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Lasso Regression:
Regularization for feature selection
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters ŵ
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients
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RSS(w) ||w||2
2

Want to balance:
i. How well function fits data
ii. Magnitude of coefficients
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Consider resulting objective

What if ŵ selected to minimize

RSS(w) + ||w||2

©2018 Emily Fox

λ

Ridge regression
(a.k.a L2 regularization)

tuning parameter = balance of fit and magnitude

2
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What summary # is indicative of size of 
regression coefficients?

- Sum?  

- Sum of absolute value?

- Sum of squares (L2 norm)
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Measure of magnitude of regression coefficient
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Feature selection task

©2018 Emily Fox
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Efficiency: 
- If size(w) = 100B, each prediction is expensive
- If ŵ sparse , computation only depends on # of non-zeros

Interpretability:  
- Which features are relevant for prediction?

Why might you want to perform
feature selection?

©2018 Emily Fox

many zeros
X

ŵj 6=0

ŷi =     ŵj hj(xi)
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Sparsity: Housing application

$ ?

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors
Flooring types
Parking type
Parking amount
Cooling
Heating
Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn
Garden
Sprinkler System

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors
Flooring types
Parking type
Parking amount
Cooling
Heating
Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn
Garden
Sprinkler System…
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Sparsity: Reading your mind

©2018 Emily Fox

very sad very happy

Activity in which brain 
regions can predict 

happiness?
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Option 1: All subsets or greedy variants

©2018 Emily Fox
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Find best model of size: 0

©2018 Emily Fox

# of features

R
SS

(ŵ
)

0

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront
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Find best model of size: 1
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# of features

R
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0 1
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- sq.ft. living
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- year renovated
- waterfront
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Find best model of size: 1

©2018 Emily Fox
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 1
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Find best model of size: 2
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# of features

R
SS

(ŵ
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Note: Not necessarily nested!
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# of features

R
SS

(ŵ
)
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- # bedrooms
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- sq.ft. living
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Note: Not necessarily nested!
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Find best model of size: 3
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# of features

R
SS

(ŵ
)

0 1 2 3

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront
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Find best model of size: 4

©2018 Emily Fox

# of features

R
SS
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- # bedrooms
- # bathrooms
- sq.ft. living
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- waterfront



4/12/18

14

CSE/STAT 416: Intro to Machine Learning27

Find best model of size: 5
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Find best model of size: 6

©2018 Emily Fox

# of features

R
SS

(ŵ
)

0 1 2 3 4 5 6

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront



4/12/18

15

CSE/STAT 416: Intro to Machine Learning29

Find best model of size: 7
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Find best model of size: 8
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Choosing model complexity?

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing
model complexity like BIC…

©2018 Emily Fox
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Complexity of “all subsets”

How many models were evaluated?
- each indexed by features included

©2018 Emily Fox

yi = εi

yi = w0h0(xi) + εi

yi = w1 h1(xi) + εi

yi = w0h0(xi) + w1 h1(xi) + εi

yi = w0h0(xi) + w1 h1(xi) + … + wD hD(xi)+ εi

…
 

…
 

[0 0 0 … 0 0 0]

[1 0 0 … 0 0 0]

[0 1 0 … 0 0 0]

[1 1 0 … 0 0 0]

[1 1 1  …  1 1 1]

…
 

…
 

2D

28 = 256
230 = 1,073,741,824
21000 = 1.071509 x 10301

2100B = HUGE!!!!!!

Typically, 
computationally 

infeasible
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Greedy algorithms

Forward stepwise:
Starting from simple model and iteratively add features most useful to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as 
important

Lots of other variants, too.

33
©2017 Emily Fox
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Option 2: Regularize

©2018 Emily Fox
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Ridge regression: L2 regularized regression

Total cost =
measure of fit + λ measure of magnitude of coefficients

©2018 Emily Fox

RSS(w) ||w||2=w0
2+…+wD

22

Encourages small weights
but not exactly 0

CSE/STAT 416: Intro to Machine Learning36

Coefficient path – ridge 
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Using regularization for feature selection

Instead of searching over a discrete set of solutions, can 
we use regularization?
- Start with full model (all possible features)

- “Shrink” some coefficients exactly to 0
• i.e., knock out certain features

- Non-zero coefficients indicate “selected” features

©2018 Emily Fox
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Thresholding ridge coefficients?

Why don’t we just set small ridge coefficients to 0?

©2018 Emily Fox
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Thresholding ridge coefficients?

Selected features for a given threshold value

©2018 Emily Fox
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Thresholding ridge coefficients?

Let’s look at two related features…

©2018 Emily Fox
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Nothing measuring bathrooms was included!



4/12/18

21

CSE/STAT 416: Intro to Machine Learning41

Thresholding ridge coefficients?

If only one of the features had been included… 

©2018 Emily Fox
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Thresholding ridge coefficients?

Would have included bathrooms in selected model

©2018 Emily Fox
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Can regularization lead directly to sparsity?
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Try this cost instead of ridge…

Total cost =
measure of fit + λ measure of magnitude of coefficients

©2018 Emily Fox

RSS(w) ||w||1=|w0|+…+|wD|

Lasso regression
(a.k.a. L1 regularized regression)

Leads to sparse solutions!
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Lasso regression: L1 regularized regression

Just like ridge regression, solution is governed by a 
continuous parameter λ

If λ=0:

If λ=∞: 

If λ in between: 

RSS(w) + λ||w||1
tuning parameter = balance of fit and sparsity

©2018 Emily Fox
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Coefficient path – ridge 

©2018 Emily Fox
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©2018 Emily Fox
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Revisit polynomial fit demo

What happens if we refit our high-order
polynomial, but now using lasso regression?

