

Linear classifiers:

Handling overfitting, categorical inputs, & multiple classes

STAT/CSE 416: Machine Learning Emily Fox University of Washington April 24, 2018

Encoding categorical inputs

Summary of overfitting in logistic regression, categorical inputs, and multiclass classification

What you can do now...

- Describe symptoms and effects of overfitting in classification
 - Identify when overfitting is happening
 - Relate large learned coefficients to overfitting
 - Describe the impact of overfitting on decision boundaries and predicted probabilities of linear classifiers
- Use regularization to mitigate overfitting
 - Motivate the form of L2 regularized logistic regression quality metric
 - Describe the use of L1 regularization to obtain sparse logistic regression solutions
 - Describe what happens to estimated coefficients as tuning parameter $\boldsymbol{\lambda}$ is varied
 - Interpret coefficient path plot
- Use 1-hot encoding to represent categorical inputs
- Perform multiclass classification using the 1-versus-all approach

STAT/CSE 416: Intro to Machine Learning

STAT/CSE 416: Machine Learning Emily Fox University of Washington April 24, 2018

Dur tr Assume		-		table	
Credit	Term	Income	У		
excellent	3 yrs	high	safe		
fair	5 yrs	low	risky		
fair	3 yrs	high	safe		
poor	5 yrs	high	risky		
excellent	3 yrs	low	risky		
fair	5 yrs	low	safe		
poor	3 yrs	high	risky		
poor	5 yrs	low	safe		
fair	3 yrs	high	safe		

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature **h**^{*}(**x**) with lowest classification error

How do we use real values inputs?

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

STAT/CSE 416: Intro to Machine Learning

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions