Nearest Neighbor Search

Sewoong Oh

CSE/STAT 416
University of Washington

Machine Learning

* Supervised Learning: predict y from x
* Regression

* @Given training data {(x,y)}, with continuous v,
learn f(x)~y

e (Classification

e @Given training data {(x,y)}, with categorical v,
learn f(x)~y

* Unsupervised Learning: find pattern in x
* Clustering

e Given training data {x},
group similar data points together

e Recommendation systems/Collaborative filtering

* @iven training data {x} with missing values,
fill in the missing values

,® ldea: build a model of the data to solve these tasks

Embedding

e The raw data u is embedded into a feature vector x
e \We build a data model for the feature vectors
* We un-embed when needed, to go back to raw u

Exa

mple: retrieving document

e (Consider a scenario where you read a book, and want to find a

boo

K similar to it (Amazon has to solve such tasks)

e (Challenges:

e How should one measure similarity?
* There are so many books (data points)

* Nearest neighbor search is used as a black-box tool for many
tasks in regression, classification, clustering, and recommendation

syst

ems

* \We want to organize all books by similarity of the content
such that it is easy to find nearest neighbors

l l B
T e ~—— |~; i | =

=\ = queryartie] = —

nearest neighbor

Nearest Neighbor methods

1-Nearest Neighbor

e |nput:
* Xg. query example
* Xi, ..., XN: Corpus of examples

e Qutput: Most similar example

e Find
z"" = arg min distance(z,, ;)
1€ [N]
z"" € arg min distance(x,, x;)
1€[N]

where [N| ={1,2,--- , N} is the set of first N integers

* Proper definition of a distance function is critical
s which is related to proper representation of the document

Run time

* How long does it take to find 1-NN (one nearest neighbor)?
N operations are necessary

e Pseudo code
* |nitialize Distance2NN=infinity
e |nitialize NN=0
e Fori=1,2,...,N
e D <- distance(Xq,Xi)
e |f d<Distance2NN
e NN<-|
e Distance2NN <-d

K-nearest neighbor

* Find a list of k similar examples

" = {x", ..., 2"} such that

max diatance(x,,z;) < min distance(zg, ;)

xr;EXTT x; not in x™"

 This takes kN operations
e |nitialize

o Dist2kNN<-

e kNN <- ——— ———
o |f i B ——

qguery article

Representation and
distance (similarity)

10

Representing a Document as a vector

e Bag-of-words (BoG)
e |gnore order of words
e Count the number of occurrences

e Size of the vector = number of words in a vocabulary
e.g. 171,476 for English, 370,000 for Chinese

* Main challenge

e Common words like “the” or “have” dominate
Uncommon words

e Oftentimes the uncommon words are more relevant to
figuring out which documents are similar

TF-IDF representation of documents

Emphasizes important words

— Appears frequently in document ()

Term frequency = word counts

— Appears rarely in corpus ()

| oot . T # docs
nverse doc ireq. = [= 1 + # docs using WOTd:l\

tf * idf

* TF captures how common that word is in that document
* |DF measures how rare that word is in all corpus
* For example,
* “the” would have IDF~0
 “Euclidean” would have IDF large
e (use of) rare words distinguishes the document from others

* TF-IDF score of a document is the point-wise multiplication of TF and IDF
11

Distance

e 1-dimensional case (any distance is a monotonic function of this)

distance(x,, x;) = |z, — =4
e multi-dimensional case

distance(x,, ;) = d(x4[1], 2;[1]) + - - - + d(x, D], ;| D))

 FEuclidean distance (L2 distance)
distance(z,, x;) = \/(x4[1] — zi[1])2 + - - - + (24[D] — x| D])?
e Manhattan distance (L1 distance)
distance(zy, x;) = |zq[1] — z;i[1]| + - - - + |x4| D] — z;| D]
e Hamming
distance(zy, x;) = I(x4|1] # x;[1]) + - - - + (x4 | D] # x;| D))
e (Challenge in practice:

 \What unit we use for each feature, changes the distance
dramatically

12

13

Weighted distances

* Some features vary more than others
 Changing units should not change the distance

bedrooms

bathrooms
sq.ft. living
sq.ft. lot

floors

year built

year renovated
waterfront

* One should weight each dimension differently

Small changes . .
o OOO) matter more X SDECIfy WelghtS dasS

o0 4 a function of
o~ o o

@)
v 00 Big changes feature spread
§ o, goooo matter less

e y

0.0 0% : 1
A For feature j: Sl .
- > max;(x;[j])-min;(x;[j])

 Weighted Euclidean distance
(this is coordinate-wise homogeneous)

_aj

distance(z, x;) \/al Tqll] — zi(1])? + - + ap (x4 D] — x;[D])?

Cosine similarity

* How strongly correlated are the two vectors?
 Related to inner product, correlation,...

1000530010000 Similarity 1000530010000

=x.Tx Similarity

5> 1 7d > -0
3/0/0/0/2/0/0/1]0/1]0/0lo] =2{1%:[] 0010009006040

" =

. Cosme S|m|Iar|ty normalizes each vector
Tq[llai[l]4--+xq
Vg1 4 Faq[D]12y /i [1)2 4+ [D]?

similarity (x,, x;) =

,
* |s this homogeneous?

