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Lasso Regression:

Regularization for feature selection
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters w
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Quality
metric

Consider specific total cost

Want to balance:
I. How well function fits data
li. Magnitude of coefficients

Total cost =

 measure of fit,+ measure of magnitude of coefficients
\ )
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Consider resulting objective

What if w selected to minimize

RSS(w) + A |lwlf3

N tuning parameter = balance of fit and magnitude

Ridge regression

(a.k.a L, regularization)

Measure of magnitude of regression coefficient

What summary # is indicative of size of
regression coefficients?
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Feature selection task
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Why might you want to perform
feature selection?

Efficiency:

- If size(w) = 100B, each prediction is expensive

- |If v“v, computation only depends on # of nhon-zeros
\many zeros
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Interpretability:

- Which features are relevant for prediction?
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Sparsity: Housing application

Lot size Dishwasher
Single Family Garbage disposal
Year built Microwave

Last sold price Range / Oven
Last sale price/sqgft Refrigerator
Finished sqft Washer
Unfinished sqft Dryer

Finished basement sqft Laundry location
# floors Heating type
Flooring types Jetted Tub
Parking type Deck

Parking amount Fenced Yard
Cooling Lawn

Heating Garden

Exterior materials Sprinkler System
Roof type .

Structure style

9 ©2018 Fmilv Fox CSE/STAT 416 Intro to Machine Learning

Sparsity: Reading your mind

very sad very happy

Activity in which brain

regions can predict
happiness?
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Option 1: All subsets or greedy variants

Find best model of size: O
A

o
E # bedroom
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>
0
# of features
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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# bedrooms
# bathrooms
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sq.ft. living |

sq.ft. lot

floors

year built

year renovated
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Find best model of size: 2

o ¢
:

o

)

S

RSS(

oo G

v

# of features

22 ©2018 Fm

# bedrooms

# bathrooms
sq.ft. living
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Note: Not necessarily nested!
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Note: Not necessarily nested!
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sq.ft. lot
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year built

year renovated
waterfront
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Find best model of size: 3
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Find best model of size: 4
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Find best model of size: 5
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- # bedrooms

- # bathrooms

- sq.ft. living

- sq.ft. lot

- floors

- year built

- year renovated
- waterfront

28

Find best model of size: 6
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Find best model of size: 7
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Find best model of size: 8
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Choosing model complexity?

Option 1: Assess on validation set
Option 2: Cross validation

Option 3+: Other metrics for penalizing
model complexity like BIC...

32

Complexity of “all subsets”

How many models were evaluated?
- each indexed by features included

yi—e 000..000]
Y = wihy(x) + g [010..000]

| oD

28 = 256
230 =1,073,741,824
21000 = 1.071509 x 10301

Typically,

computationally
infeasible
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Greedy algorithms

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

In forward algorithm, insert steps to remove features no longer as
important

Lots of other variants, too.

33
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Option 2: Regularize

17
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Ridge regression: L, regularized regression

Total cost =

measure of fit + A measure of magnitude of coefficients'
| )
I

I
RSS(w)

W2=wo2+...+wp2

Encourages small weights
but not exactly O

35

Coefficient path — ridge
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Using reqularization for feature selection

Instead of searching over a discrete set of solutions, can
we use reqgularization?
- Start with full model (all possible features)

- "Shrink” some coefficients exactly to O
* i.e., knock out certain features

- Non-zero coefficients indicate “selected” features

37

Thresholding ridge coefficients?

Why don't we just set small ridge coefficients to 07

38 ©2018 Fm
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Thresholding ridge coefficients?

Selected features for a given threshold value

| |
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Thresholding ridge coefficients?

Let's look at two related features...
40 ©2018 Emily Fox STAT 416 Inirc e
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Thresholding ridge coefficients?

If only one of the features had been included...
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Thresholding ridge coefficients?

Would have included bathrooms in selected model

< X 0 (K <
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Try this cost instead of ridge...

Total cost =
measure of fit'+ )\‘measure of magnitude of coefficients
)
I i
RSS(w) [lw| =wgl+...+|wp|

Leads to sparse solutions!

Lasso regression

(a.k.a. L, regularized regression)

44

Lasso regression: L, regularized regression

Just like ridge regression, solution is governed by a
continuous parameter A

RSS(w) + Allwl|,
N tuning parameter = balance of fit and sparsity
If A=0:
If A=oo;

If A\ in between:

22
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Coefficient path — ridge
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Revisit polynomial fit demo

What happens if we refit our high-order
polynomial, but now using lasso regression?

Will consider a few settings of A ...

©2018 Emily Fox

CSE/STAT 416 Intro to Machin.
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How to choose A:

Cross validation

24
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If sufficient amount of data...

Validation Test
set set

fitﬁivA T

test performance
of W, to select A"
assess
generalization
error of W,

Training set

49 ©2018 Emilv Fox

Start with smallish dataset

All data

50 ©2018 Emily Fox
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Still form test set and hold out

Rest of data
set

51

How do we use the other data?

