

STAT/CSE 416: Intro to Machine Learning Hunter Schafer (slides by Emily Fox) University of Washington April 5, 2018

Generic linear regression model

Model:

$$y_i = \mathbf{w}_0 \mathbf{h}_0(\mathbf{x}_i) + \mathbf{w}_1 \mathbf{h}_1(\mathbf{x}_i) + \dots + \mathbf{w}_D \mathbf{h}_D(\mathbf{x}_i) + \varepsilon_i$$

$$= \sum_{j=0}^{D} \mathbf{w}_j \mathbf{h}_j(\mathbf{x}_i) + \varepsilon_i$$

. . .

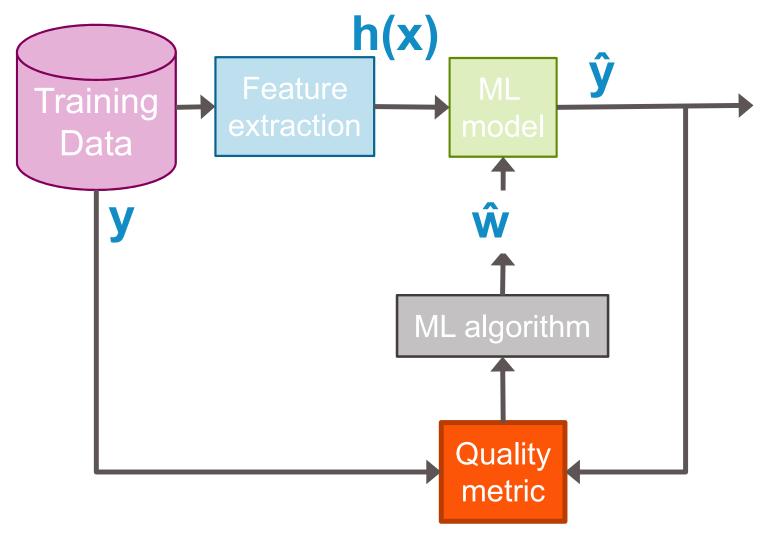
2

feature $1 = h_0(x) \dots e.g., 1$ feature $2 = h_1(x) \dots e.g., x[1] = sq. ft.$ feature $3 = h_2(x) \dots e.g., x[2] = \#bath$ or, log(x[7]) x[2] = log(#bed) x #bath

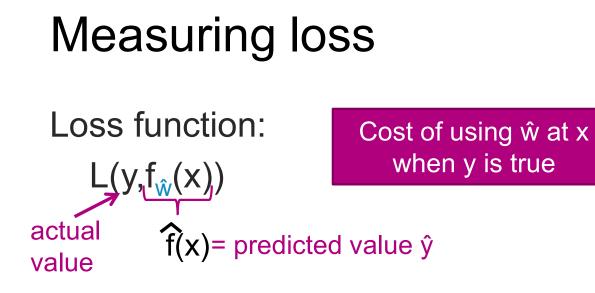
feature $D+1 = h_D(x) \dots$ some other function of x[1],..., x[d]

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning



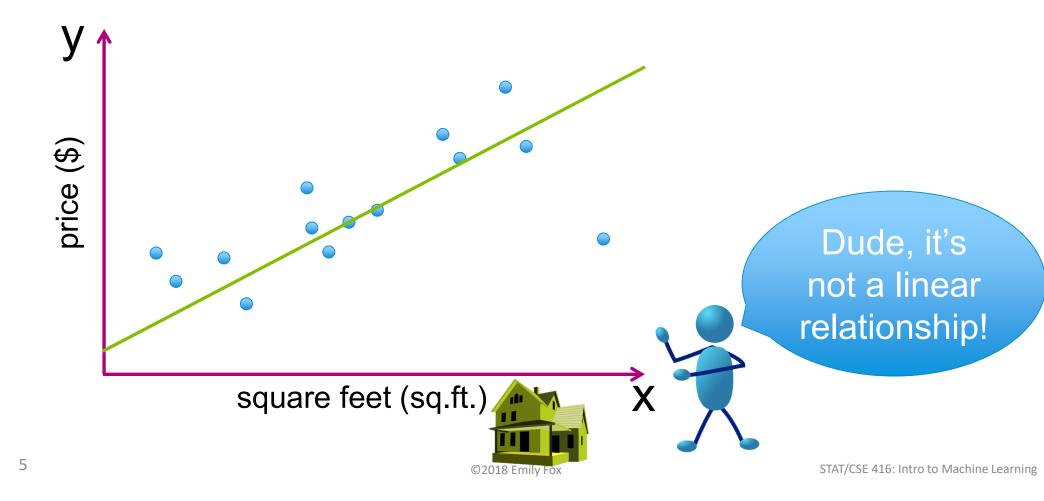
STAT/CSE 416: Intro to Machine Learning



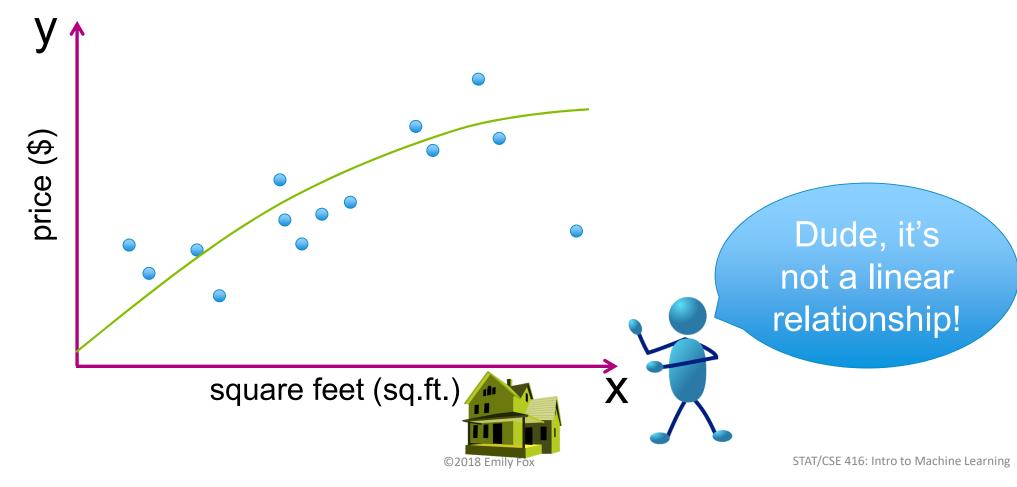
Examples: (assuming loss for underpredicting = overpredicting) Absolute error: $L(y, f_{\hat{w}}(x)) = |y-f_{\hat{w}}(x)|$ Squared error: $L(y, f_{\hat{w}}(x)) = (y-f_{\hat{w}}(x))^2$

STAT/CSE 416: Intro to Machine Learning

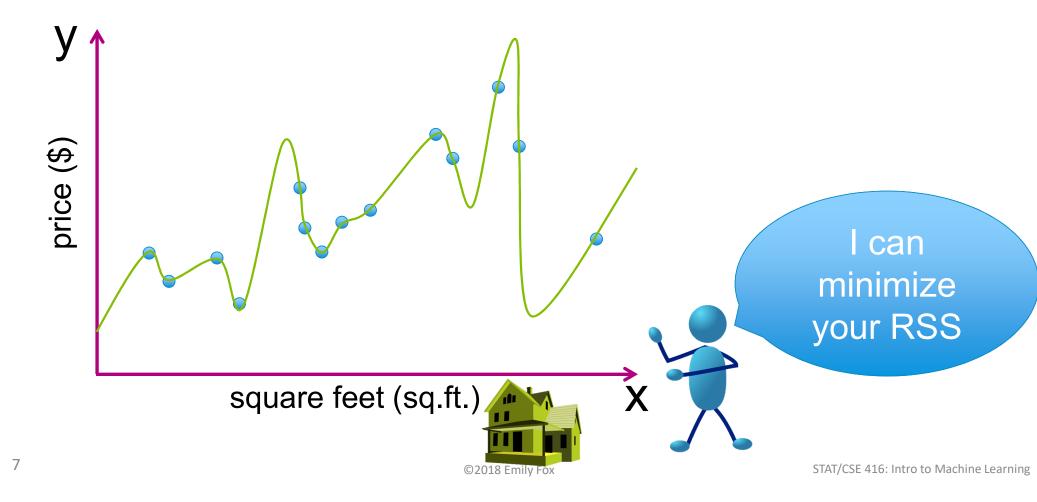
Fit data with a line or ... ?



What about a quadratic function?



Even higher order polynomial

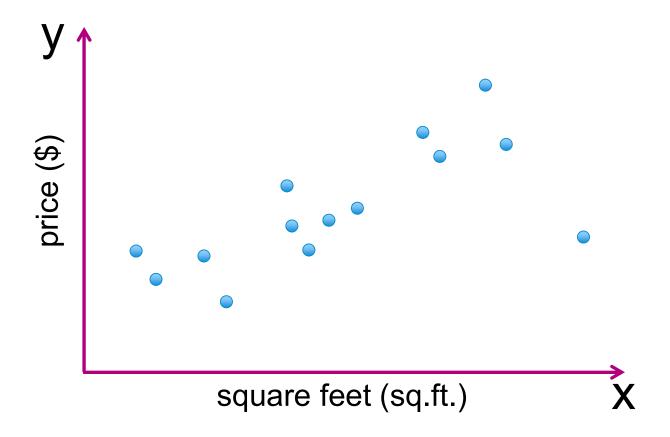


Assessing the loss Part 1: Training error

©2018 Emily Fox

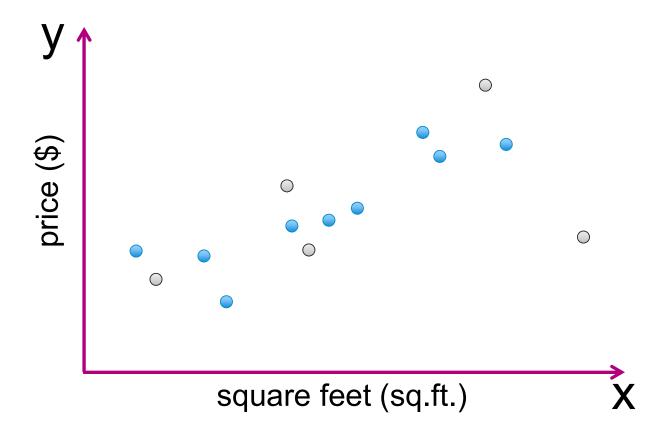
STAT/CSE 416: Intro to Machine Learning

Define training data



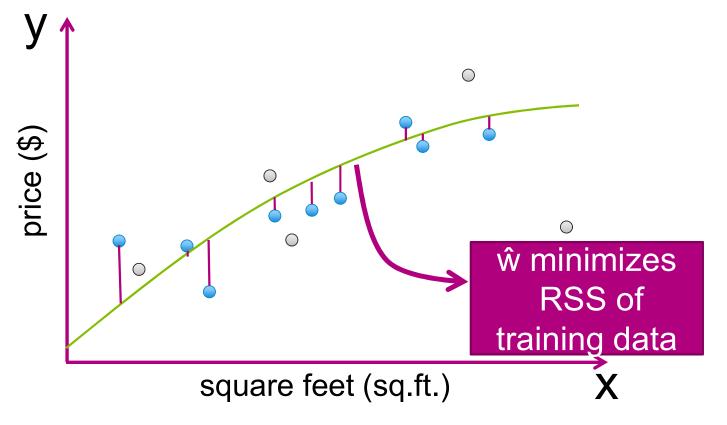
STAT/CSE 416: Intro to Machine Learning

Define training data



STAT/CSE 416: Intro to Machine Learning

Example: Fit quadratic to minimize RSS



STAT/CSE 416: Intro to Machine Learning

Compute training error

- 1. Define a loss function $L(y,f_{\hat{w}}(x))$
 - E.g., squared error, absolute error,...

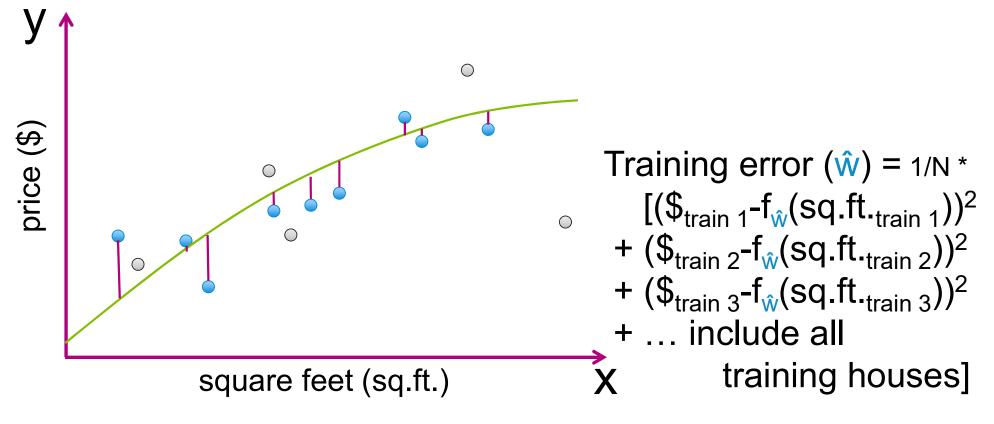
2. Training error

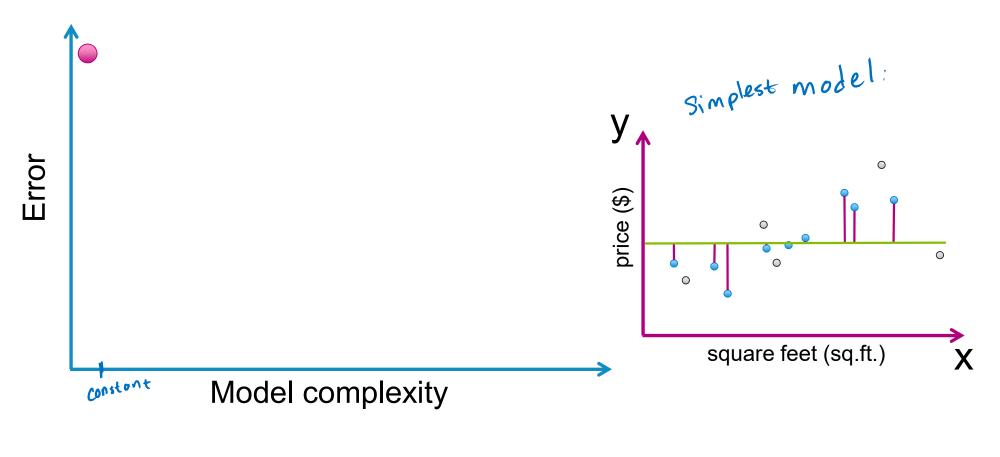
= avg. loss on houses in training set

$$= \frac{1}{N} \sum_{i=1}^{N} L(\mathbf{y}_{i}, \mathbf{f}_{\hat{\mathbf{w}}}(\mathbf{x}_{i}))$$