Feature 2

®

Feature 1

Should we normalize or not?

e (unnormalized) similarity
similarity(z,, x;) = z4|1|x;[1] + - - - + 24| D]z; | D]
e Cosine similarity

similarity(z,, x;) = z4[1)x;[1]+-+x4[D]z;[D]

V@124 424[D2 /i [1]2 4+ +a; [D]

* Normalization helps when documents of different size

3 100ng049_\}9 0 6200400202000

~
U
)

Cosine Similarity = 13/24

15

* Normalization undesired when comparing documents of
different sizes

[
short tweet

Normalizing can
make dissimilar
objects appear more

long document similar

P — . 8 e s a
P ey ———y e b e s

———
s § e e e T S — e e P |

=— compromise:

- — - — - —— — - 5 5’

——————— e
- — -

) B Just cap maximum
| word counts

long document long document

* |n practice use multiple distance metrics

17

Locality sensitive hashing
for approximate nearest-neighbor search

Finding exact nearest neighbor is computationally expensive

* Nearest neighbor search is one of the fundamental tasks
iIn unsupervised learning, whose goal is to learn the

patterns from the data

* Brute force search for nearest neighbors can be slow in
the worst case

* Finding one-nearest-neighbor can take number of
operations proportional to N, the number of examples

* Typical range of N can be larger than millions (humber of
books, number of webpages, number of images, etc.)

18

19

A breakthrough: locality sensitive hashing

* Main idea
e Move away from exact nearest neighbor search
* Find approximate nearest neighbors

e Several applications are fine with
“close enough neighbors”

* The measure of similarity is not perfect

* |n practice, we are searching for a book
recommendation from millions of books

 Approach

* Design methods that have higher chance of finding
neighbors that are closer

* And provide probabilistic guarantees

* We will skip the precise probabilistic guarantees,
but learn the main techniques

Main component of locality sensitive hashing: binning

 Simple binning of data into 2 bins
e Consider examples in 2-dimensions x=(x[1],x[2])

* |n this example, the features are how many times the
words awesome or awful occurred in a sentence

e Consider a linear score of the form
score(x) = wO+w+x[1]+w2x[2]

Score(x) = 1.0 #awesome — 1.5 #awful

Score(x) <0

* |t looks similar to classification

e But there is no training
(the examples are unlabelled)

* The linear model above is
manually chosen (for now)

20

21

Main component of locality sensitive hashing: binning

 Then take the sign of the score
 That divides the examples into two groups (or bins)

sign(score)

X1 = [OI 5] -1
Xy = [1, 3] -1
X3 = [3, O] 1

_#awful

Sign(Score(x)) = -1

22

Main component of locality sensitive hashing: binning

 Then take the sign of the score
 That divides the examples into two groups (or bins)

 We will call one bin 0 and another 1 (this is referred to as
bin index)

| * When asked to find
e 5 0 enddee 4 nearest neighbor
X2 =[1, 3] -1 0 < neighbors if _

X3 = [3, 0] 1 1 / Score(x)<0 of a guery pomt,
search for a

Only search here for — Query point x nearest neighbor N
queries with Score(x)<0 [l the same bin

e This reduces the

search space into
N/2

#Hawful

Only search here for
queries with Score(x)>0

Nearest neighbor search with 2 bins

 Create atable of all data points and the bin index each
point belongs to

2D Data Sign(Score)

x1=1[0,5 -1 0
x2=[1,3 -1 0
x3=[3,0 1 1

e Store it in a Hash table

HASH
TABLE

List containing indices {1,2,4,7,...} {3,5,6,8,...}
of datapoints:

e \When searching for a nearest neighbor of a query point
* Find bin index of the query point
e Search only over those points in the same bin

23

Binning can only guarantee approximate nearest neighbor

e Actual nearest neighbor might not be found with 2-bin hashing

#Hawful

: 0 .
Actual nearest neighbor Hawesome

Approximate nearest neighbor
Query point

24

25

Three issues with simple 2 bin hashing

1. Challenging to find a good line

2. Poor quality solution:
—Points close together get split into separate bins

3. Large computational cost:

—-Bins might contain many points, so still searching over
large set for each Nearest Neighbor query

20

How do you find a good line?

 Crazy idea: choose a line randomly

* before, we were manually choosing
a line that we think would work well

Hawesome

e now, we use a randomly chosen line of slope
between 0 and 90 degrees

* What is the probability that the line separates
the two points?

e Does the probability increase for two points
that are closer (in angle)

e Which similarity metric corresponds to
angles?

.#awful

How bad is a random line?

e Three possible outcomes, for this example with two points

* Two points in separate
bins

 This happens with

e Bothinbin0 e Both in bin 1 probability 752

e (Cosine similarity between
these two points is cos(6)

_#awful
.#awful
#awful

4
3
2
1

0

0 1 2 3 4
H#awesome #awesome Hawe

27

28

How bad is a random line?