Rest of data

N

use for both training and
validation, but not so naively

52
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Recall naive approach

Valid.
set

t

small validation set

Training set

|s validation set enough to compare performance of W,
across A values?

53 ©2018 Fmilv Fox CSE/STAT 416 Intro to Machine Learning

Choosing the validation set

Valid.

set

f

small validation set

Didn’t have to use the last data points tabulated to form
validation set

Can use any data subset

>4 ©2018 Emily Fox CSE/STAT 416 Intro to Machine Learnin.
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Choosing the validation set

Valid.

set

!

small validation set

Which subset should | use?

ALLI average performance
. over all choices

55 ©2018 Emily Fox CSE/STAT 416 Intro to Machine Learning

K-fold cross validation

Rest of data

Preprocessing: Randomly assign data to K groups

(use same split of data for all other steps)

56 ©2018 Emily Fox CSE/STAT 416: Intro to Machine Learning

28



4/11/18

K-fold cross validation

error,(A) W, D

1. Estimate W, * on the training blocks
2. Compute error on validation block: error,(A)

57 ©2018 Emily Fox CSE/STAT 416: Intro to Machine Learning

K-fold cross validation

error,(A) W2

1. Estimate W, on the training blocks
2. Compute error on validation block: error, (A)

58 ©2018 Emily Fox CSE/STAT 416 Intro to Machine Learninc
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K-fold cross validation

errors(A)

1. Estimate W, * on the training blocks
2. Compute error on validation block: error,(A)

59 ©2018 Ernily Fox

K-fold cross validation

error,(A)

For k=1,...K
1. Estimate W, on the training blocks
2. Compute error on validation block: error, (A)

60 ©2018 Emily Fox
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K-fold cross validation

errors(A)

1. Estimate W, * on the training blocks
2. Compute error on validation block: error,(A)

. _1 ¢
Compute average error: CV(A) = l; error,(N)

61 ©2018 Emily Fox

K-fold cross validation

Valid

set

Repeat procedure for each choice of A

Choose \* to minimize CV(\)

62 ©2018 Emily Fox
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What value of K?

Formally, the best approximation occurs for validation sets of

size 1 (K=N)
leave-one-out
cross validation

Computationally intensive
- requires computing N fits of model per A

Typically, K=5or 10 5-fold CV 10-fold CV

©2018 Emily Fox CSE/STAT 416 Intro to Machine Learning
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Choosing A via cross validation for lasso

Cross validation is choosing the A that provides best
predictive accuracy

Tends to favor less sparse solutions, and thus smaller A,
than optimal choice for feature selection

c.f., “Machine Learning: A Probabilistic Perspective’, Murphy, 2012 for
further discussion

32



Practical concerns with lasso
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Debiasing lasso

Lasso shrinks coefficients

relative to LS solution True coefficients (D=4096, non-zero = 160)

(
- more bias, less variance 1 : , T ;
' L] lIIlH (LI L
AT IIIHII?I MI I | (I

Can reduce bias as follows: L1 reconstruction (non-zero = 1024, MSE = 0.0072)

o ———— —
1. Run lasso to select O]{WMWWWW
af .

features :
Debiased (non-zero = 1024, MSE = 3.26e-005)
2. Run least squares ;

regression with only HﬁHﬁm&H‘Hﬁ% IR LN

selected features

=

—

Least squares (non-zero = 0, MSE = 1.568)

10 T T -
5
" " 0
Relevant” features no longer -5t ". l” : | ' ll ‘ J J

shrunk relative to LS fit of O S0 100 S0 00 0000 S0 400
Figure used with permission of Mario Figueiredo
same reduced model (captions modified to fit course)

©2018 Fmilv Fox
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Issues with standard lasso objective

1. With group of highly correlated features, lasso tends to select amongst

them arbitrarily
- Often prefer to select all together

2. Often, empirically ridge has better predictive performance than lasso,

but lasso leads to sparser solution

Elastic net aims to address these issues
- hybrid between lasso and ridge regression
- uses L, and L, penalties

See Zou & Hastie ‘05 for further discussion

©2018 Fmilv Fox CSE/STAT 416: Intro

to Machine Learning

Summary for feature selection

and lasso regression
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Impact of feature selection and lasso

Lasso has changed machine learning,
statistics, & electrical engineering

But, for feature selection in general, be careful about
interpreting selected features

- selection only considers features included

- sensitive to correlations between features

- result depends on algorithm used

- there are theoretical guarantees for lasso under certain conditions

70

What you can do now...

» Describe “all subsets” and greedy variants for feature selection
* Analyze computational costs of these algorithms
* Formulate lasso objective

* Describe what happens to estimated lasso coefficients as tuning
parameter A is varied

* Interpret lasso coefficient path plot
« Contrast ridge and lasso regression
* Implement K-fold cross validation to select lasso tuning parameter A
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