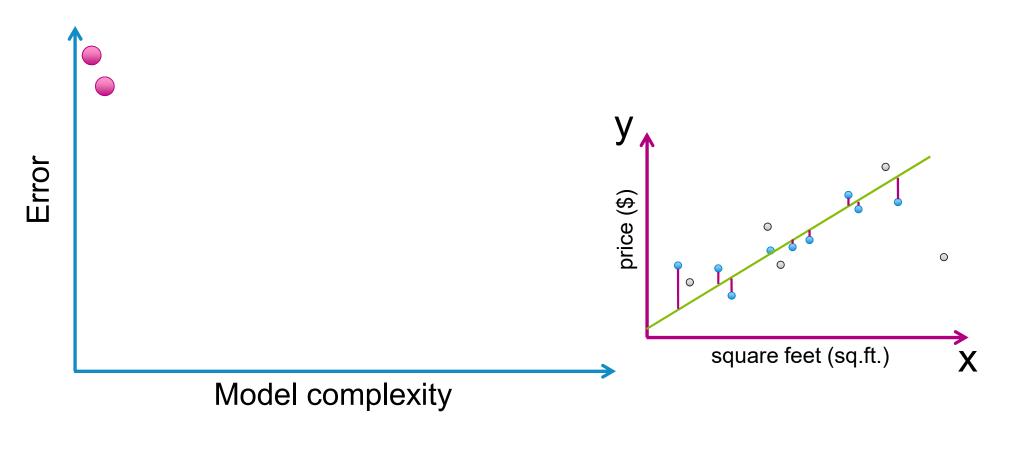
fit using training data

Example: Use squared error loss (y-f_ŵ(x))2

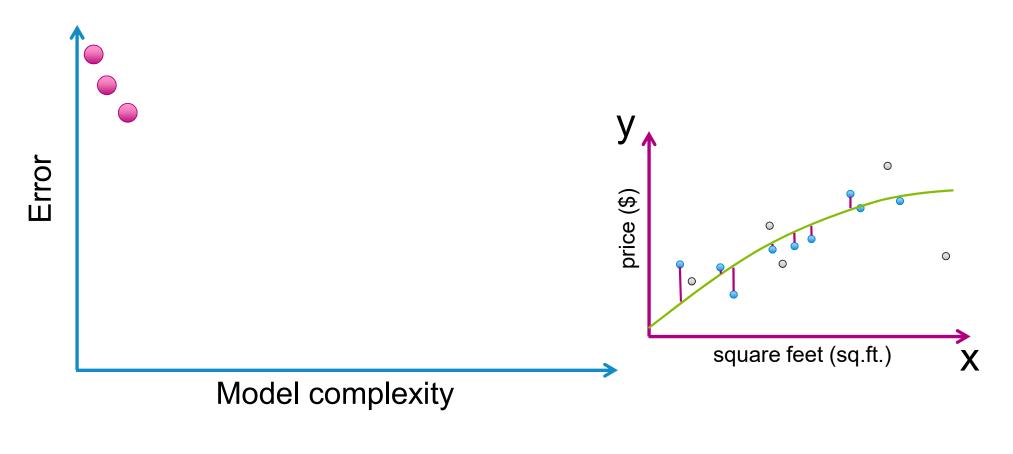




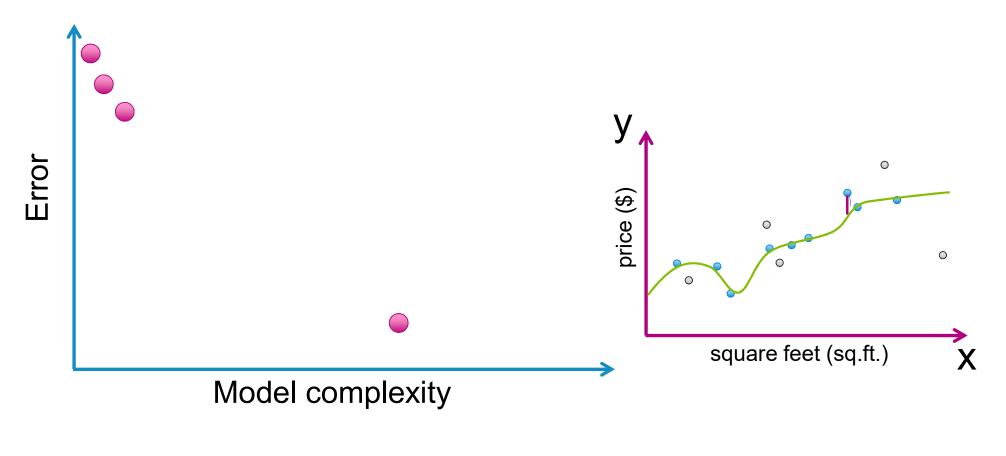
STAT/CSE 416: Intro to Machine Learning



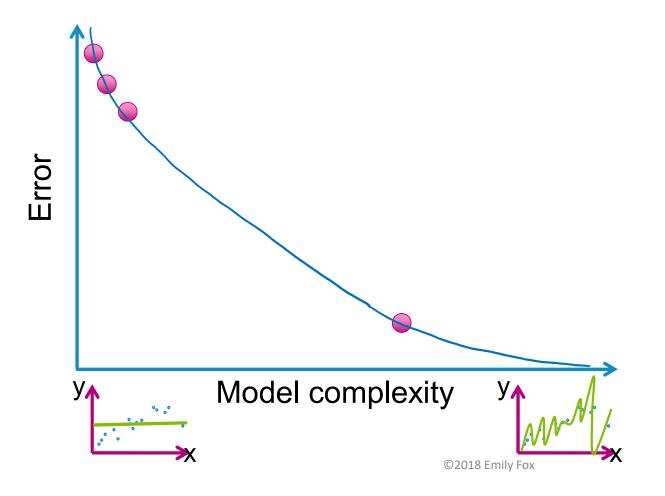
STAT/CSE 416: Intro to Machine Learning



STAT/CSE 416: Intro to Machine Learning



STAT/CSE 416: Intro to Machine Learning



STAT/CSE 416: Intro to Machine Learning

18

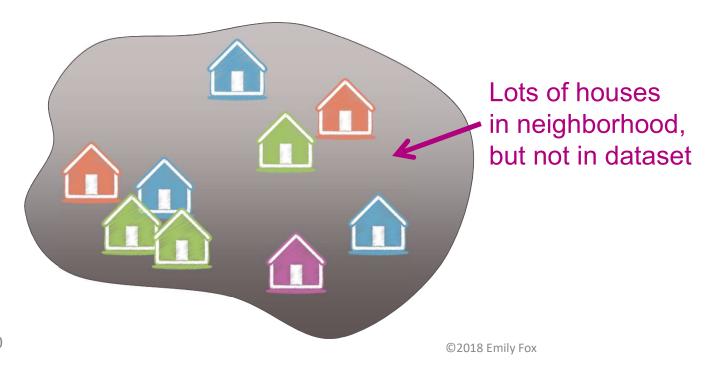
Assessing the loss Part 2: Generalization (true) error

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

Generalization error

Really want estimate of loss over all possible (1,\$) pairs

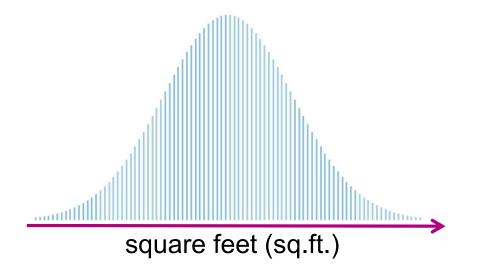


STAT/CSE 416: Intro to Machine Learning

20

Distribution over houses

In our neighborhood, houses of what # sq.ft. (
are we likely to see?



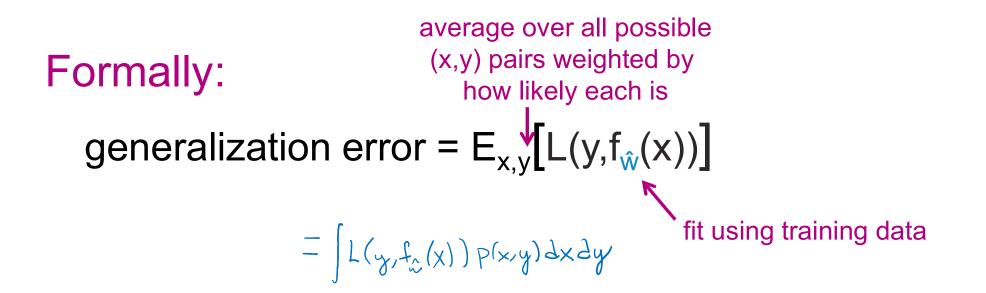
STAT/CSE 416: Intro to Machine Learning

Distribution over sales prices

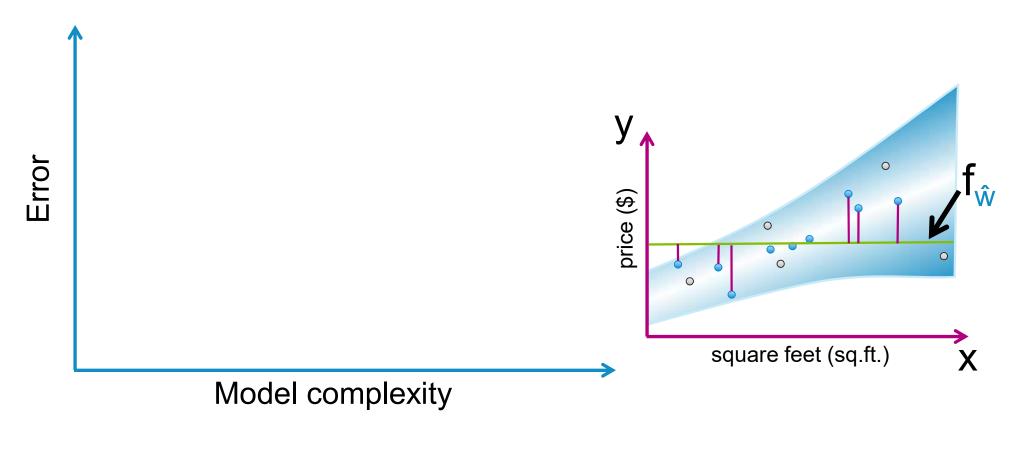
For houses with a given **#** sq.ft. (), what house prices \$ are we likely to see?

Generalization error definition

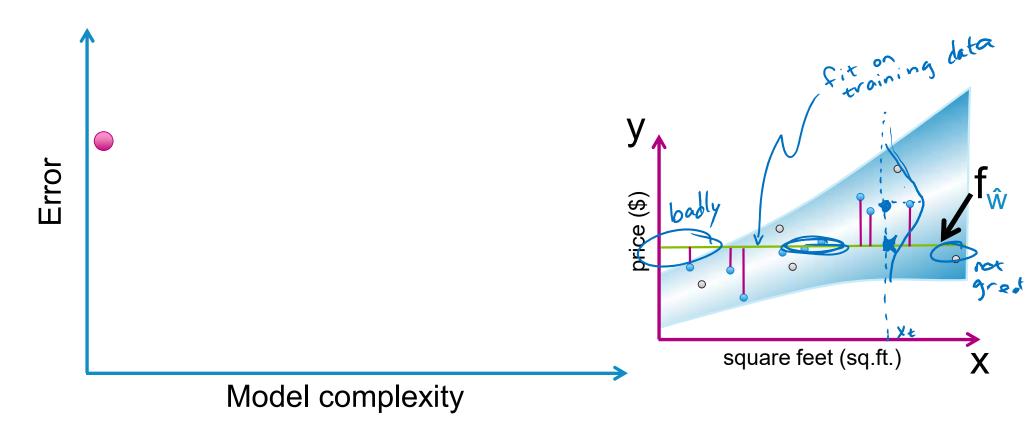
```
Really want estimate of loss over all possible (1,$) pairs
```

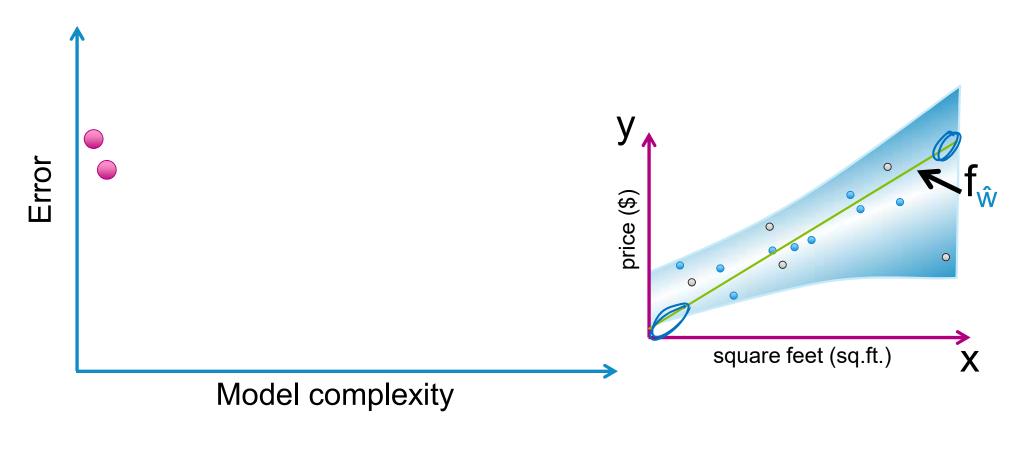


STAT/CSE 416: Intro to Machine Learning

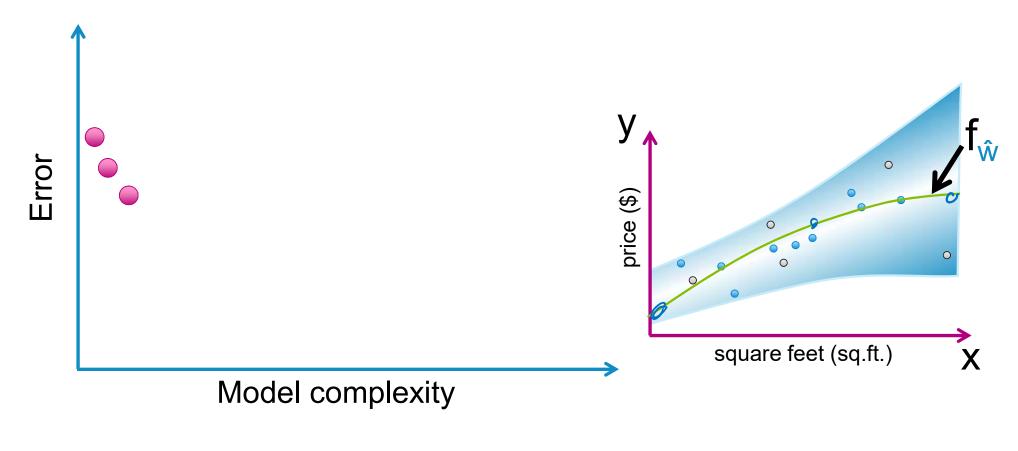


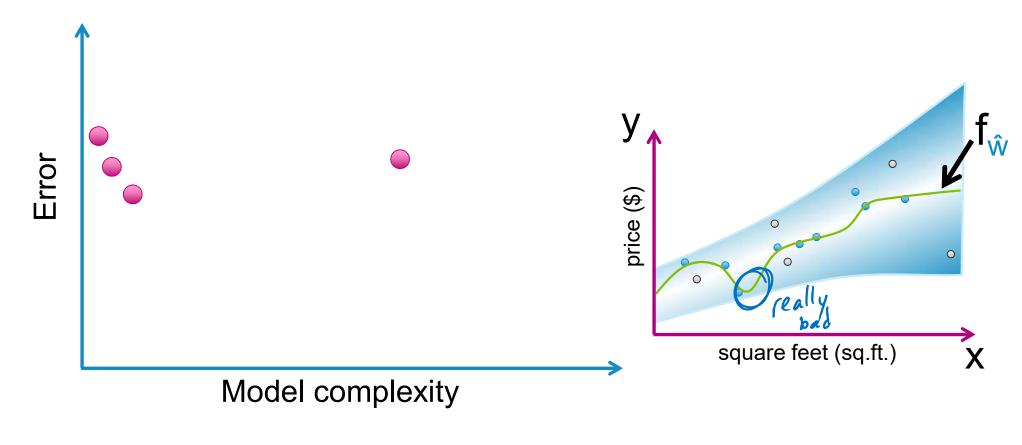
STAT/CSE 416: Intro to Machine Learning



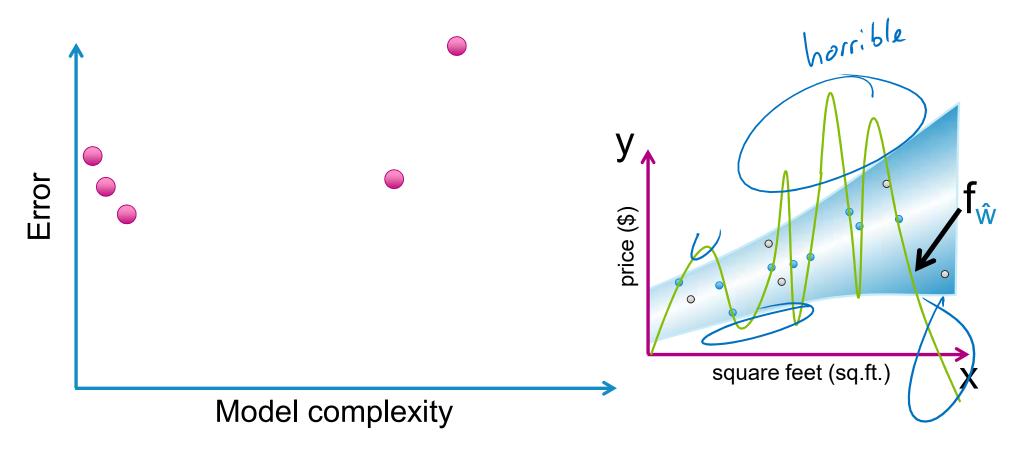


STAT/CSE 416: Intro to Machine Learning

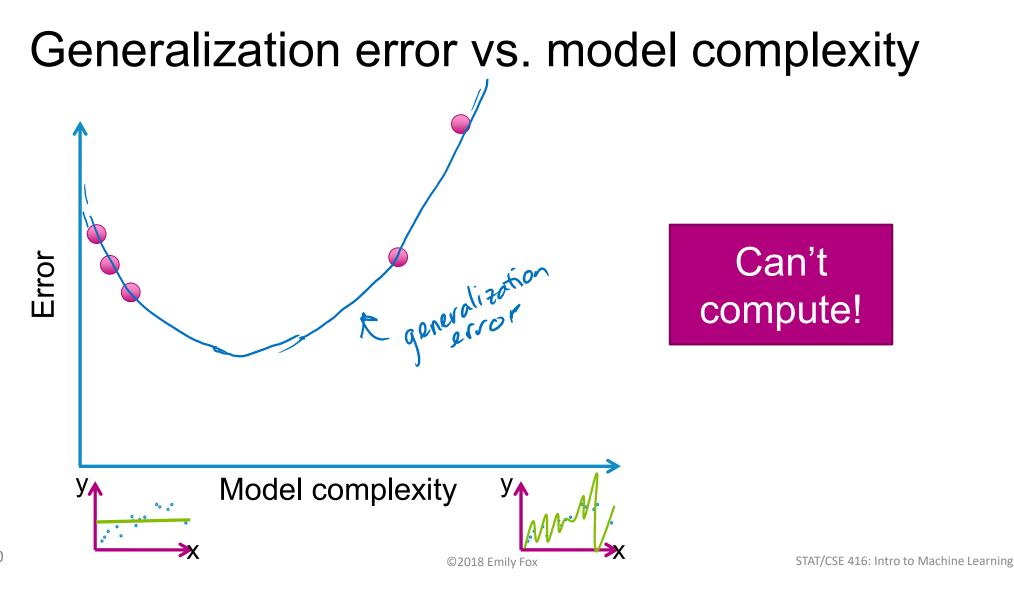




STAT/CSE 416: Intro to Machine Learning



STAT/CSE 416: Intro to Machine Learning



Assessing the loss Part 3: Test error

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

Approximating generalization error

Wanted estimate of loss over all possible (1,\$) pairs

Approximate by looking at houses not in training set

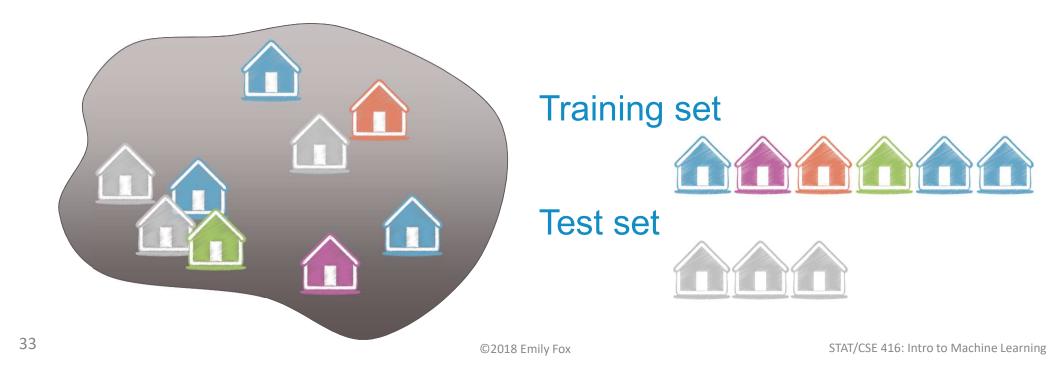
©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

