Gradient descent

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

Convex/concave functions

Finding the max or min analytically

Finding the max via hill climbing

while not converged $\omega^{(t+1)} \leftarrow \omega^{(t)} + N \frac{dg(\omega)}{d\omega}$ iteration stepsize t

Finding the min via hill descent

N= 0.1

Choosing the stepsize – Decreasing stepsize

Convergence criteria

For convex functions,

optimum occurs when

 $\frac{dq(w)}{dw} = 0$

In practice, stop when

$$\left|\frac{dg(w)}{dw}\right| < \varepsilon$$

threshold
to be set

Algorithm:

while not converged $w^{(t+1)} \leftarrow w^{(t)} - \eta \ dg$

Moving to higher dimensions

Note: We use the Optional tag to signify that you are not responsible for understanding the following material!

©2017 Emily Fox

Contour plots

©2018 Emily Fox

Moving to multiple dimensions: Gradients

Gradient example

$$g(w) = 5w_0 + 10w_0w_1 + 2w_1^2$$

$$\frac{\partial q}{\partial w_0} = 5 + 10w_1$$

$$\frac{\partial q}{\partial w_1} = 10w_0 + 4w_1$$

$$g(w) = \begin{bmatrix} 5 + 10w_1 \\ 10w_0 + 4w_1 \end{bmatrix}$$

L

Gradient descent

Algorithm:

Gradient Descent for Linear Regression

Note: We use the Cap to point out that the following section contains advanced topics, passed the level we expect from the class.

©2017 Emily Fox

RSS(w₀,w₁) =
$$\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Aside:

$$\frac{d}{dw} \sum_{i=1}^{N} g_i(w) = \frac{d}{dw} \left(g_1(w) + g_2(w) + \dots + g_N(w) \right)$$
$$= \frac{d}{dw} g_1(w) + \frac{d}{dw} g_2(w) + \dots + \frac{d}{dw} g_N(w)$$
$$= \sum_{i=1}^{N} \frac{d}{dw} g_i(w)$$

In our case

$$g_i(w) = (Y_i - [w_0 + w_1 x_i])^2$$

 $\frac{\partial RSS(w)}{\partial w_0} = \sum_{i=1}^{U} \frac{\partial}{\partial w_0} (Y_i - [w_0 + w_1 x_i])^2$
Same for w_i

RSS(w₀,w₁) =
$$\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Taking the derivative w.r.t. w₀

$$\sum_{i=1}^{N} 2(Y_{i} - [w_{0} + w_{1} \times i])' \cdot (-1)$$
$$= -2 \sum_{i=1}^{N} (Y_{i} - [w_{0} + w_{1} \times i])$$

RSS(w₀,w₁) =
$$\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Taking the derivative w.r.t. w₁

$$\sum_{i=1}^{N} 2(\underline{y_{i}} - [w_{0} + w_{1} X_{i}]) \cdot (-X_{i})$$

$$= -2 \sum_{i=1}^{N} (\underline{y_{i}} - [w_{0} + w_{1} X_{i}]) \times \sum_{i=1}^{N} (\underline{y_{$$

RSS(w₀,w₁) =
$$\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Putting it together:

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 & \sum_{i=1}^{N} y_i - (w_0 + w_1 x_i) \\ -2 & \sum_{i=1}^{N} y_i - (w_0 + w_1 x_i) \end{bmatrix} x_i$$

Approach 1: Set gradient = 0

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} y_i - (w_0 + w_1 x_i)] \\ -2 \sum_{i=1}^{N} y_i - (w_0 + w_1 x_i)]x_i \end{bmatrix}$$
The plot of RSS with tangent plane at minimum

$$\int \frac{dy_i + w_i}{dy_i} = \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} = 0$$

$$\int \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} = 0$$

$$\int \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} + \frac{dy_i + w_i}{dy_i} = 0$$

©2018 Emily Fox

Approach 2: Gradient descent

Interpreting the gradient:

$$\nabla RSS(w_{0},w_{1}) = \begin{bmatrix} -2 \sum_{i=1}^{N} y_{i} - (w_{0}+w_{1}x_{i})] \\ -2 \sum_{i=1}^{N} y_{i} - (w_{0}+w_{1}x_{i})]x_{i} \end{bmatrix} = \begin{bmatrix} -2 \sum_{i=1}^{N} y_{i} - \hat{y}_{i}(w_{0},w_{1})] \\ -2 \sum_{i=1}^{N} y_{i} - (w_{0}+w_{1}x_{i})]x_{i} \end{bmatrix} = \begin{bmatrix} -2 \sum_{i=1}^{N} y_{i} - \hat{y}_{i}(w_{0},w_{1})] \\ -2 \sum_{i=1}^{N} y_{i} - (w_{0}+w_{1}x_{i})]x_{i} \end{bmatrix}$$

Approach 2: Gradient descent

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 & \sum_{i=1}^{N} y_i - \hat{y}_i(w_0, w_1) \\ -2 & \sum_{i=1}^{N} y_i - \hat{y}_i(w_0, w_1) \end{bmatrix} x_i$$

while not converged (J).(A)

$$\begin{bmatrix}
w_{0}^{(t+1)} \\
w_{1}^{(t+1)}
\end{bmatrix} \leftarrow \begin{bmatrix}
w_{0}^{(t)} \\
w_{1}^{(t)}
\end{bmatrix} + 2M \begin{bmatrix}
z_{i=1}^{t} [y_{i} - \hat{y}_{i}(w_{0}^{(t)}, w_{i}^{(t)})] \\
z_{i=1}^{t} [y_{i} - \hat{y}_{i}(w_{0}^{(t)}, w_{i}^{(t)})] x_{i}
\end{bmatrix}$$
If overall, under predicting \hat{y}_{i} , then $\sum [y_{i} - \hat{y}_{i}]$ is positive
 $\longrightarrow w_{0}$ is going to increase
 $similar$ intuition for w_{1} , but multiply by x_{i}
 $STAT/CSE 416: Intro to Machine Learning$

Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient = 0
 is feasible, gradient descent
 can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria