
CSE 415 Winter 2021 Assignment 4

Last name: First name:

Due Wednesday night February 10 via Gradescope at 11:59 PM. You may turn in either of
the following types of PDFs: (1) Scans of these pages that include your answers (handwriting
is OK, if it’s clear), or (2) Documents you create with the answers, saved as PDFs. When
you upload to GradeScope, you’ll be prompted to identify where in your document your
answer to each question lies.

Do the following five exercises. These are intended to take 20-25 minutes each if you know
how to do them. Each is worth 20 points.

1



1 Blind Search

The game of Pentago is a more complicated version of the standard Tic-Tac-Toe. In this
game, there are four standard Tic-Tac-Toe boards arranged in a 2 by 2 grid. The objective
of this game is to get five of your “color” (X or O) in a row. However, the twist in this
game is that upon the placement of your piece on the board, you must also rotate one of the
standard Tic-Tac-Toe boards 90 degrees clockwise or counterclockwise. This is illustrated
below.

Figure 1: Initial State Figure 2: Place X Figure 3: Rotate Board

Suppose for this problem you are only allowed to turn a board clockwise.

(a) (5 points) Design a state representation of the Pentago board. You can express this in
Python, English, or pseudocode.

(b) (10 points) Describe a function successors(s, player) where s represents the state of a
board and player represents whose turn it is. For this problem, assume you have some
predefined function rotate90(arr) that gives you the 90 degree clockwise rotation of a
3 by 3 matrix. You may use Python, English, or pseudocode.

2



(c) (5 points) Describe a function isGoal(s, player) where s is the state of the board and
player is the person for whom we are checking is in a goal state. You may use Python,
English, or pseudocode.

3



2 Heuristic Search

(a) (5 points) Consider the following statement: The best heuristic is always the one that
gives you the estimate closest to the true cost. Explain why you agree or disagree with
the statement.

state (s) s0 A B C D E F G H γ

heuristic h1(s) 14 15 7 8 6 3 20 10 4 0
heuristic h2(s) 14 16 10 10 7 2 16 14 5 0
heuristic h3(s) 14 15 11 10 8 3 16 10 6 0

(b) (5 points) Which heuristics (h1, h2, h3) shown above are admissible?

(c) (5 points) Which heuristics (h1, h2, h3) shown above are consistent?

(d) (5 points) Which of the 3 heuristics shown above would you select as the best heuristic
to use with A* search, and why? Refer to consistency/admissibility in your justification.

4



state (s) s0 A B C D E F G H γ

heuristic h4(s) 14 28 11 11 8 3 24 11 6 0

(e) (5 points) Referring back to the graph again, trace out the path that would be followed
in an A* search, given the heuristics provided above. As you trace the path, complete
the table below, indicating which nodes are on the open and closed lists, along with their
’f’ values:

Open Closed

Starting A∗ search [s0, 14] empty
s0

5



3 Adversarial Search

Minimax game-tree search finds a best move under the assumptions that both players play
rationally, to either maximize or minimize the value of the same static-evaluation function to
a certain ply limit. (It can also do well even when those assumptions are relaxed somewhat.)
However, the quality of a move usually improves as the maximum ply is increased. That
usually makes minimax take a lot longer. Alpha-beta pruning is a method for speeding up
minimax by eliminating any subtrees from the search that can be identified as not able to
contribute to the outcome. However, alpha-beta pruning’s success is dependent upon the
order in which the successors of a state are analyzed.

For each of the four following methods, determine the number of cutoffs, the number of leaf
nodes statically evaluated and the total number of states that would have to be generated.
Note that this example has a minimizing node at the root; that means we are computing the
value of the best move for the minimizing player and the minimizing player’s best move, as
the overall objective in this problem.

For parts (c) and (d) there are blank tree diagrams you should complete to show the new
order in which the space is searched.

6



(a) (5 points) Straight minimax search, depth-first, left-to-right. Show the backed-up values
at each internal node. Then fill in the table. Total number of states generated should
include the root, and should include those leaf nodes that had to be statically evaluated.

Number of cutoffs: 0
Number of leaf nodes processed:
Total number of states generated:

(b) (10 points) Alpha-beta pruning, left-to-right, on the given tree. Mark where cutoffs
occur on the tree, and fill out the table:

Number of cutoffs:
Number of leaf nodes processed:
Total number of states generated:

(c) (10 points) Alpha-beta pruning, using a secondary evaluation function f2(s). Rather
than going depth-first, use the following method. Start at the root, A; call this Sc for
current state. To process Sc, check whether it is a leaf node (i.e., at the maximum
ply). If so, return its static value (the normal static evaluation, the values are given in
the rectangles in the diagram). Otherwise, Sc is an internal node, so generate all its
successors (its immediate children, but not their children, etc.). Apply f2 to each of the
children, and sort them into best-first order. (If Sc is a maximizing node, then highest
is best. Else lowest is best.) Process these children in this best-first order, using the
regular alpha-beta method, by first calling recursively on the best child, then the next
best child (unless a cutoff happens and the rest of the children of Sc can be ignored).
Return the best value found among those children not cut off.

For this part, use f2 as given in this table. Leave nodes J through P in the same relative
order as in the original diagram. (In practice, an agent designer might use a single static
evaluation function to serve both the usual purpose of evaluating leaf nodes and the new
purpose of pre-evaluating internal nodes, but one point of this exercise is to show that
they can be different functions, possibly investing more or fewer computational resources
into finding a best ordering for the successors of a state prior to alpha-beta pruning.)