32

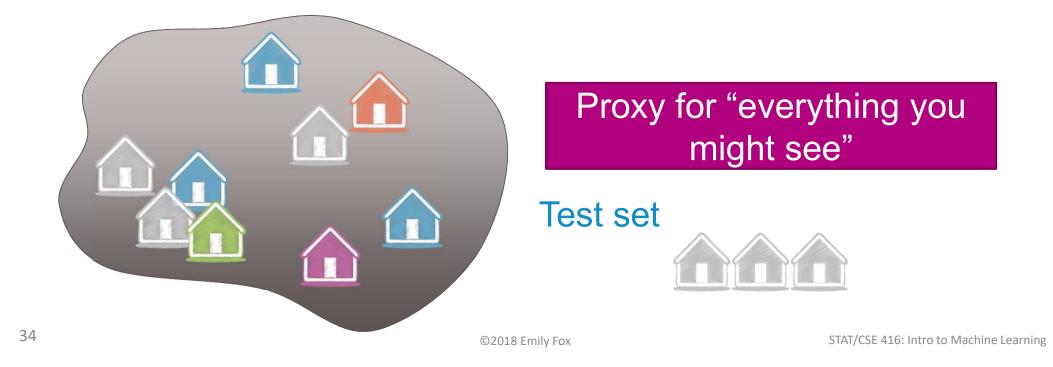
Forming a test set

Hold out some ((, \$) that are *not* used for fitting the model



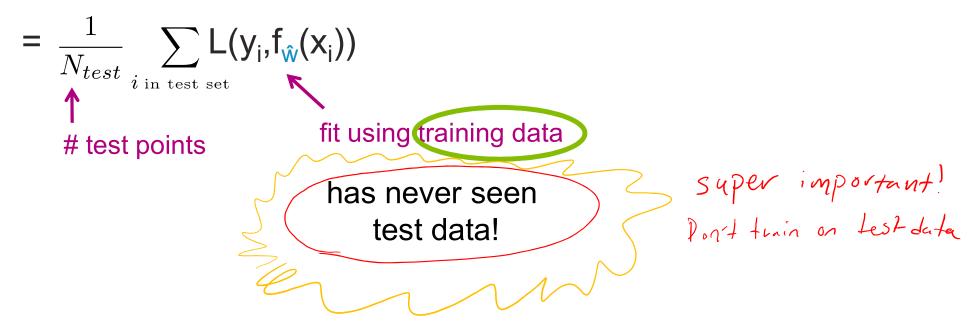
Forming a test set

Hold out some ($\widehat{\mathbf{m}}$) that are *not* used for fitting the model



Compute test error

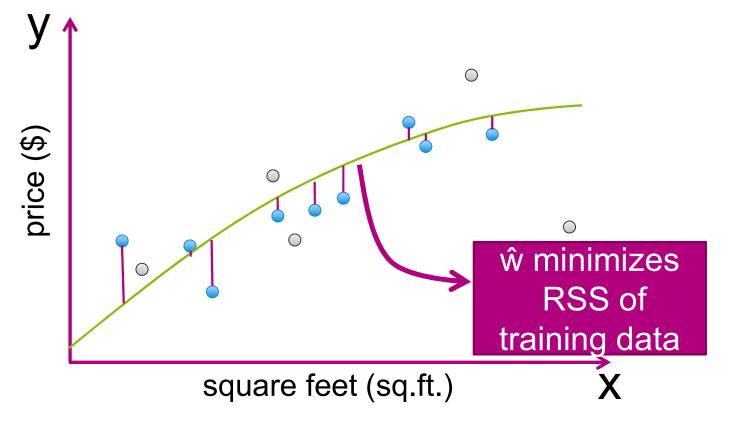
Test error



©2018 Emily Fox

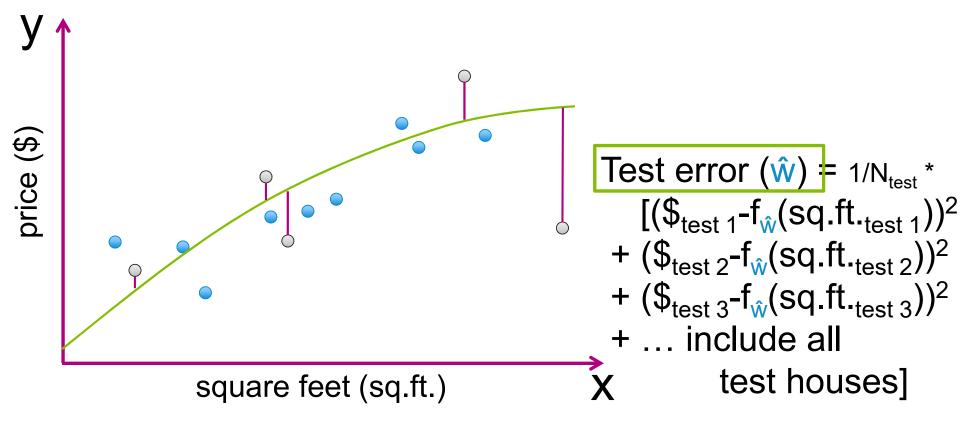
STAT/CSE 416: Intro to Machine Learning

Example: As before, fit quadratic to training data

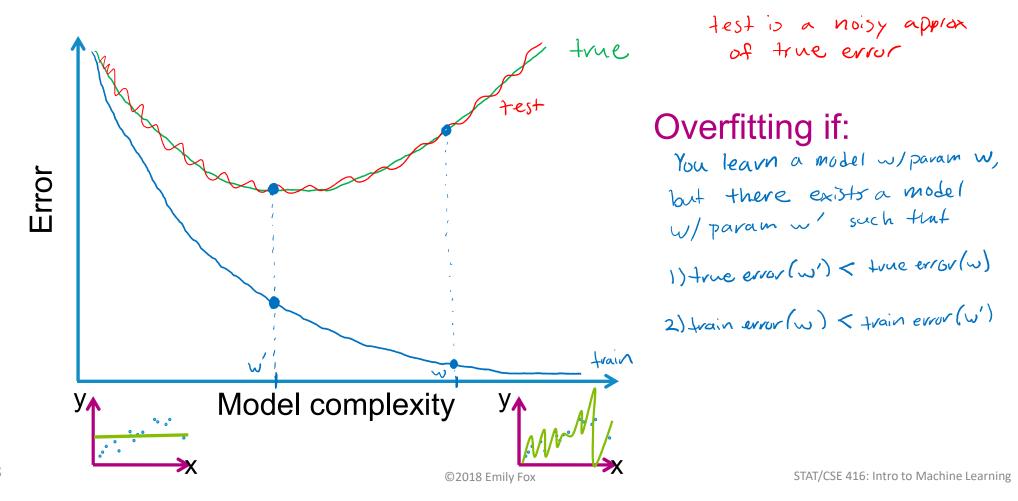


STAT/CSE 416: Intro to Machine Learning

Example: As before, use squared error loss $(y-f_{\hat{w}}(x))^2$



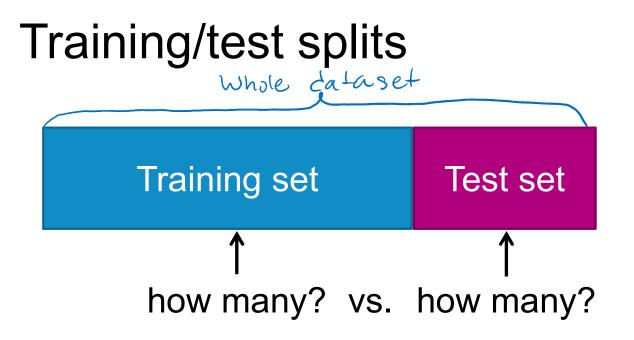
Training, true, & test error vs. model complexity



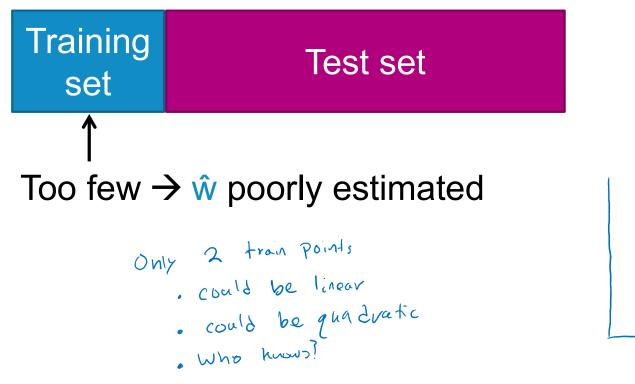
Training/test split

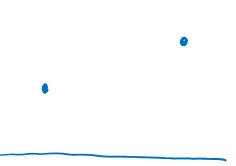
©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learnin

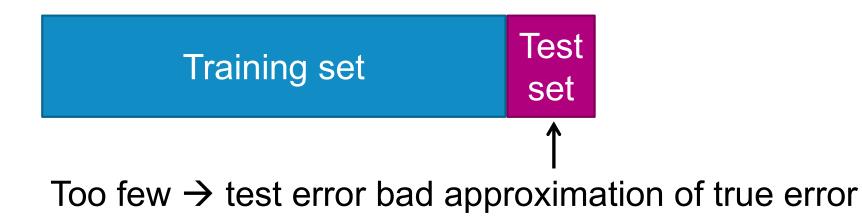


Training/test splits





Training/test splits



STAT/CSE 416: Intro to Machine Learning

©2018 Emily Fox

42

Training/test splits	
80%	20%
Training set	Test set

Typically, just enough test points to form a reasonable estimate of true error

If this leaves too few for training, other methods like cross validation (will see later...)

