Lasso Regression:

Regularization for feature selection

CSE 416: Machine Learning Emily Fox University of Washington April 12, 2018

Sparsity: Housing application

	Greedy algorithms
	Forward stepwise: Starting from simple model and iteratively add features most useful to fit
	Backward stepwise: Start with full model and iteratively remove features least useful to fit
	Combining forward and backward steps: In forward algorithm, insert steps to remove features no longer as important
	Lots of other variants, too.
33	©2017 Emily Fox CSE/STAT 416: Intro to Machine Learning

Practical concerns with lasso

Debiasing lasso

Lasso shrinks coefficients relative to LS solution → more bias, less variance

Can reduce bias as follows:

- 1. Run lasso to select features
- 2. Run least squares regression with only selected features

"Relevant" features no longer shrunk relative to LS fit of same reduced model

CSE/STAT 416: Intro to Machine Learning

Summary for feature selection and lasso regression

What you can do now...

- Describe "all subsets" and greedy variants for feature selection
- Analyze computational costs of these algorithms
- Formulate lasso objective
- Describe what happens to estimated lasso coefficients as tuning parameter $\boldsymbol{\lambda}$ is varied
- Interpret lasso coefficient path plot
- Contrast ridge and lasso regression
- Implement K-fold cross validation to select lasso tuning parameter $\boldsymbol{\lambda}$