontinuous point, for example 2640sq.ft. vs
2641sq.ft

e This seems unrealistic or unintuitive

Solution to discontinuity

* Weighted k-nearest neighbors

e idea:
 Weigh each neighbor according to how similar it is to the
query weights on NN
R CannaYnNT t Coannz2Ynnz F ConnzYnns FeF ConnkYnnk
Yq =

k
E :CqNNJ
j=1

* We want the weights to satisfy

Want weight cqnnj to be small when and cqnNj to be large when

distance(xnnj,Xq) large distance(xnnj,Xq) small

. " What would be a good choice?

Kernel methods

* Give weight according to some function fo the distance,
which is inversely related with the distance

e Such functions are called kernel functions

e Example with 1-dimensional x * A Is called bandwiadth
and is a hyper parameter
controlling the width

of the kernel
e Play similar role as k

Define: cqyy; = Kernely (| xynjq)

— Uniform in k-nearest neighbor
1.0} - Triangle
\ - Epanechnikov
Quartic
— Triweight
081 \ Gaussian
~ Cosine Kernely(1x-Xq|) = exp(-(x;-%4)2/\)

0.6

0.4

0.2- \\&
0.0} -
1 1 | | |

Kernel with d>1

 Use a choice of distance as input to the kernel

Define: c yy; = Kernel, (distance(xyy;, X))

1.0

0.8

Cosine

1 A%
/) \

a0 A

21

Kernel regression

k-NN vs. kernel

* Weighted k-nearest neighbor
* Take only k-nearest neighbors

* Weigh them according to similarity

prediction:

weights on NN

CanniYnN1 T Conn2Ynn2 T ConnzYnnz et ConnkY NNk

yq = k
D _Can
j=1

22

o Kernel regression
 Take all points
e Weigh them with kernel

prediction:

weight on each datapoint

/

N N
Z CaiYi Z Kernel, (distance(x;,x,)) * v,

N
Zcqi ZKerneIA(distance(xi,xq))

Ygq=

A 1=1 1=1

Nadaraya-Watson

kernel weighted
average

1.5

Kernel regression in practice

e Bandwidth lambda is 0.2
e The kernel has bounded support

Epanechnikov Kernel (lambda = 0.2)

How to choose bandwidth lambda

e Often, choice of kernel matters much less than choice of lambda

e Small bandwidth e Large bandwidth

results in results in
fluctuations and oversmoothing and
sensitivity to noise large bias

e Use cross validation to choose bandwidth lambda and/or k in k-

nearest neighbor
24

Local fit

e Both k-NN and kernel regression are embodying a idea of local fit

e For example, a global constant fit will be |
equal weight on each datapoint

ZN 4
N C y| Boxcar Kernel (lambda = 1)
} 151) o ©
N 1 1=1
y — EE— yi — o OO 80 le)
—— —— O
q N N 1h o 2
(@] © < O
o o o 00 o
O

1=1
)
1=1

e We can use kernel to do a local constant fit, for example
(and make it smooth by using smooth kernels)

N
Z Kernel,(distance(x;,X,)) * Vi

N 1=1

Yq =

N
ZKernelx(distance(xi,xq))
i=1

25

20

You can take this idea of local fit further

e And combine local methods (k-NN or kernel regression)
and global methods () we learned so far

e So far, we fit constant function locally at each point
-> locally weighted average

e We can instead fir a polynomial locally at each point
-> locally weighted linear regression (with polynomial features)

-Local linear fit reduces bias at boundaries with minimum increase In
variance

-Local quadratic fit doesn’t help at boundaries and increases variance,
but does help capture curvature in the interior

Recommended default choice:

local linear regression

27

Non-parametric regression

28

Non-parametric approaches

K-nearest neighbor method and kernel regression
requires one to store all training data points to
store the predictor

This requires storage space scaling proportional to N,
the number of samples in training data

Such models are called non-parametric
They are

 Flexible

e Make few assumptions about the true f(x)

e Complexity of storing the predictor and making
prediction grows with N

There are many other examples:
e splines, locally weighted structures, etc

29

How does nearest neighbor method behave?

* Jo answer this question, people looked at the case
where the number of training examples N grows to infinity

 Such process of analyzing in the limit is called
asymptotic analysis

 For example, even with k=1, as N goes to infinity,
and let’s say there is no noise in the training data, I.e.
y=f(x) for some nice function f(x)

e Then the MSE (Mean Squared Error) goes to zero as N
grOWS | | | Neare?tNeighborsKerneI szU |

,@“’9& Fit looks good for data dense

in x and low noise

* This is not true for parametric models

e Parametric models have non-zero test error
even when there is no noise in training data
and N goes to infinity

Error

« X ‘p xS
) \
e x nose

o\, VY

N

. w. . .
30 # data pomts in tramlng set vt e £

When there Is noise,

* |n the limit of getting infinite data,
MSE (Mean Squared Error) goes to zero,
if K grows with N (usually choose k= log N)

Nearest Neighbors Kernel (K = 200) Quadratic Regression
T

Nearest Neighbors Kernel (K = 1)

[oN

1 1 1 1 Il 1 Il 1 1

0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 1 1 L Il 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1-NN fit . 200-NN fit Quadratic fit
e Non-parametric
model with * Non-parametric model ¢ Parametric model
small k with large enough k had non-vanishing
have non-vanishing has vanishing error error

31 error

32

Is non-parametric perfect?

 Non-parametric methods require sample size N>exp(d),
when data x is in d dimensions

* because, samples have to cover the volume of the space

* So depending on the sample size
e |fitis less, parametric models work better
e |fitis plenty, non-parametric models work well

e Non-parametric methods build upon local structure
* Nearest neighbor search is central building block
 Exact k-NN search takes N log(k) time
e Can be improved with

o KD-trees
e [ocality Sensitive Hashing