STAT/CSE 416: Intro to Machine Learning

3 sources of error + the bias-variance tradeoff

©2018 Emily Fox

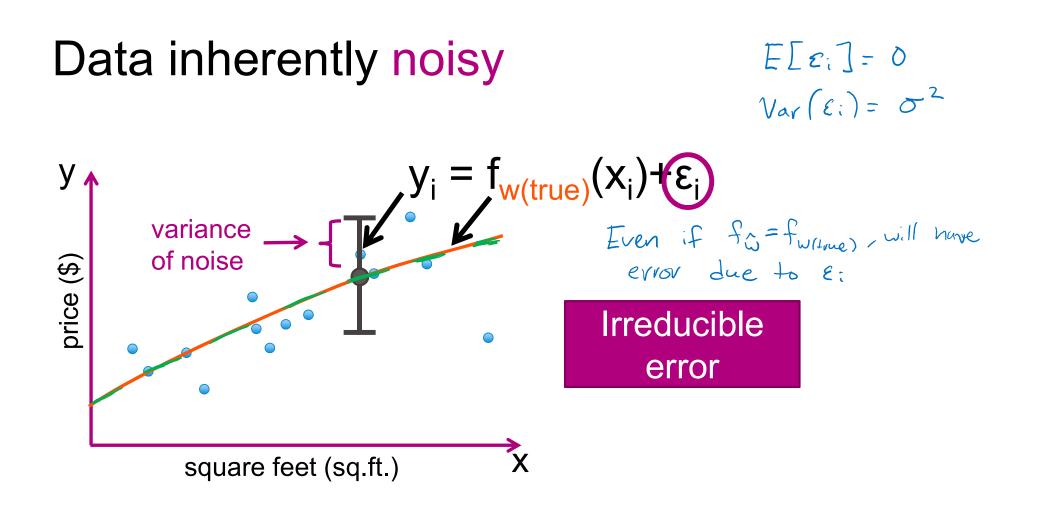
STAT/CSE 416: Intro to Machine Learnin

3 sources of error

In forming predictions, there are 3 sources of error:

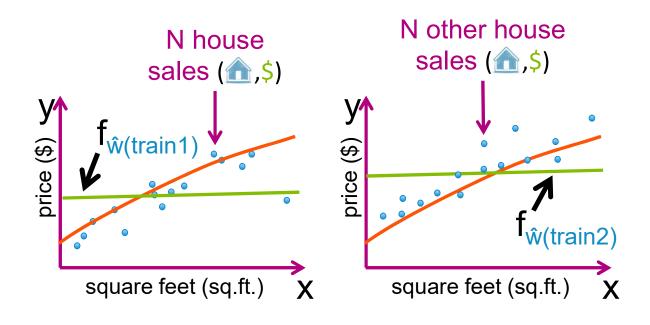
- 1. Noise
- 2. Bias
- 3. Variance

How your model deals with • Signal · Noise



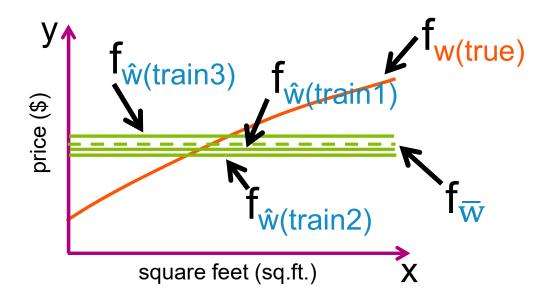
Bias contribution

Assume we fit a constant function



Bias contribution

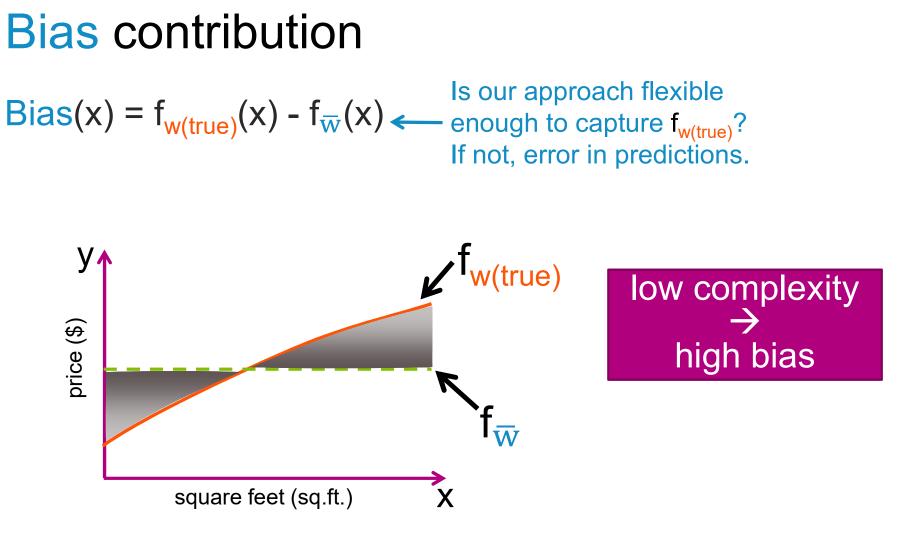
Over all possible size N training sets, what do I expect my fit to be?



©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

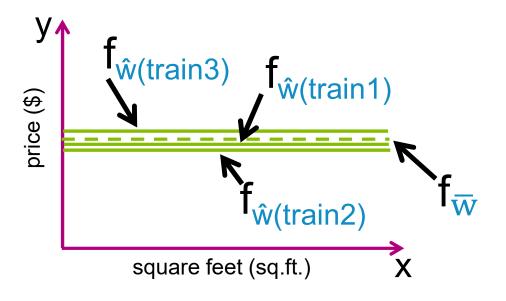
48



STAT/CSE 416: Intro to Machine Learning

Variance contribution

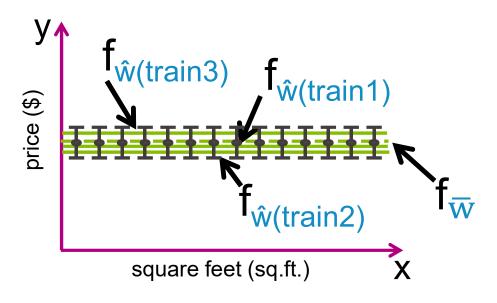
How much do specific fits vary from the expected fit?



STAT/CSE 416: Intro to Machine Learning

Variance contribution

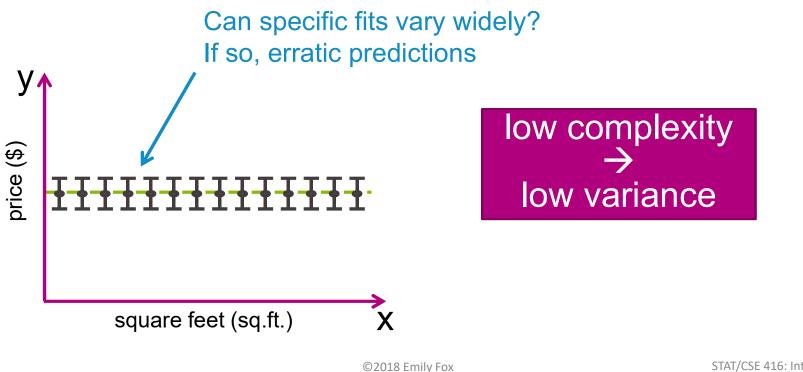
How much do specific fits vary from the expected fit?



STAT/CSE 416: Intro to Machine Learning

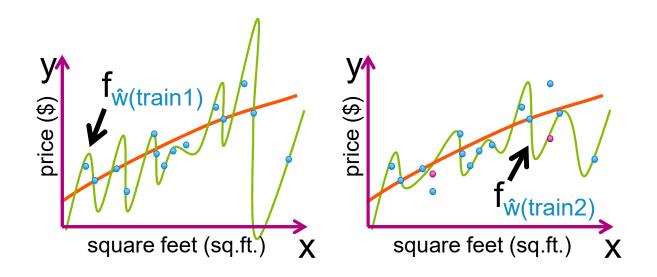
Variance contribution

How much do specific fits vary from the expected fit?



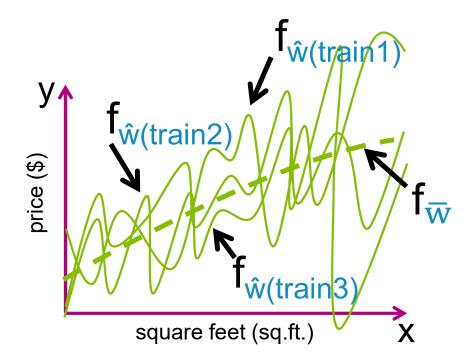
Variance of high-complexity models

Assume we fit a high-order polynomial



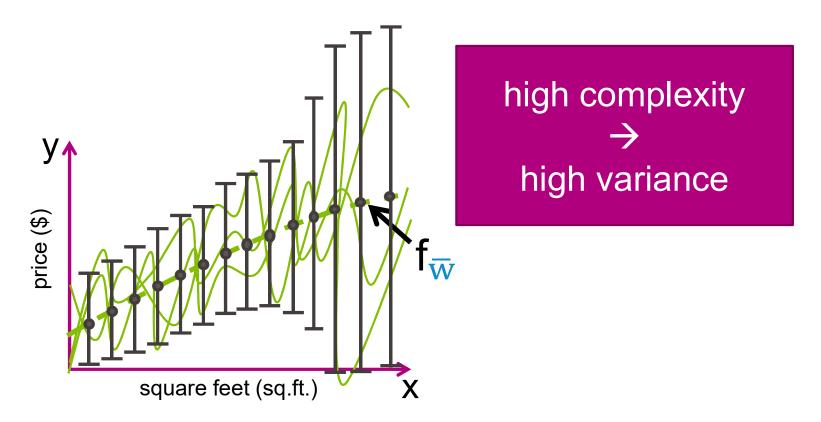
Variance of high-complexity models

Assume we fit a high-order polynomial



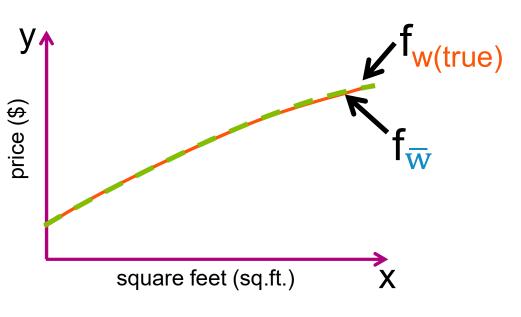
STAT/CSE 416: Intro to Machine Learning

Variance of high-complexity models



STAT/CSE 416: Intro to Machine Learning

Bias of high-complexity models

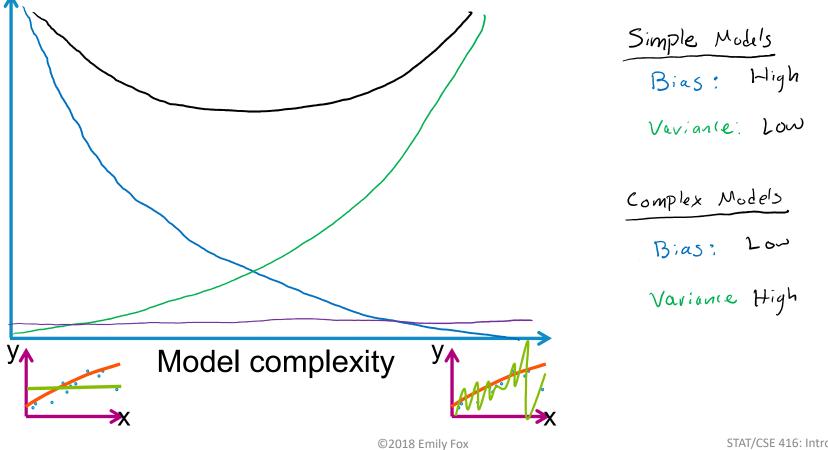


high complexity → Iow bias

STAT/CSE 416: Intro to Machine Learning

Bias-variance tradeoff

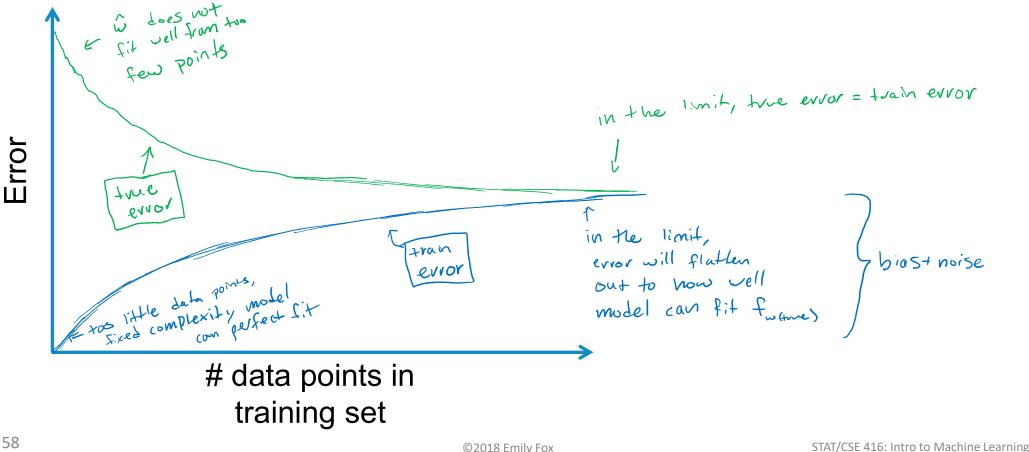
error = bias² + variance + noise



STAT/CSE 416: Intro to Machine Learning

57

Error vs. amount of data for fixed model complexity



58

Summary of assessing performance

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learnin

What you can do now...

- Describe what a loss function is and give examples
- Contrast training and test error
- Compute training and test error given a loss function
- Discuss issue of assessing performance on training set
- Describe tradeoffs in forming training/test splits
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance