Gradient descent



Convex/concave functions

A CONCAVE CONVEX

NEITHER
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Finding the max or min

analytically
CONCAVE CONVEX

Example:

g(w) = 5-(w-10)
NEITHER

~N\

©2018 Emily Fox STAT/CSE 416: Intro to Machine Learning



Finding the max
via hill climbing
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Finding the min
via hill descent

Algorithm:

while not converged
wtl &« wit -n dg
dw

Wit
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Choosing the stepsize—
Fixed stepsize
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Choosing the stepsize—
Decreasing stepsize

Common choices:
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Convergence criteria

For convex functions,

optimum occurs when

, Algorithm:
In practice, stop when

while not converged
wtl & wit -n dg
dw

wit
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Moving to higher
d I m e n S I O n S Note: We use the Optional tag to signify that

you are not responsible for understanding the
following material!




Contour plots

Contour plot corresponding to 3D plot of RSS

3D plot of RSS with tangent plane at minimum
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Moving to multiple dimensions:

Gradients

3D plot of RSS with tangent plane at minimum
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Vsal(w) =
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Gradient example

3D plot of RSS with tangent plane at minimum
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g(w) = 5w +10w w, + 2w 2

Vealw) =
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Gradient descent

Contour plot corresponding to 3D plot of RSS

600 -

Algorithm:

T el while not converged
| wt) & with - \Gg(wv)
_282(;6;;(; 500000 =4 500000
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G ra d |e nt Desce nt Note: We use the Cap to point out that the

following section contains advanced topics,

fo r L| near Reg ress | on passed the level we expect from the class.

'\_,y‘
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Find “best” line

Y 4 Minimize cost over all
possible wgy,w,

price (S)

min
Wj, W,

N
Vi-[Wotw,x.])?
i=1

square feet (sq.ft.)
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Compute the gradient

N
RSS(wg,w,) = Ei-[wo+w1xi])2
i=1
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Compute the gradient

N
RSS(wg,w,) = Xgi-[w(ﬁwlxi])2
i=1

Taking the derivative w.r.t. w,
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Compute the gradient

N
RSS(wg,w,) = Xgi-[w(ﬁwlxi])2
i=1

Taking the derivative w.r.t. w,
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Compute the gradient

N
RSS(wg,w,) = Ei-[wo+w1xi])2
i=1

Putting it together:

N

VRSS(w,,w, ) = -2 ;V. — (Wotw; ;)]
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Approach 1: Set gradient =0

N

VRSS(WO,W1 ) = =

—1500009 0000005
00000 —
WO 0 5000001000568°
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Approach 2: Gradient descent

Interpreting the gradient:

-2 21y = (wotwyx)] -2 21y, — ¥i(w, wy)]
VRSS(WO,W1 ) = Z-J_Vly (Wo+w, _ Z—Vly Yil\Wg W,
-2 Zliyi—(wo+w1xi)]xi -2 ;:yi—§/i(w0’\/\/1)]xi
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Approach 2: Gradient descent

N

vRSS(WO,W1 ) = -2 %yl - Vi(WO,W1)]
-2 21y = Vilwo, wi)Ix

o /L:1 —
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Comparing the approaches

* For most ML problems,
cannot solve gradient =0

* Even if solving gradient =0
is feasible, gradient descent
can be more efficient

* Gradient descent relies on
choosing stepsize and
convergence criteria
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