Will consider a few settings of λ …

©2018 Emily Fox
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How to choose λ:
Cross validation

©2018 Emily Fox
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If sufficient amount of data…

©2018 Emily Fox

Validation 
set

Training set
Test 
set

fit ŵλ
test performance 
of ŵλ to select λ*

assess 
generalization 

error of ŵλ*
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Start with smallish dataset

©2018 Emily Fox

All data
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Still form test set and hold out

©2018 Emily Fox

Rest of data
Test 
set
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How do we use the other data?

©2018 Emily Fox

Rest of data

use for both training and 
validation, but not so naively
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Recall naïve approach

Is validation set enough to compare performance of ŵλ
across λ values?

©2018 Emily Fox

Valid.
set

Training set

small validation set

No
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Choosing the validation set

Didn’t have to use the last data points tabulated to form 
validation set

Can use any data subset

©2018 Emily Fox

Valid.
set

small validation set
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Choosing the validation set

©2018 Emily Fox

Valid.
set

small validation set

Which subset should I use? 

ALL! average performance 
over all choices

CSE/STAT 416: Intro to Machine Learning56

(use same split of data for all other steps)

Preprocessing:  Randomly assign data to K groups

©2018 Emily Fox

N
K

N
K

N
K

N
K

N
K

Rest of data

K-fold cross validation
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For k=1,…,K
1. Estimate ŵλ(k) on the training blocks

2. Compute error on validation block: errork(λ)

©2018 Emily Fox

Valid
set

ŵλ(1)error1(λ)

K-fold cross validation
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For k=1,…,K
1. Estimate ŵλ(k) on the training blocks

2. Compute error on validation block: errork(λ)

©2018 Emily Fox

Valid
set

ŵλ(2)error2(λ)

K-fold cross validation



4/12/18

30

CSE/STAT 416: Intro to Machine Learning59

For k=1,…,K
1. Estimate ŵλ(k) on the training blocks

2. Compute error on validation block: errork(λ)

©2018 Emily Fox

Valid
set

ŵλ(3) error3(λ)

K-fold cross validation
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For k=1,…,K
1. Estimate ŵλ(k) on the training blocks

2. Compute error on validation block: errork(λ)

©2018 Emily Fox

Valid
set

ŵλ(4) error4(λ)

K-fold cross validation
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For k=1,…,K
1. Estimate ŵλ(k) on the training blocks

2. Compute error on validation block: errork(λ)

Compute average error:  CV(λ) = errork(λ)

©2018 Emily Fox

Valid
set

ŵλ(5) error5(λ)

1

K

KX

k=1

K-fold cross validation
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Repeat procedure for each choice of λ

Choose λ* to minimize CV(λ)

©2018 Emily Fox

Valid
set

K-fold cross validation
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What value of K?

Formally, the best approximation occurs for validation sets of 
size 1 (K=N)

Computationally intensive
- requires computing N fits of model per λ

Typically, K=5 or 10

©2018 Emily Fox

leave-one-out
cross validation

5-fold CV 10-fold CV

CSE/STAT 416: Intro to Machine Learning64

Choosing λ via cross validation for lasso

Cross validation is choosing the λ that provides best 
predictive accuracy

Tends to favor less sparse solutions, and thus smaller λ, 
than optimal choice for feature selection

c.f., “Machine Learning: A Probabilistic Perspective”, Murphy, 2012 for 
further discussion

©2018 Emily Fox
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Practical concerns with lasso

©2018 Emily Fox
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Debiasing lasso
Lasso shrinks coefficients 
relative to LS solution
à more bias, less variance

Can reduce bias as follows:
1. Run lasso to select 

features
2. Run least squares 

regression with only 
selected features

“Relevant” features no longer 
shrunk relative to LS fit of 
same reduced model

©2018 Emily Fox

Figure used with permission of Mario Figueiredo
(captions modified to fit course)

True coefficients (D=4096, non-zero = 160) 

L1 reconstruction (non-zero = 1024, MSE = 0.0072) 

Debiased (non-zero = 1024, MSE = 3.26e-005) 

Least squares (non-zero = 0, MSE = 1.568) 
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Issues with standard lasso objective
1. With group of highly correlated features, lasso tends to select amongst 

them arbitrarily
- Often prefer to select all together

2. Often, empirically ridge has better predictive performance than lasso, 
but lasso leads to sparser solution

Elastic net aims to address these issues
- hybrid between lasso and ridge regression
- uses L1 and L2 penalties

See Zou & Hastie ‘05 for further discussion

©2018 Emily Fox
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Summary for feature selection 
and lasso regression

©2018 Emily Fox
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Impact of feature selection and lasso

Lasso has changed machine learning, 
statistics, & electrical engineering

But, for feature selection in general, be careful about 
interpreting selected features
- selection only considers features included

- sensitive to correlations between features

- result depends on algorithm used

- there are theoretical guarantees for lasso under certain conditions

©2018 Emily Fox
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What you can do now…
• Describe “all subsets” and greedy variants for feature selection
• Analyze computational costs of these algorithms
• Formulate lasso objective
• Describe what happens to estimated lasso coefficients as tuning 

parameter λ is varied
• Interpret lasso coefficient path plot
• Contrast ridge and lasso regression
• Implement K-fold cross validation to select lasso tuning parameter λ

©2018 Emily Fox


