5/17/2017

Reinforcement Learning

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring 2017

Presented by S. Tanimoto, University of Washington, based on material by Dan Klein and Pieter Abbeel -
- University of California.

Outline

* Planning vs Learning

* Model-Based Learning

* Direct Evaluation

* Sample-Based Policy Evaluation
* Temporal Difference Learning

* Active Reinforcement Learning
* Q-Learning

* Exploration vs Exploitation

* Regret

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique Goal Technique

* QF Tt
Compute V*, Q*, n*: VI/Pl on approx. MDP Compute V¥, Q*, m*: Q-learning

(el e ikl elltsy s e @n e) Evaluate a fixed policy m: Value Learning

Example: Model-Based Learning

Observed Episodes

! (Training)
Policy Episode 1 Episode 2 T(s,a,)

Input Learned Model

(" N R e N
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00

C east, D, -1 C,east,D,-1 T(C, east, D) =0.75
D, exit, x, +10 D, exit, x, +10 T(C, east, A) =0.25
\ AN J J
Episode 3 Episode 4 R(s,a,s)
(N N s
E, north, C, -1 E, north, C, -1 R(B, east, C) = -1
C,east, D,-1 C,east, A -1 R(C, east, D) =-1
Assume:y=1 D,exit, x,+10| | A, exit, x-10 RID, exit,) = +10

- AN J N\ J

Example: Direct Evaluation

Input Policy Observed Episodes (Training) Output Values
Episode 1 Episode 2
(B, east, C, -1 h B, east, C, -1 N
C,east,D, -1 C,east, D, -1
D, exit, x, +10 D, exit, x, +10
- AN J
Episode 3 Episode 4

[E, north, C, »D rE, north, C, -D

C,east, D,-1 C,east, A -1
Assume:y =1 D, exit, x, +10 A, exit, x,-10
& AN J

Problems with Direct Evaluation

* What’s good about direct evaluation? Output Values
— It’s easy to understand
— It doesn’t require any knowledge of T, R

— It eventually computes the correct
average values, using just sample
transitions

* What bad about it?

— It wastes information about state
connections

— Each state must be learned separately
— So, it takes a long time to learn

If Band E both go
to C under this
policy, how can
their values be
different?

5/17/2017

Why Not Use Policy Evaluation?

* Simplified Bellman updates calculate V for a
fixed policy:

— Each round, replace V with a one-step-look- ’
ahead layer oVBry p- s, (s),s

Vi(s)=0
i (s) & ZT 5,7(s),8")[R(s,7(s),8") + V()]

— This approach fuIIy exploited the connections
between the state!
— Unfortunately, we need TandRtodoit!

* Key question: how can we do this update to
V without knowing T and R?

— In other words, how to we take a welghted
average without knowing the weights?

Sample-Based Policy Evaluation?

* We want to improve our estimate of V by
computing these averages: ﬁ\ﬁ

Viga(s) <—ZT s,7(s),8")[R(s,m(s),8") + V[(

¢ |dea: Take samples of outcomes s’ (by doing
the action!) and average

sample; = R(s,m(s),s1) + 71V (s})
sum])(g = R(s,7(s),85) + V[(sh)
samplen, —ll?(s. 7(s), s0) + 7V (s))
H-l(s) - Za’rlmplh, Almost! But we can’t

i rewind time to get sample
after sample from state s.

Temporal Difference Learning

* Bigidea: learn from every experience! S
— Update V(s) each time we experience a transition (s, a, s, r)
— Likely outcomes s’ will contribute updates more often n(s)
s, m(s)

* Temporal difference learning of values
— Policy still fixed, still doing evaluation!

— Move values toward value of whatever successor occurs: As
running average

Sample of V(s): sample = R(s,7(s).s') + 1V (s)
Update to V(s): V7(s) + (1 - a)V™(s) 4 (a)sample

Same update: V7(s) + V7(s) 4+ a(sample — V(s))

Exponential Moving Average

* Exponential moving average
— The running interpolation update: &5 = (1 - a] "Tn-1t 0z,

— Makes recent samples more important:

Tt (l—a) g F (1 ey g ...

T, = -
" I+(1-a)—(1-a)+...
— Forgets about the past (distant past values were wrong
anyway)

* Decreasing learning rate (alpha) can give converging
averages

Example: Temporal Difference
Learning

States Observed Transitions

[B, east, C, -2] [C,east, D, -2]

Assume:y=1,a=1/2

Problems with TD Value Learning

* TD value learning is a model-free way to do policy
evaluation, mimicking Bellman updates with running
sample averages

* However, if we want to turn values into a (new) policy,
we’re sunk:

7(s) = argmaxQ(s, a)

(s,a) ZT Ja,8' R(,a,8") FAV (s) o

¢ |dea: learn Q-values, not values p
* Makes action selection model-free too!

Active Reinforcement Learning

5/17/2017

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like
value iteration)

— You don’t know the transitions T(s,a,s’)

— You don’t know the rewards R(s,a,s’)
— You choose the actions now

— Goal: learn the optimal policy / values

In this case:
— Learner makes choices!
— Fundamental tradeoff: exploration vs. exploitation

— This is NOT offline planning! You actually take actions
in the world and find out what happens...

Detour: Q-Value Iteration

* Value iteration: find successive (depth-limited) values
— Start with V(s) = 0, which we know is right
— Given V,, calculate the depth k+1 values for all states:

Vig1(s) maaxz T(s,a,5) [R(s,a., §)+7 Vk(s’)]

* But Q-values are more useful, so compute them instead
— Start with Qu(s,a) = 0, which we know is right
— Given Q,, calculate the depth k+1 g-values for all g-states:

Quta(0) T(5.0.) [Rls.0.8) + max Qo)

Q-Learning

Q-Learning: sample-based Q-value
teration. Qs (s.0) - Y T(s,0.) [Rs.a.8) 4 max Qy(s'.a)
! [

8

Learn Q(s,a) values as you go
— Receive a sample (s,a,s,r)
— Consider your old estimate: Qls,0)
— Consider your new sample estimate:
sample = R(s,a,s') + ma,XQ(s’,a’)
4

— Incorporate the new estimate into a
running average:
Q(S, a) A (1 - O‘)Q(S- a) + (Ul) [Sample] [Demo: Q-learning — gridworld (L1002)]

[Demo: Q-learning ~ crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

* Amazing result: Q-learning converges to
optimal policy -- even if you're acting
suboptimally!

* This is called off-policy learning

* Caveats:
— You have to explore enough ~
— You have to eventually make the learning rate
small enough
— ... but not decrease it too quickly

— Basically, in the limit, it doesn’t matter how you
select actions (!)

[

How to Explore?

» Several schemes for forcing
exploration

— Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly

* With (large) probability 1-¢, act on current
policy

— Problems with random actions?

* You do eventually explore the space, but
keep thrashing around once learning is done

* One solution: lower € over time
* Another solution: exploration functions

Video of Demo Q-learning — Manual
Exploration — Bridge Grid

Video of Demo Q-learning — Epsilon-

Greedy — Crawler

Exploration Functions

When to explore?
— Random actions: explore a fixed amount

— Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

— Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. flun) =u+ k/n

Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Regular Q-Update: Q(s,a) ¢ R(s.0,) 47 m;?xQ(s’.)

Modified Q-Update: Q(s,a) ¢ R(s.a,5) 47 mE/]X‘/‘(Q(,s/.u/)‘ N(

Video of Demo Q-learning — Exploration
Function — Crawler

5/17/2017

Regret

Even if you learn the optimal
policy, you still make mistakes
along the way!

Regret is a measure of your
total mistake cost: the
difference between your
(expected) rewards, including
youthful suboptimality, and
optimal (expected) rewards
Minimizing regret goes
beyond learning to be optimal
— it requires optimally learning
to be optimal

Example: random exploration
and exploration functions
both end up optimal, but
random exploration has
higher regret

5/17/2017

