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Gradient descent
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Convex/concave functions

CONCAVE CONVEX

NEITHER

g(a)

g(b)
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Finding the max or min
analytically

CONCAVE CONVEX

NEITHER

Example:

g(w) = 5-(w-10)2
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Finding the max 
via hill climbing
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Finding the min 
via hill descent

Algorithm:

while not converged
w(t+1) ß w(t) - η dg 

dw
w(t)
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Choosing the stepsize—
Fixed stepsize
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Choosing the stepsize—
Decreasing stepsize

Common choices:
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Convergence criteria

For convex functions,

optimum occurs when

In practice, stop when
Algorithm:

while not converged

w(t+1) ß w(t) - η dg 
dw

w(t)
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Moving to higher 
dimensions
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OPTIONAL

Note: We use the Optional tag to signify that 
you are not responsible for understanding the 
following material!
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Contour plots
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Moving to multiple dimensions:
Gradients

Δ
g(w) =
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Gradient example
Δ

g(w) =

g(w) = 5w0+10w0w1 + 2w1
2
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Gradient descent

Algorithm:

while not converged
w(t+1) ß w(t) - η g(w(t)) 

Δ
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Gradient Descent 

for Linear Regression

©2017 Emily Fox

OPTIONAL

Note: We use the Cap to point out that the 

following section contains advanced topics, 

passed the level we expect from the class.
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Find “best” line

square feet (sq.ft.)

pr
ice

 ($
)

x

y Minimize cost over all 
possible w0,w1

min         (yi-[w0+w1xi])2

w0,w1

CONVEX
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Compute the gradient

Aside: 

RSS(w0,w1) =       (yi-[w0+w1xi])2

d

dw

NX

i=1

gi(w) =
d

dw
(g1(w) + g2(w) + . . . gN (w))

=
d

dw
g1(w) +

d

dw
g2(w) + . . .

d

dw
gN (w)

=
NX

i=1

d

dw
gi(w)
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Taking the derivative w.r.t. w0 

Compute the gradient

RSS(w0,w1) =       (yi-[w0+w1xi])2

©2018 Emily Fox



STAT/CSE 416: Intro to Machine Learning18

Taking the derivative w.r.t. w1 

Compute the gradient

RSS(w0,w1) =       (yi-[w0+w1xi])2
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RSS(w0,w1) =       (yi-[w0+w1xi])2

Putting it together:

Compute the gradient

-2     [yi – (w0+w1xi)]

-2     [yi – (w0+w1xi)]xi

Δ

RSS(w0,w1 ) =
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-2     [yi – (w0+w1xi)]

-2     [yi – (w0+w1xi)]xi

Δ

RSS(w0,w1 ) =

Approach 1: Set gradient = 0
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Interpreting the gradient:

-2     [y
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– (w

0
+w

1
x

i
)]

-2     [y
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0
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i
)]x

i

Δ

RSS(w
0
,w

1
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-2     [y
i
– ŷ

i
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w

1
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w

1
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i

=

Approach 2: Gradient descent
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Approach 2: Gradient descent
-2     [yi – ŷi(w0,w1)]

-2     [yi – ŷi(w0,w1)]xi

Δ

RSS(w0,w1 ) =
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Comparing the approaches

• For most ML problems, 
cannot solve gradient = 0

• Even if solving gradient = 0
is feasible, gradient descent
can be more efficient

• Gradient descent relies on
choosing stepsize and 
convergence criteria
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