* The areas represent the probability of the events: both in

bin 1, two In different bins, or both in bin O

e Random lines tend to put similar points (as measured by

cosine similarity) in the same bin

_#awful

y Bins are

different

If O, is small (x,y close),
unlikely to be placed into
separate bins

Bins are
the same

Bins are
the same

29

e Random lines are pretty good, but using 1 line and 2 bins
IS problematic

Bin 0 1
List containing indices of | {1,24,7,...} {35,6,8,...}
datapoints:

1. Challenging to find good line

2. Poor quality solution:
Points close together get split into separate bins

3. Large computational cost:
Bins might contain many points, so still searching over
large set for each Nearest Neighbor query

How can we reduce the number of points we need to
guery to find one-nearest-neighbor of a query point?

30

Reducing search cost with more bins

 Each line partitions the points into two bins, with its own
bin indices 0 or 1

* k bins give k bin indices for each data point
Bin index:

/Ll 10
Bin index: I bin iIndex

(00 0] s bin index for line 1 for ling 3

S
= bin index for line 2
Linel Bin index:
[11 0]
O .
a Line 3
O
@
3 4

Hawesome

31

Creating a Hash table

 Use linear scores to find bin index of each point

2D Data Sign Bin1 Sign Bin 2 Sign Bin 3
(Scorel) index (Scorez) index (Score3) index

x, = [0, 5]
X> =[1, 3] -1 0 -1 0 -1 0
X3 = [3, O] 1 1 1 1 1 1

Data {1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}
indices:

 When finding a nearest neighbor of a query point
* Find the bin indices of that point
e Search over only the points in the same bin

Improving search quality by Searching neighboring bins

 For example, consider the case when you query a point in
bin (0,1,0)

Hash table

Data {12} — {48,111} — — -- {79,100} {3,5,6}
indices:

e By using multiple lines, we have reduced the search
space, but the chance of the nearest neighbor being in
the same bin is reduced Bin index
-as there are many lines cutting oo ez

* We can include points in a o [010]
near-by bins, to gracefully
trade-off accuracy vs. computation

e But what is a close-by bin?

#Hawful

Line 1l Bin index:
[110]

Line 3

RN WS,

Bin index:
[111]

-+ #awesome

33

Hamming distance

Hamming distance between binary vectors
Xx=[00101]
y=[10111

The hamming distance is defined as
du(x,y) = # of coordinates that disagree
=2

The same definition holds for general vectors, not
necessarily binary

x =[0.1 3.1 0.5 1]
y=[0. 3.11.0 O]
dn(Xx,y) = 3

34

* The closest bin, is the one with smallest flips of 1’s
(this is called Hamming distance between the bin indices)

 Each flip means that you crossed a (randomly chosen)
line

e Hence, small number of flips corresponds to closeness

[000] [001] [101] [110]= [111]
6 =7

=0
Data {1,2}
indices:

Bin index:
— [000] Line 2
\ /":é Bin index:
Next closest 3

® [01 0]
Line1l Bin index:
[11 0]

Line 3

bins
(flip 1 bit)

Bin index:
[11 1]

 Hawesome

* |n practice, continue searching in near-by bins until
computational budget runs out

Locality Sensitive Hashing

This strategy is referred to as “Locality Sensitive Hashing”

Bin index:
000 Line2
: " : =l \
Locality Sensitive Hashing E
. Q ¢ Linel Binindex:
e Draw h random lines 4 [110]
e Compute score for each point e.r.t. each line - ® g line3
and translate it into a binary indices : ®

o

>

Hawesome

 Represent each data point using

0 1 2 3 4
h dimensional binary vector
(Score;) index (Score,) index (Score;) index
-1 0 -1 0 -1 0
-1 0

Xy = [01 5]

e (Create Hash table 1o G IR o

X3 = [31 o] 1 1 1 1 1 1

Data {1,2} -- {4,8,11} - -- -- {7,9,10} {3,5,6}
indices:

Querying in a locality sensitive hashing

e For a query point x, search for the nearest neighbor among
all points in the bin with a binary index vector bin(x),
then continue searching close-by bins until budget runs out

36

Moving to high dimensional data

Partition by hyper-planes

e In dimensions higher than 2, randomly draw hyper-planes and
compute the score

e This partitions the space into two

Score(x) = wi #awesome + wo #awtul + w3 #great

+ + 7/ hyper-plane

X[2]

#awful

37 Hawesome X[l]

38

Computational cost of binning in d-dimensions

Score(Xx) = w; #awesome + wo #awtul + ws #great

e Each data point requires d multiplications to compute the
score (and compute the bin indices)

* The is a one-time cost, that can be pre-computed before
any query comes in

e Often times query complexity is more important

* How should the number of planes h scale with the
dimension d?

e What is the of locality sensitive hashing?

* Find a representation of a point, such that

e |tis lower dimensional than d, i.e. h<d

* While preserving the distance between two points
* h=log(d) is sufficient to achieve this goal