Node s: A B C D E F G H I
f2(s): 7 6 3 4 2 4 5 1

Complete the diagram of the re-ordered tree, labeling each internal node with the letter
for the appropriate state in the original diagram. Draw in the missing edges, since the
tree’s shape may now be a little different. Mark where cutoffs occur on the tree, and fill
out the table:

7



Number of cutoffs:
Number of leaf nodes processed:
Total number of states generated:

Note that the total number of states generated must be sure to include all the children
of any internal node that did not get cut off, since we assume that f2 cannot be applied
to them unless they are created.

8



Consider the following expectimax game tree. Note that the new © nodes represent
expectation nodes and the probability of their successors are denoted on the outgoing
edges of these nodes.

(d) (5 points) Fill in the nodes in the tree with the correct values selected by the maximizing
and minimizing players during the expectimax algorithm.

9



4 Markov Decision Processes

Consider the following game. You have three coins - one gold and two silver, each of which
is tossed independently of one another and gives heads or tails with equal probability. If
you get heads on the gold coin, you obtain a score of 2, and 0 otherwise. Getting heads on
either of the silver coins gives a score of 1 or 0 for heads or tails respectively. On every turn,
you flip all 3 coins and record the total score of all the three coins. You also keep a running
score that accumulates the scores obtained so far in each turn.

At any point of time, you can either flip the coins or stop if the running score is less than 6.
If the running score reaches or exceeds 6, you “go bust” and go to the final state, accruing
zero reward.

When in any state other than the final state, you are allowed to take the stop action. When
you stop, you reach the final state and your reward is the running total score if it is less than
6.

Note: there is no direct reward from tossing the coins (or we could say that there is a reward
but it’s always 0). The only non-zero reward comes from explicitly taking the stop action.
Discounting or not should not matter in the MDP for this game, but for the record, we
assume no discounting (i.e., γ = 1).

(a) (5 points) Write down the states (in any order) and actions for this MDP. (Hint: there
are 7 states in total and each should correspond to a numeric value except the final state)

10



(b) (10 points) Give the full transition function T (s, a, s′). Here s is a current state, a is an
action, and s′ is a possible next state when a is performed in s. Assuming your states
are s0, s1, s2, s3 etc., and actions are a0, a1 etc., some examples of how you should write
the function are as follows:

T (s, a0, s
′) = 〈value〉; s = s0, s

′ ∈ {s1, s2, s3, . . .}

T (s0, a1, s1) = 〈value〉

(c) (2 points) Give the full reward function R(s, a, s′).

(d) (3 points) What is the optimal policy? There is no need to perform value iteration or
use any fancy math; just write your answer in words.

11



5 Computing MDP State Values and Q-Values

Recently, Jim has been working on building an intelligent agent to help a friend solve a
problem that can be modeled using an MDP. In this environment, there are 3 possible states
S = {s1, s2, s3} and at each state the agent always has 2 available actions A = {f, g}.
Applying any action a from any state s has a probability T (s, a, s′) of moving the agent to
one of the other two states but will never result in the agent staying at the original state.
The rewards for this environment represent the cost/reward of an action, and thus are only
dependent on the original state and action taken (∀s′ ∈ S,R(s, a, s′) = R(s, a)), not where
the agent ended up.

(a) (2 points) Write down the problem-specific Bellman update equations for each of the
3 states (V (s) =?) in this particular MDP. (Use the names of the specific states and
actions.)

(b) (8 points) One fateful day, while Jim was running a VI-based MDP solver on this prob-
lem, a mistake in specifying arguments caused the file that recorded the transition prob-
ability table T (s, a, s′) to be overwritten with the output solution. Now, Jim has the
solution V ∗(s) and optimal policy π∗(s) but has lost the transition probabilities for the
problem.

s a R(s, a) V ∗(s) π∗(s)

s1 f −3 −1.4 g
s1 g −4 −1.4 g
s2 f 3 3 f
s2 g 3 3 f
s3 f 1.92 1.4 f
s3 g 1.7 1.4 f

After looking at the command line history and noting that a discount of γ = 1 was speci-
fied, Jim muses that it may be possible to recover some parts of the transition probability
table T (s, a, s′). Using the information above, fill in the values in table below that you

12



can recover, writing a “X” in the cells that you cannot produce a value for. Show your
work by explaining how you recovered the values in the box under the table. For values
that were derived in a similar way, it’s sufficient to reference the previous explanation
without repeating it again.

s a T (s, a, s1) T (s, a, s2) T (s, a, s3)

s1 f
s1 g
s2 f
s2 g
s3 f
s3 g

(c) (8 points) After some more thinking, Jim realized that while some values in the transition
table cannot be ascertained with certainty, it is possible to instead figure out a reasonable
range that the values would have been within. Using the same information as before,
fill in places where a range can be derived for the transition probability (places where
you marked an ”X” on the table before) by noting the upper and lower bounds for valid
values. (You may leave cells with fully recovered values from the previous part blank.)
Show your derivation of these ranges in the box below the table. As before, if some
ranges are derived in a similar way, you can just reference the previous explanation
without having to repeat it.

13



s a T (s, a, s1) T (s, a, s2) T (s, a, s3)

s1 f
s1 g
s2 f
s2 g
s3 f
s3 g

(d) (2 points) If Jim had instead solved for Q-Values rather than V and π, what difference
would it make to the ability to recover the transition probabilities T (s, a, s′)? Explain
why this is the case.

14


