
5/8/2017

1

Ss
State-space
Search

Game Playing: 2-Person, 0-Sum

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring, 2017

© S. Tanimoto and University of Washington, 2017

Ss
State-space
Search

Game Playing 2

Outline

•Two-person, zero-sum games.
•Static evaluation functions.
•Minimax search.
•Alpha-beta pruning.
•Iterative deepening with a time limit.
•Zobrist Hashing.
•Learning a scoring polynomial from experience.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 3

Two-Person, Zero-Sum, Perfect
Information Games

1. A two-person, zero-sum game is a game in which only one
player wins and only one player loses. There may be ties
(“draws”). There are no “win-win” or “lose-lose” instances.

2. Most 2PZS games involve turn taking. In each turn, a player
makes a move. Turns alternate between the players.

3. Perfect information: no randomness as in Poker or bridge.

4. Examples of 2PZS games include Tic-Tac-Toe, Othello,
Checkers, and Chess.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 4

Why Study 2PZS Games in AI?

1. Games are idealizations of problems.

2. AI researchers can study the theory and
(to some extent) practice of search
algorithms in an easier information
environment than, say, software for the
design of the Space Shuttle.

(“Pure Search”)

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 5

Static Evaluation Functions
In most of the interesting 2PZS games, state spaces are too large to
exhaustively search each alternative evolutionary path to its end.

To find good moves, let’s compute a real-valued function h(s) of a state:
h(s) will be high if it is favorable to one player (the player we’ll call Max)
and unfavorable to the other player (whom we will call Min).

This function h(s) is called a static evaluation function.

Example in Checkers:
h(s) = 5x1 + x2
Where x1 = Max’s king advantage;

x2 = Max’s single man advantage.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 6

Tic-Tac-Toe Static Eval. Fn.

h(s) = 100 A + 10 B + C – (100 D + 10 E + F)

A = number of lines of 3 Xs in a row.
B = number of lines of 2 Xs in a row (not blocked by an O)
C = number of lines containing one X and no Os.

D = number of lines of 3 Os in a row.
E = number of lines of 2 Os in a row (not blocked by an X)
F = number of lines containing one O and no Xs.

CSE 415, Univ. of Wash

5/8/2017

2

Ss
State-space
Search

Game Playing 7

Minimax Search (Illustration)

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 8

Minimax Search (Rationale)

If looking ahead one move, generate all successors of the current state, and
apply the static evaluation function to each of them, and if we are Max, make
the move that goes to the state with the maximum score.

If looking ahead two moves, we will be considering the positions that our
opponent can get two in one move, from each of the positions that we can get
to in one move.

Assuming that the opponent is playing rationally, the opponent, Min, will be
trying to minimize the value of the resulting board.

Therefore, instead of using the static value at each successor of the current
state, we examine the successors of each of those, computing their static
values, and take the minimum of those as the value of our successor.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 9

Minimax Search (Algorithm)

Procedure minimax(board, whoseMove, plyLeft):
if plyLeft == 0: return staticValue(board)
if whoseMove == ‘Max’: provisional = -100000
else: provisional = 100000
for s in successors(board, whoseMove):

newVal = minimax(s, other(whoseMove), plyLeft-1)
if (whoseMove == ‘Max’ and newVal > provisional\

or (whoseMove == ‘Min’ and newVal < provisional):
provisional = newVal

return provisional

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 10

Checkers Example

Black to move,

White = “Min”,

Black = “Max”

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 11

Minimax
Search
Example

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 12

Alpha-Beta Cutoffs

An alpha (beta) cutoff occurs at a Maximizing (minimizing)
node when it is known that the maximizing (minimizing)
player has a move that results in a value alpha (beta) and,
subsequently, when an alternative to that move is
explored, it is found that the alternative gives the
opponent the option of moving to a lower (higher) valued
position.

Any further exploration of the alternative can be canceled.

CSE 415, Univ. of Wash

5/8/2017

3

Ss
State-space
Search

Game Playing 13

Strategy to Increase the Number of Cutoffs

At each non-leaf level, perform a static evaluation of all
successors of a node and order them best-first before doing
the recursive calls. If the best move was first, the tendency
should be to get cutoffs when exploring the remaining ones.

Or, use Iterative Deepening, with ply limits increasing from,
say 1 to 15. Use results of the last iteration to order moves
in the next iteration.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 14

Another Performance Technique

Avoid recomputing values for some states (especially those within 3 or
4 ply of the current state, which are relatively expensive to compute),
by saving their values.

Use a hash table to save: [state, value, ply-used].
As a hashing function, use a Zobrist hashing function:

For each piece on the board, exclusive-or the current key with a pre-
generated random number.

Hash values for similar boards are very different.
Hash values can be efficiently computed with an incremental approach
(in some games, like checkers and chess, at least).

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 15

Zobrist Hashing in Python

Set up a 64x2 array of
random ints.
S = 64
P = 2
zobristnum =\
[[0]*P for i in range(S)]

from random import randint

def myinit():
global zobristnum
for i in range(S):

for j in range(P):
zobristnum[i][j]=\

randint(0, \
4294967296)

myinit()

Hash the board to an int.
def zhash(board):

global zobristnum
val = 0;
for i in range(S):

piece = None
if(board[i] == 'B'): piece = 0
if(board[i] == 'W'): piece = 1
if(piece != None):

val ^= zobristnum[i][piece]
return val

Testing:
b = [' ']*64 ; b[0]='B' ; b[1]='W'

print(zhash(b))

3473306553

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 16

Game-Playing Issues
Representing moves: a (Source, Destination) approach works for some games
when the squares on the board have been numbered.
Source: The number of the square where a piece is being moved from.
Destination: The number of the square where the piece is being moved to.
(For Othello, only the destination is needed.)

Opening moves:
Some programs use an “opening book”
Some competitions require that the first 3 moves be randomly selected from a
set of OK opening moves, to make sure that players are “ready for anything”

Regular maximum ply are typically 15-20 for machines, with extra ply allowed
in certain situations.

Static evaluation functions in checkers or chess may take 15 to 20 different
features into consideration.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 17

Learning a Scoring Polynomial
From Experience

Arthur Samuel: Some Studies in Machine Learning Using the
Game of Checkers. IBM Journal of Research and Development,
Vol 3. pp.211-229, 1959.
http://www.research.ibm.com/journal/rd/033/ibmrd0303B.pdf

Arthur Samuel: Some Studies in Machine Learning Using the
Game of Checkers. II --- Recent Progress. IBM Journal, Vol 116.
pp.601-617, 1967.
http://www.research.ibm.com/journal/rd/116/ibmrd1106C.pdf

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 18

Scoring Polynomial

f (s) = a1 ADV + a2 APEX + a3 BACK + . . . + a16 THRET

There are 16 terms at any one time.
They are automatically selected from a set of 38 candidate terms.

26 of them are described in the following 3 slides.

CSE 415, Univ. of Wash

5/8/2017

4

Ss
State-space
Search

Game Playing 19

Scoring Polynomial Terms

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 20CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 21CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 22

Scoring
Polynomial
Coefficient
Adjustment

Coefficients are powers of 2.

They are ordered so that no
two are equal at any time.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 23

Polynomial adjustment

For each term, the program keeps track of whether
its value was correlated with an improvement in the
game position over a series of moves.

If so, its value goes up, if not, it goes down.

CSE 415, Univ. of Wash

Ss
State-space
Search

Game Playing 24

Checkers: Computer vs Human

Samuel’s program beat a human player in a widely publicized
match in 1962.

Later a program called Chinook, developed by Jonathan Schaeffer
at the Univ. of Alberta became the nominal “Man vs Machine
Champion of the World” in 1994. *

Checkers playing was the vehicle under which much of the basic
research in game playing was developed.

* http://www.math.wisc.edu/~propp/chinook.html

CSE 415, Univ. of Wash

