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Ridge Regression:
Regulating overfitting when 
using many features
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Training, true, & test error vs. model complexity
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Bias-variance tradeoff
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Error vs. amount of data
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Summary of 
assessing performance

©2018 Emily Fox

CSE/STAT 416: Intro to Machine Learning6

What you can do now…

• Describe what a loss function is and give examples
• Contrast training and test error
• Compute training and test error given a loss function
• Discuss issue of assessing performance on training set
• Describe tradeoffs in forming training/test splits
• List and interpret the 3 sources of avg. prediction error

- Irreducible error, bias, and variance

©2018 Emily Fox
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Overfitting of 
polynomial regression
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Flexibility of high-order polynomials
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Symptom of overfitting

Often, overfitting associated with very
large estimated parameters ŵ
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Overfitting of linear regression
models more generically
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Overfitting with many features

Not unique to polynomial regression,
but also if lots of inputs (d large)

Or, generically, 
lots of features (D large)

yi =      wj hj(xi) + εi
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DX

j=0

- Square feet

- # bathrooms

- # bedrooms

- Lot size

- Year built

- …

CSE/STAT 416: Intro to Machine Learning12

How does # of observations influence overfitting?

Few observations (N small) 
à rapidly overfit as model complexity increases
Many observations (N very large) 
à harder to overfit

©2018 Emily Fox
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How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):
Data must include representative examples of 
all possible (sq.ft., $) pairs to avoid overfitting

©2018 Emily Fox

HARD

square feet (sq.ft.)

p
ri

ce
 ($

)

x

fŵ
y

CSE/STAT 416: Intro to Machine Learning14

How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,…):
Data must include examples of all possible
(sq.ft., #bath, #bed, lot size, year,…., $) combos
to avoid overfitting

©2018 Emily Fox
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Adding term to cost-of-fit
to prefer small coefficients
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Desired total cost format

Want to balance:
i. How well function fits data
ii. Magnitude of coefficients

Total cost =
measure of fit + measure of magnitude of coefficients
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small # = good fit to 
training data

small # = not overfit

want to balancemeasure quality of fit
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Measure of fit to training data
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RSS(w) =      (yi-h(xi)Tw)2

= (yi-ŷi(w))2
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What summary # is indicative of size of 
regression coefficients?

- Sum?  

- Sum of absolute value?

- Sum of squares (L2 norm)

©2018 Emily Fox

Measure of magnitude of regression coefficient
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients

©2018 Emily Fox
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Consider specific total cost

Total cost =
measure of fit + measure of magnitude of coefficients

©2018 Emily Fox

RSS(w) ||w||2
2
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Consider resulting objective

What if ŵ selected to minimize

If λ=0:

If λ=∞: 

If λ in between: 

RSS(w) + ||w||2
tuning parameter = balance of fit and magnitude

©2018 Emily Fox

λ 2
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Consider resulting objective

What if ŵ selected to minimize

RSS(w) + ||w||2
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λ

Ridge regression
(a.k.a L2 regularization)

tuning parameter = balance of fit and magnitude

2
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Bias-variance tradeoff

Large λ:
high bias, low variance
(e.g., ŵ =0 for λ=∞) 

Small λ:
low bias, high variance

(e.g., standard least squares (RSS) fit of
high-order polynomial for λ=0)

©2018 Emily Fox

In essence, λ
controls model 

complexity 
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Revisit polynomial fit demo

What happens if we refit our high-order
polynomial, but now using ridge regression?

Will consider a few settings of λ …

©2018 Emily Fox
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How to choose λ

©2018 Emily Fox
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The regression/ML workflow

1. Model selection
Need to choose tuning parameters λ controlling 
model complexity

2. Model assessment
Having selected a model, assess generalization error

©2018 Emily Fox
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Hypothetical implementation

1. Model selection
For each considered λ :
i. Estimate parameters ŵλ on training data
ii. Assess performance of ŵλ on test data
iii. Choose λ* to be λ with lowest test error

2. Model assessment
Compute test error of ŵλ* (fitted model for selected λ*) 
to approx. true error

©2018 Emily Fox

Training set Test set

Overly 
optimistic!
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Hypothetical implementation

©2018 Emily Fox

Issue: Just like fitting ŵ and assessing its performance 
both on training data 
• λ* was selected to minimize test error (i.e., λ* was fit on test data)

• If test data is not representative of the whole world, then ŵλ* 
will typically perform worse than test error indicates

Training set Test set
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Training set Test set

Practical implementation

©2018 Emily Fox

Solution: Create two “test” sets!

1. Select λ* such that ŵλ* minimizes error on validation set

2. Approximate true error of ŵλ* using test set

Validation 
set

Training set
Test 
set
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Practical implementation
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Validation 
set

Training set
Test 
set

fit ŵλ
test performance 
of ŵλ to select λ*

assess true 
error of ŵλ*
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Typical splits
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Validation 
set

Training set
Test 
set

80% 10% 10%

50% 25% 25%
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How to handle the intercept
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PRACTICALITIES
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Recall multiple regression model

©2018 Emily Fox

Model:
yi = w0h0(xi) + w1 h1(xi) + … + wD hD(xi)+ εi

=      wj hj(xi) + εi

feature 1 = h0(x)…often 1 (constant)
feature 2 = h1(x)… e.g., x[1]
feature 3 = h2(x)… e.g., x[2]
…
feature D+1 = hD(x)… e.g., x[d]

DX

j=0
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Do we penalize intercept?

Standard ridge regression cost:

Encourages intercept w0 to also be small

Do we want a small intercept?  
Conceptually, not indicative of overfitting…

©2018 Emily Fox

RSS(w) + ||w||2λ 2

strength of penalty
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Option 1: Don’t penalize intercept

Modified ridge regression cost:

©2018 Emily Fox

RSS(w0,wrest) + ||wrest||2λ 2
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Option 2: Center data first

If data are first centered about 0, then
favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean
Step 2: Run ridge regression as normal

(closed-form or gradient algorithms)

©2018 Emily Fox



4/10/18

20

CSE/STAT 416: Intro to Machine Learning

Feature normalization

©2018 Emily Fox

PRACTICALITIES
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p

Normalizing features

Scale training columns (not rows!) as:

Apply same training scale factors to test data:  

©2018 Emily Fox
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Summary for 
ridge regression

©2018 Emily Fox
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What you can do now…
• Describe what happens to magnitude of estimated coefficients when 

model is overfit
• Motivate form of ridge regression cost function
• Describe what happens to estimated coefficients of ridge regression as 

tuning parameter λ is varied
• Interpret coefficient path plot
• Use a validation set to select the ridge regression tuning parameter λ
• Handle intercept and scale of features with care

©2018 Emily Fox


