
5/17/2017

1

Re
Reinforcem
ent Learning

Reinforcement Learning

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring 2017

Presented by S. Tanimoto, University of Washington, based on material by Dan Klein and Pieter Abbeel -
- University of California.

Re
Reinforcem
ent Learning Outline

• Planning vs Learning
• Model-Based Learning
• Direct Evaluation
• Sample-Based Policy Evaluation
• Temporal Difference Learning
• Active Reinforcement Learning
• Q-Learning
• Exploration vs Exploitation
• Regret

2

Re
Reinforcem
ent Learning

The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy
iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, *: VI/PI on approx. MDP

Evaluate a fixed policy : PE on approx. MDP

Goal Technique

Compute V*, Q*, *: Q-learning

Evaluate a fixed policy : Value Learning

Re
Reinforcem
ent Learning

Example: Model-Based Learning

Input
Policy 

Assume:  = 1

Observed Episodes
(Training)

Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).

T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).

R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Re
Reinforcem
ent Learning

Example: Direct Evaluation
Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

5

Re
Reinforcem
ent Learning

Problems with Direct Evaluation

• What’s good about direct evaluation?
– It’s easy to understand
– It doesn’t require any knowledge of T, R
– It eventually computes the correct

average values, using just sample
transitions

• What bad about it?
– It wastes information about state

connections
– Each state must be learned separately
– So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go
to C under this
policy, how can
their values be

different?
6

5/17/2017

2

Re
Reinforcem
ent Learning

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a
fixed policy:
– Each round, replace V with a one-step-look-

ahead layer over V

– This approach fully exploited the connections
between the states

– Unfortunately, we need T and R to do it!

• Key question: how can we do this update to
V without knowing T and R?
– In other words, how to we take a weighted

average without knowing the weights?

(s)

s

s, (s)
s, (s),s’

s’

7

Re
Reinforcem
ent Learning

Sample-Based Policy Evaluation?
• We want to improve our estimate of V by

computing these averages:

• Idea: Take samples of outcomes s’ (by doing
the action!) and average

(s)

s

s,
(s)

s1
'

s2
'

s3
'

s, (s),s’
s
'

Almost! But we can’t
rewind time to get sample
after sample from state s.

8

Re
Reinforcem
ent Learning

Temporal Difference Learning
• Big idea: learn from every experience!

– Update V(s) each time we experience a transition (s, a, s’, r)
– Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
– Policy still fixed, still doing evaluation!
– Move values toward value of whatever successor occurs:

running average

(s)
s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

9

Re
Reinforcem
ent Learning

Exponential Moving Average
• Exponential moving average

– The running interpolation update:

– Makes recent samples more important:

– Forgets about the past (distant past values were wrong
anyway)

• Decreasing learning rate (alpha) can give converging
averages

10

Re
Reinforcem
ent Learning

Example: Temporal Difference
Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

11

Re
Reinforcem
ent Learning

Problems with TD Value Learning

• TD value learning is a model-free way to do policy
evaluation, mimicking Bellman updates with running
sample averages

• However, if we want to turn values into a (new) policy,
we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,s
’ s’

12

5/17/2017

3

Re
Reinforcem
ent Learning

Active Reinforcement Learning

13

Re
Reinforcem
ent Learning

Active Reinforcement Learning
• Full reinforcement learning: optimal policies (like

value iteration)
– You don’t know the transitions T(s,a,s’)
– You don’t know the rewards R(s,a,s’)
– You choose the actions now
– Goal: learn the optimal policy / values

• In this case:
– Learner makes choices!
– Fundamental tradeoff: exploration vs. exploitation
– This is NOT offline planning! You actually take actions

in the world and find out what happens…

14

Re
Reinforcem
ent Learning

Detour: Q-Value Iteration
• Value iteration: find successive (depth-limited) values

– Start with V0(s) = 0, which we know is right
– Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
– Start with Q0(s,a) = 0, which we know is right
– Given Qk, calculate the depth k+1 q-values for all q-states:

15

Re
Reinforcem
ent Learning

Q-Learning
• Q-Learning: sample-based Q-value

iteration

• Learn Q(s,a) values as you go
– Receive a sample (s,a,s’,r)
– Consider your old estimate:
– Consider your new sample estimate:

– Incorporate the new estimate into a
running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

16

Re
Reinforcem
ent Learning

Video of Demo Q-Learning -- Gridworld

17

Re
Reinforcem
ent Learning

Video of Demo Q-Learning -- Crawler

18

5/17/2017

4

Re
Reinforcem
ent Learning

Q-Learning Properties
• Amazing result: Q-learning converges to

optimal policy -- even if you’re acting
suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough
– You have to eventually make the learning rate

small enough
– … but not decrease it too quickly
– Basically, in the limit, it doesn’t matter how you

select actions (!)

19

Re
Reinforcem
ent Learning

How to Explore?

• Several schemes for forcing
exploration
– Simplest: random actions (-greedy)

• Every time step, flip a coin
• With (small) probability , act randomly
• With (large) probability 1-, act on current

policy

– Problems with random actions?
• You do eventually explore the space, but

keep thrashing around once learning is done
• One solution: lower  over time
• Another solution: exploration functions

Re
Reinforcem
ent Learning

Video of Demo Q-learning – Manual
Exploration – Bridge Grid

Re
Reinforcem
ent Learning

Video of Demo Q-learning – Epsilon-
Greedy – Crawler

Re
Reinforcem
ent Learning

Exploration Functions
• When to explore?

– Random actions: explore a fixed amount
– Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
– Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Modified Q-Update:

Regular Q-Update:

Re
Reinforcem
ent Learning

Video of Demo Q-learning – Exploration
Function – Crawler

5/17/2017

5

Re
Reinforcem
ent Learning

Regret
• Even if you learn the optimal

policy, you still make mistakes
along the way!

• Regret is a measure of your
total mistake cost: the
difference between your
(expected) rewards, including
youthful suboptimality, and
optimal (expected) rewards

• Minimizing regret goes
beyond learning to be optimal
– it requires optimally learning
to be optimal

• Example: random exploration
and exploration functions
both end up optimal, but
random exploration has
higher regret

