Regression: Fredicting House Prices

STAT/CSE 416: Intro to Machine Learning Emily Fox University of Washington March 29, 2018

©2018 Emily Fox

Data input output

$$(x_1 = \text{sq.ft.}, y_1 = \$)$$

$$(x_2 = \text{sq.ft.}, y_2 = \$)$$

$$(x_3 = sq.ft., y_3 = \$)$$

$$(x_4 = sq.ft., y_4 = \$)$$

$$(x_5 = \text{sq.ft.}, y_5 = \$)$$

Input vs. Output:

- **y** is the quantity of interest
- assume \mathbf{y} can be predicted from \mathbf{x}

©2018 Emily Fo

STAT/CSE 416: Intro to Machine Learning

Model – How we assume the world works

F(x)

Expected relationship
between x and y

Regression model:

$$y_i = F(x_i) + e_i$$

E[E:]= 0 *

1 expected value

STAT/CSE 416: Intro to Machine Learning

4

©2018 Emily Fox

The fitted line: use + interpretation

Adding higher order effects

Polynomial regression Model: $y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \epsilon_i$

treat as different features

feature 1 = 1 (constant) parameter $1 = w_0$ feature 2 = x parameter $2 = w_1$ feature $3 = x^2$ parameter $3 = w_2$...

feature $p+1 = x^p$ parameter $p+1 = w_p$

30 ©2018 Emily Fox STAT/CSE 416: Intro to Machine Learning

An example detrending

Model:

Trigonometric identity: sin(a-b)=sin(a)cos(b)-cos(a)sin(b) $\rightarrow sin(2\pi t_i / 12 - \Phi) = sin(2\pi t_i / 12)cos(\Phi) - cos(2\pi t_i / 12)sin(\Phi)$

35

2018 Emily Fo

STAT/CSE 416: Intro to Machine Learning

An example detrending

Equivalently,

$$y_i = w_0 + w_1 t_i + w_2 \sin(2\pi t_i / 12) + w_3 \cos(2\pi t_i / 12) + \varepsilon_i$$

feature 1 = 1 (constant)

feature 2 = t

feature $3 = \sin(2\pi t/12)$

 $feature 4 = cos(2\pi t/12)$

36

©2018 Emily Fox

TAT/CSE 416: Intro to Machine Learning

Generic basis expansion

Model:

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + ... + w_{D}h_{D}(x_{i}) + \epsilon_{i}$$

$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \epsilon_{i}$$

$$j^{th} feature$$

$$j^{th} regression coefficient$$
or weight

40

©2018 Emily Fox

TAT/CSE 416: Intro to Machine Learning

Generic basis expansion

```
Model:
```

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + ... + w_{D}h_{D}(x_{i}) + \varepsilon_{i}$$
$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \varepsilon_{i}$$

 $feature 1 = h_0(x)...often 1 (constant)$

feature 2 = $h_1(x)$... e.g., x

feature $3 = h_2(x)... e.g., x^2 \text{ or } \sin(2\pi x/12) \text{ or } \log(x)$

...

feature $D+1 = h_D(x)... e.g., x^p$

41

STAT/CSE 416: Intro to Machine Learning

Adding other inputs

©2018 Emily Fox

Many possible inputs

- Square feet
- # bathrooms
- # bedrooms
- Lot size
- Year built
- ...

45

©2018 Emily Fo

STAT/CSE 416: Intro to Machine Learning

General notation

Output: y 🛩 scalar

Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$

d-dim vector

Notational conventions:

 $\mathbf{x}[j] = j^{th} input (scalar)$

 $h_i(\mathbf{x}) = j^{th}$ feature (scalar)

 \mathbf{x}_{i} = input of ith data point (vector)

 $\mathbf{x}_{i}[j] = j^{th}$ input of i^{th} data point (scalar)

46

©2018 Emily Fo

STAT/CSE 416: Intro to Machine Learning

Generic linear regression model

```
Model:

y_{i} = \underset{D}{w_{0}} h_{0}(\mathbf{x}_{i}) + \underset{1}{w_{1}} h_{1}(\mathbf{x}_{i}) + ... + \underset{D}{w_{D}} h_{D}(\mathbf{x}_{i}) + \epsilon_{i}
= \sum_{j=0}^{D} \underset{1}{w_{j}} h_{j}(\mathbf{x}_{i}) + \epsilon_{i}
```

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1
feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \text{sq. ft.}
feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \text{#bath}
or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\text{#bed}) x #bath
```

feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1],...,\mathbf{x}[d]$

47 ©2018 Fmily Fox STAT/CSF 416: Intro to Machine Learning

More on notation

```
# observations (\mathbf{x}_i, y_i): N
```

inputs x[j]: d

features $h_i(\mathbf{x}) : D$

49

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning

How many features to use?

• More on this soon!

51

2018 Emily Fo

STAT/CSE 416: Intro to Machine Learnin

A compact representation

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learn

Compact notation

$$f(\mathbf{x}_i) = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i) = \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i)$$

write this operation as:

wh(x;)

55

2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning