
CSE 415 Autumn 2022 Assignment 4

Last name: First name:

Due Thursday night November 3 (was Wed. Nov. 2 prior to a correction to the “optimal
policy” column of the table in Question 5) via Gradescope at 11:59 PM. You may turn in
either of the following types of PDFs: (1) Scans of these pages that include your answers
(handwriting is OK, if it’s clear), or (2) Documents you create with the answers, saved
as PDFs. When you upload to GradeScope, you’ll be prompted to identify where in your
document your answer to each question lies.

Do the following five exercises. These are intended to take 20-25 minutes each if you know
how to do them. Each is worth 20 points. If any corrections have to be made to this
assignment, these will be posted in ED.

This is an individual-work assignment. Do not collaborate on this assignment.

Prepare your answers in a neat, easy-to-read PDF. Our grading rubric will be set up such
that when a question is not easily readable or not correctly tagged or with pages repeated or
out of order, then points will be be deducted. However, if all answers are clearly presented,
in proper order, and tagged correctly when submitted to Gradescope, we will award a 5-point
bonus.

If you choose to choose to typeset your answers in Latex using the template file for this
document, please put your answers in blue while leaving the original text black.

1



1 Blind Search with the Towers of Hanoi

The 2-disk version of the Towers of Hanoi is a trivial puzzle for humans and machines alike.
However, it’s a nice and simple context for comparing different algorithms.

Several aspects of this problem will come up again in Assignment 5, and so this problem will
not only help you get more familiar with certain details of the search algorithms, but it will
provide some insight into the the Towers of Hanoi problem space.

Let us assume that the problem is formulated with the following state representation and
operators.

Initial state:

Left: 1,2

Middle:

Right:

Goal state:

Left:

Middle:

Right: 1,2

Operator ϕ0: ”Move a disk from Left to Middle.”

Operator ϕ1: ”Move a disk from Left to Right.”

Operator ϕ2: ”Move a disk from Middle to Left.”

Operator ϕ3: ”Move a disk from Middle to Right.”

Operator ϕ4: ”Move a disk from Right to Left.”

Operator ϕ5: ”Move a disk from Right to Middle.”

Hand simulate DFS (Depth-First Search, BFS (Breadth-First Search) and IDDFS (Iterative-
Deepening Depth-First Search) on this problem, in order to determine the state visitation
orderings and compare them.

The problem-space graph for this formulation can be laid out as in the diagrams for sub-
questions a-c. In addition, this figure shows how the states in the problem-space correspond
to the position of the disks:

2



Note that the operators always take a specific direction, as shown in this diagram:

Use the copies of the problem space graph below to show the progress of each search algo-
rithm. When doing IDDFS, you’ll use a separate copy of the graph for each outer iteration.

For each algorithm stop when the goal node (g) is selected as the current state.

Number the nodes as they are visited (i.e., as they become the current state). The initial
state should get numbered 1 when each algorithm starts. However, during IDDFS, it should
get multiple numbers since it will be visited multiple times.

In order to get the correct numberings, it is very important to follow the pseudocode in the
DFS, and BFS algorithms, and to generate the successors by using the operators in their
given order: ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5.

Each time a new node is reached in the search (i.e., put onto the OPEN list), draw an arrow
to it from its parent. Note that this does not apply to the initial state, since it has no parent.
When doing this for IDDFS, you’ll retain (i.e., copy from one diagram to the next) these

3



arrows from one outer iteration to the next. At this end of IDDFS, you should have an
optimal path from the initial state to the goal state, which can be recovered by backtracing
from the goal.

(a) (0 points) Hand-simulate DFS and put the node visitation order on the graph. Note
that the answers to this part are done for you as an example.

(b) (8 points) Hand-simulate BFS and put the node visitation order on the graph. As in
the given example, also show the moves using arrows and operator identifiers (ϕ0, etc.).

4



(c) (12 points) Hand-simulate IDDFS and put the node visitation order onto the four graphs
below. Use one graph copy for each iteration of IDDFS. The first graph should have only
one node (for the initial state) visited. on the graph. The second graph’s initial state
should have visitation number 2 (since this state is visited again). Note that within one
iteration of IDDFS, some node(s) may be reached multiple times along different paths
from the initial state. This is OK, and each such repeat visit should be counted as a
node visitation and shown in your results. However, there should be no more than one
visitation of any given node along the current path between the initial state and current
state. That is, the search path must never be allowed to loop back on itself.

First and second iterations:

Third and fourth iterations:

5



2 Heuristic Search

(a) (5 points) Consider the following statement: The best heuristic is always the one that
gives you the estimate closest to the true cost. Is this always true? Explain why you agree
or disagree with the statement. Hint: Consider what “closest” does/doesn’t guarantee
and consider how “best” might be determined or defined.

state (s) s0 A B C D E F G H γ

heuristic h1(s) 13 25 11 5 5 4 10 2 15 0
heuristic h2(s) 14 50 12 6 5 5 8 2 18 0
heuristic h3(s) 14 5 5 7 4 1 7 1 19 0

(b) (5 points) Which heuristics (h1, h2, h3) shown above are admissible?

(c) (5 points) Which heuristics (h1, h2, h3) shown above are consistent?

(d) (5 points) Which of the 3 heuristics above would you select as the best one to use with
A* search? Why? Refer to both consistency and admissibility in your justification.

6



state (s) s0 A B C D E F G H γ

heuristic h4(s) 18 50 11 6 4 4 8 1 18 0

(e) (5 points) Referring back to the graph (NOTE: new edge added – coffee’s important!),
determine the path that would be computed by an A* search, given the heuristics pro-
vided above. As you search the space, complete the table below, indicating which nodes
are on the OPEN and CLOSED lists, along with their f values:

Action(s) OPEN CLOSED

Starting A∗ search [s0, 18] empty

take s0 off OPEN NOTE: ADD THE
& add successors [successors & f values] [s0,18]
to OPEN

continue through to goal...

7



3 Adversarial Search

Minimax game-tree search finds the best move under the assumption that both players play
rationally to respectively maximize and minimize the utility of the same evaluation function.
(It can also do well when those assumptions are relaxed.) The Minimax search, however,
typically requires a lot of computation time, especially with a deep and widely branching
search tree. Alpha-beta pruning is a method for speeding up Minimax search by skipping
any subtrees from the search tree that will not contribute to the outcome. Despite that,
Alpha-beta pruning’s success is dependent upon the order in which we visit the states. A
better order to visit the nodes could result in large difference in performance.

For the following questions, note that the example we are using has a maximizing node at the
root, which means our goal is to determine which choice of move at A offers the maximum
value.

(a) (7 points) Apply straight minimax search, depth-first, left-to-right. Show the resulting
values at each internal node. Then fill in the table. The total number of nodes visited
should include counts for the root node and the leaf nodes.

Number of nodes visited:

8



(b) (3 points) Apply alpha-beta pruning, left-to-right, on the given tree. Mark where cutoffs
occur in the tree above, and fill out the tables. Note: Use the final resulting alpha-beta
values for the second table. You can also mark these values in the graph if you prefer.
You do NOT need to fill in the resulting values at each internal node for this part):

Number of nodes visited:
Count of cutoffs:

Node A B C D E F G H I J
alpha value
beta value

(c) (10 points) Apply alpha-beta pruning, using an auxiliary static evaluation function f2(s).
You are still going depth-first in some sense, but use the auxiliary static evaluation
function to determine the order for visiting the children nodes. Starting from the root
node, sort each of its children from high to low using f2. Then visit them following that
order. Simiarly, do this for all the non-leaf nodes you visit, except that when visiting a
minimizing node, sort its children from low to high. You will still look for cutoffs when
applicable.

For this problem, Use f2 as given in the tables. (In practice, we might invest a lot of
resources into computing the auxiliary static evaluation function that would result in a
good ordering prior to alpha-beta pruning.)

Node s: A B C D E F G H I J
f2(s): 0 1 3 2 2 1 5 6 3 4

Node s: K L M N O P Q R S T
f2(s): 3 2 1 9 8 10 4 5 6 7

Show the resulting values at each internal node (leave it blank if pruned), mark where
cutoffs occur on the graph below, and fill out the tables (leave the cell blank if pruned):

9



Number of nodes visited:
Count of cutoffs:

Node A B C D E F G H I J
alpha value
beta value

10



4 Markov Decision Processes

Consider the following problem that is taking place in various instances of a Grid-World
MDP. The shaded box is walled off and is not one of the possible states. In all states, the
agent has available actions ↑, ↓, ←, →. Performing an action that would transition to an
invalid state (outside the grid or into a wall) results in the agent remaining in its original
state. In states with an arrow coming out, the agent has an additional action EXIT. In the
event that the EXIT action is taken, the agent receives the labeled reward and ends the game
in the terminal state T . Unless otherwise stated, all other transitions receive no reward, and
all transitions are deterministic. (Thus, this MDP is rather different from the Grid-World
example shown in lecture, even though they share the same state space.)

For all parts of the problem, assume that value iteration begins with all states initialized
to zero, i.e., ∀s V0(s) = 0. Let the discount factor be γ = 0.5 for all the following
parts.

Suppose that we are performing Value Iteration on the Grid-World MDP below:

(a) Fill in the “optimal” values for A and B in the given boxes. (I.e., determine the expected
total discounted rewards when starting in A (or B) and following an optimal policy.)

V ∗(A) : V ∗(B) :

(b) After how many iterations k will we have Vk(s) = V ∗(s) for all states s? If it never
occurs, write “never”. Write your answer in the given box.

(c) Suppose that we wanted to re-design the reward function. For which of the following
new reward functions would the optimal policy remain unchanged? Let R(s, a, s′) be
the original reward function.

11



R1(s, a, s
′) = 10 ·R(s, a, s′)

R2(s, a, s
′) = R(s, a, s′) + 1

R3(s, a, s
′) = R(s, a, s′)2

R4(s, a, s
′) = −5

None

(d) For the following problem, we add a new state in which we can take the EXIT action
with a reward of +x.

(i) For what values of x is it guaranteed that our optimal policy π∗ has π∗(C) = ←
(i.e. going left from C)? Write ∞ and −∞ if there is no upper or lower bound,
respectively. Write the upper and lower bounds in each respective box.

< x <

(ii) For what values of x does value iteration take the minimum number of iterations
k to converge to V ∗ for all states? Write ∞ and −∞ if there is no upper or lower
bound, respectively. Write the upper and lower bounds in each respective box.

≤ x ≤

(iii) Fill the box with value k, theminimum number of iterations until Vk has converged
to V ∗ for all states.

12



5 Computing MDP State Values and Q-Values

Recently, Mike has been working on building an intelligent agent to help a friend solve a
problem that can be modeled using an MDP. In this environment, there are 3 possible states
S = {s1, s2, s3} and at each state the agent always has 2 available actions A = {f, g}.
Applying any action a from any state s has a (possibly non-zero) probability T (s, a, s′) of
moving the agent to one of the other two states but will never result in the agent staying
at the original state. The rewards for this environment are only dependent on the original
state and action taken (∀s′ ∈ S,R(s, a, s′) = R(s, a)), not where the agent ended up.

(a) (2 points) Write down the problem-specific Bellman equations for each of the 3 states
(V (s) =?) in this particular MDP. (Use the symbols of the specific states, e.g., s1, and
actions, e.g., f .)

(b) (18 points) One fateful day, while Mike was running a VI-based MDP solver on this
problem, a mistake in specifying arguments caused the file that recorded the transition
probability table T (s, a, s′) to be overwritten with the output solution. Now, Mike has
the solution V ∗(s) and optimal policy π∗(s) but has lost the transition probabilities for
the problem.

s a R(s, a) V ∗(s) π∗(s)

s1 f −3 −1.1 f
s1 g −2.5 −1.1 f
s2 f 2 2 g
s2 g 2 2 g
s3 f 1.41 1.1 f
s3 g 1.2 1.1 f

After looking at the command line history and noting that a discount of γ = 1 was
specified, Mike muses that it may be possible to recover some parts of the transition
probability table T (s, a, s′). Using the information above, fill in the values in the table
below that you recover, rounded to 3 decimal places. HINT: What must transition

13



probabilities out of a given state add up to? Also, how do you relate V ∗(s) to the
transition probabilities, rewards, and other state values?
(Note: the rightmost column of the table was corrected on Nov. 1 from f,g,f,g,f,g to
f,f,g,g,f,f.)

s a T (s, a, s1) T (s, a, s2) T (s, a, s3)

s1 f 0
s1 g 0
s2 f 0
s2 g 0
s3 f 0
s3 g 0

14


