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Simplest approach: Popularity

MOST POPULAR

What are people viewing now?
- Rank by global popularity

Limitation:
- No personalization
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E-MAILED BLOGGED SEARCHED
1. Really?: The Claim: Lack of Sleep Increases the Risk of
Catching a Cold.
2. Magazine Preview: Coming Out in Middle School
3. Yes, We Speak Cupcake
4. Gossamer Silk, From Spiders Spun
5. Tie to Pets Has Germ Jumping to and Fro
6. Maureen Dowd: Where the Wild Thing Is
7. Maureen Dowd: Blue Is the New Black
8. The Holy Grail of the Unconscious

9. For Opening Night at the Metropolitan, a New Sound:
Booing

10. Economic Scene: Medical Malpractice System Breeds
More Waste

Go to Complete List »

[Ef CUSTOMIZE HEADLINES
sonalized list of headiines based
sts. Get Started »

STAT/CSE 416: Intro to Machine Learning

Solution 1: Classification model
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What's the probability I'll buy this product?

User info

Yesl!

Purchase history

Product info

No

Other info

Pros: Cons:

- Personalized: _ .
Considers user info & purchase history Features may not be available
- Often doesn’t perform as well

- Features can capture context:

Time of the day, what | just saw,... as collaborative filtering
- Even handles limited user history: methods (next)
Age of user, ...
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Solution 2: People who bought this
also bought...
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* People who bought diapers also bought baby wipes
* Matrix C:

store # users who bought both items i & j
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(Weighted) Average of purchased items

User " bought items {diapers, milk}
- Compute user-specific score for each item j in inventory by
combining similarities:

an
[ =1
Score( A baby WlpeS) =12 (Sbaby wipes, diapers + Sbaby wipes, milk)

- Could also weight recent purchases more

AV
/N7

Sort Score( %, j ) and find item j with highest similarity
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Solution 3: Discovering hidden structure
by matrix factorization
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Movie recommendation

Users watch movies and rate them
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Each user only watches a few of the available movies
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Matrix completion problem
(%]
. [}
Rating= 2
=
Users
Data: Users score some movies
Rating(u,v) known for black cells
Rating(u,v) unknown for white cells
Goal: Filling missing data? A
12 _SE 416 Intro to Machine Learning
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Suppose we had d topics for each
user & movie

* Describe movie v w with topics R,
- How much is it action, romance, drama,...

)/

* Describe user u \fﬂwith topics L,

- How much she likes action, romance, drama,...

= :
* Rating(u,v) is the product of the two vectors

N
* Recommendations: sort movies user hasn't watched by Rating(u,v)

©2018 Emily Fox STAT/CSE 416 Intro to

Machine Learning
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Predictions in matrix form

— R’

Rating=

But we don’t know topics of users and movies...

15 ©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning

Matrix factorization model:
Discovering topics from data

R’

>
Parameters

of model

u

Rating=

* Only use observed values to estimate “topic” vectors fu and ﬁv
* Use estimated fu and ﬁv for recommendations

Many efficient algorithms for factorization

16 ©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning
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Is the problem well posed?

Can we uniquely identify the latent factors?

u

L

If r,, is described by L, , R, what happens if we redefine the “topics” as

Then,

Other (orthonormal) transformations can have the same effect.

©2018 Emily Fox STAT/CSE 416: Intro to Machine Learning
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Matrix factorization objective

R’

te /
Parameters

of model

i

Rating=

* Minimize mean squared error:
- (Other loss functions are possible)

* Non-convex objective

= ©2018 Emily Fox STAT/CSE 416° Intro to Machine Learnina
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Coordinate descent

Goal: Minimize some function g

Often, hard to find minimum for all coordinates, but easy for each coordinate

Coordinate descent:

Initialize w = O (or smartly...)
while not converged
pick a coordinate j
W, €

22

Comments on coordinate descent

How do we pick next coordinate?
- Atrandom (“random” or “stochastic” coordinate descent), round robin, ...

No stepsize to choose!

Super useful approach for many problems
- Converges to optimum in some cases (e.g., “strongly convex”)

11
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Coordinate descent for matrix factorization

min > (Lu Ry —7u)

(u,v) 7y #7

* Fix movie factors R, optimize for user factors L,

 First key insight:

23

Minimize objective separately for each user

» For each user uy: min ZV (Lu - Ry — Tun)?
VEVy,

» Second key insight:

24
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Overall coordinate descent algorithm

w3 (R )
(uy0) Ty #7?

* Fix movie factors, optimize for user factors
- Independent least-squares over users

min Z (Ly - Ry — Tuy)?
L veEV,,

» Fix user factors, optimize for movie factors
- Independent least-squares over movies

min Ly Ry —1up)?
i ugU:v( )
* System may be underdetermined:
* Converges to
» Choices of regularizers and impact on algorithm:

©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning
Training FERILIE >
extraction
Data
ML algorithm

Quality

metric
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Using the results of matrix factorization

» Discover "topics” R, for each movie v

+ Discover "topics” L, for each user u

» Score(u,v) is the product of the two vectors =
Predict how much a user will like a movie

* Recommendations: sort movies user hasn't watched by Score(u,v)
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Bringing it all together:
Featurized matrix factorization

©2018 Emily Fox STAT/CSE 416: Intro to Machine Learning

Limitations of matrix factorization

» Cold-start problem

— This model still cannot handle a new user or movie

Rating=

30 ©2018 Emily Fg
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Cold-start problem more formally

Consider a new user u”and predicting that user’s ratings
- No previous observations

- Objective considered so far:

o1 Ay Ay
13111%15 (LuRv_ruv)z"i_?“LH%—’_?HRHQF

Tuv

- Optimal user factor:

- Predicted user ratings:

31 ©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning

Combining features and discovered topics

* Features capture context User info

- Time of day, what | just saw, Movie info
user info, past purchases,...

* Discovered topics from matrix factorization capture
groups of users who behave similarly
- Women from Seattle who teach and have a baby

+ Combine to mitigate cold-start problem
- Ratings for a new user from features only

- As more information about user is discovered,
matrix factorization topics become more relevant

32 ©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning
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Collaborative filtering with specified features

* Create feature vector for each movie (often have this even for new movies):

+ Define weights on these features for how much all users like each feature

e Fit linear model:

* Minimize:

34

Building in personalization

« Of course, users do not have identical preferences
* Include a user-specific deviation from the global set of user weights:

If we don't have any observations about a user, use wisdom of the crowd

* As we gain more information about the user, forget the crowd

* Can add in user-specific features, and cross-features, too

17
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Featurized matrix factorization—
A combined approach

Feature-based approach:
- Feature representation of user and movies fixed
- Can address cold-start problem

Matrix factorization approach:
- Suffers from cold-start problem
- User & movie features are learned from data

35 ©2018 Emily Fox STAT/CSE 41

Blending models

* Squeezing last bit of accuracy by blending models

* Netflix Prize 2006-2009
- 100M ratings Mictilix Prize /=
- 17,770 movies
- 480,189 users

- Predict 3 million
ratings to
highest accuracy

- Winning team blended over 100 models

36 ©2018 Fny . TAT/CSE 416
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A performance metric for

recommender systems

The world of all baby products

[

38 ©2018 Emilv £ TAT/COE 416 Intro to Machine Learning
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User likes subset of items

39 ©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning

Why not use classification accuracy?

 Classification accuracy = fraction of items correctly classified
(liked vs. not liked)

* Here, not interested in what a person does not like

* Rather, how quickly can we discover the relatively few liked items?
- (Partially) an imbalanced class problem

40 ©2018 Emily Fox STAT/CSE 416 Infro to Machine Learning
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How many liked items were
recommended?

¢
‘o

_ # liked & shown
3 # liked
A:;i)

STAT/CSE 416 Intro to Machine Learning

How many recommended items
were liked?

Precision

# liked & shown
# shown

S CSF 416 Intro to Machine L earning
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Maximize recall:
Recommend everything

A m

# liked & shown
# liked

Precision

# liked & shown
# shown

STAT/CSE 416 Intro to Machine Learning
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Optimal recommender

Y

Recall =1
Precision =1

©2018 Emily Fox STAT/CSE 416 Intro to Machine Learning

Precision-recall curve

* Input: A specific recommender system
* Output: Algorithm-specific precision-recall curve

* To draw curve, vary threshold on # items recommended
- For each setting, calculate the precision and recall

,T

precision

>

recall

46 ©2018 Fmilv Fox STAT/CSE 416 Intro to Machine [earning
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Which Algorithm is Best?

* For a given precision, want recall as large as possible (or vice versa)
* One metric: largest area under the curve (AUC)
* Another: set desired recall and maximize precision (precision at k)

t

precision

recall

©2018 Emily Fox STAT/CSE 416
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Summary of

recommender systems
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Feature
extraction

Training
Data

ML algorithm

Quality
metric
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What you can do now...

* Describe the goal of a recommender system
* Provide examples of applications where recommender systems are useful
* Implement a co-occurrence based recommender system

* Describe the input (observations, number of “topics”) and
output (“topic” vectors, predicted values) of a matrix factorization model

* Implement a coordinate descent algorithm for optimizing the matrix
factorization objective presented

* Exploit estimated “topic” vectors to make recommendations

* Describe the cold-start problem and ways to handle it
(e.g., incorporating features)

* Analyze performance of various recommender systems in terms of
precision and recall

* Use AUC or precision-at-k to select amongst candidate algorithms
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