Boosting Recap

STAT/CSE 416: Machine Learning Emily Fox University of Washington May 1, 2018

Learning from weighted data in generalOften, learning from weightedCredit Income y Weight α

data treats data point i as α_i replicates of that data point

Credit	Income	У	Weight α
А	\$130K	Safe	0.5
В	\$80K	Risky	1.5
С	\$110K	Risky	1.2
А	\$110K	Safe	0.8
А	\$90K	Safe	0.6
В	\$120K	Safe	0.7
С	\$30K	Risky	3
С	\$60K	Risky	2
В	\$95K	Safe	0.8
A	\$60K	Safe	0.7
A	\$98K	Safe	0.9

How to learn the "best" decision stump?

Credit	Income	У	Weight α
А	\$130K	Safe	0.5
В	\$80K	Risky	1.5
С	\$110K	Risky	1.2
А	\$110K	Safe	0.8
А	\$90K	Safe	0.6
В	\$120K	Safe	0.7
С	\$30K	Risky	3
С	\$60K	Risky	2
В	\$95K	Safe	0.8
А	\$60K	Safe	0.7
А	\$98K	Safe	0.9

Goal:

Choose best feature (categorical input) or feature/threshold pair (real-valued input)

Questions:

- 1. For given feature or feature/threshold, how to determine classifier output using weighted data?
- 2. For that classifier, how to compute its accuracy on the training data?
- 3. For real-valued features, how to select the best threshold on weighted data?
- 4. Based on the above, select the best decision stump

X

How to learn the "best" decision stump?

Credit	Income	У	Weight α
А	\$130K	Safe	0.5
В	\$80K	Risky	1.5
С	\$110K	Risky	1.2
А	\$110K	Safe	0.8
A	\$90K	Safe	0.6
В	\$120K	Safe	0.7
С	\$30K	Risky	3
С	\$60K	Risky	2
В	\$95K	Safe	0.8
А	\$60K	Safe	0.7
А	\$98K	Safe	0.9

Goal:

Choose best feature (categorical input) or feature/threshold pair (real-valued input)

Questions:

- 1. For given feature or feature/threshold, how to determine classifier output using weighted data?
- 2. For that classifier, how to compute its accuracy on the training data?
- 3. For real-valued features, how to select the best threshold on weighted data?
- 4. Based on the above, select the best decision stump

STATICSE

Boosted decision stumps • Start same weight for all points: $\alpha_i = 1/N$ • For t = 1,...,T• Learn $f_i(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i • Compute coefficient \hat{w}_t • Recompute weights α_i • Normalize weights α_i • Final model predicts by: $\hat{y} = sign\left(\sum_{t=1}^T \hat{w}_t f_t(\mathbf{x})\right)$

11

What you can do now...

- · Identify notion ensemble classifiers
- Formalize ensembles as weighted combination of simpler classifiers
- Outline the boosting framework sequentially learn classifiers on weighted data
- Describe the AdaBoost algorithm
 - Learn each classifier on weighted data
 - Compute coefficient of classifier
 - Recompute data weights
 - Normalize weights
- Implement AdaBoost to create an ensemble of decision stumps

```
39
```

 Evaluating classifiers:
 Evaluating classifiers:
 Precision & Recall
 STAT/CSE 416: Machine Learning Emily Fox University of Washington May 1, 2018

We explored the pitfalls of imbalanced problems: Is 90% accuracy good? Depends ...

Precision: Fraction of positive predictions that are *actually positive*

Recall: Fraction of positive data predicted to be positive

33

What you can do now...

- Classification accuracy/error are not always right metrics
- Precision captures fraction of positive predictions that are correct
- **Recall** captures fraction of positive data correctly identified by the model
- Trade-off precision & recall by setting probability thresholds
- Plot precision-recall curves.
- Compare models by computing precision at ${\bf k}$

2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning