
3/25/2017

1

Ss
State-space
Search

Search: Basic Algorithms

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring, 2017

© S. Tanimoto and University of Washington, 2017

Ss
State-space
Search

Basic Search Algorithms 2

Outline

• Combinatorics of the Painted Squares Puzzle
• Recursive Depth-First Search
• Graph Search
• Iterative Depth-First Search
• Breadth-First Search
• Iterative Deepening
• Graphs with Edge Costs
• Uniform-Cost Search
• Heuristics and Best-First Search
• A* Search

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 3

Tree of States for a
2x2 Painted
Squares Puzzle

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 4

Combinatorics of the Painted Squares Puzzle

Consider placements to be unconstrained.

Branching factor:
b = n_pieces_left  n_places left  n_orientations

At the root: b = 4  4  4 = 64
At ply 1: b = 3  3  4 = 36
At ply 2: b = 2  2  4 = 16
At ply 3: b = 1  1  4 = 4

Total leaf nodes (including repetitions): 64  36  16  4 = 147,456.
Total nodes: 1 + 64 + 2304 + 36864 + 147456 = 186,689.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 5

Combinatorics of the Painted Squares Puzzle

Number of filled boards using the 4 pieces, allowing violations
of the side-matching constraints:

n_permutations  n_orientations^n_pieces

4!  44 = 24  256 = 6144

If we constrain piece placements to go to the next available
space on the board, then this is the number of leaf nodes.

Note that dividing 147,456 by 4! gives 6144, too.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 6

The Combinatorial Explosion

Assume the branching factor is constant.
Suppose a search process begins with the initial state.

Then it considers each of b possible moves. Each of those may
have b possible subsequent moves.

In order to thoroughly look n steps ahead, the number of states
that must be considered is
1 + b + b 2 + . . . + b n.

For b > 1, the value of this expression grows exponentially
as n increases. This is known as the combinatorial explosion.

CSE 415, Univ. of Wash.

3/25/2017

2

Ss
State-space
Search

Basic Search Algorithms 7

Recursive Depth-First Method

Current board B  empty board.
Remaining pieces Q  all pieces.
Call Solve(B, Q).

Procedure Solve(board B, set of pieces Q)
For each piece P in Q, {
For each orientation A {

Place P in the first available
position of B in orientation A, obtaining B’.

If B’ is full and meets all constraints, output B’.
If B’ is full and does not meet all constraints, return.
Call Solve(B’, Q - {P}).

}
}

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 8

Graph Search

When descendant nodes can be reached with moves via two
or more paths, we are really searching a more general graph
than a tree.

Depth-First Search: Examine the nodes of the graph by fully
exploring the “descendants” of a node before trying any
“siblings” of a node.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 9

Sample Graph

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 10

Depth-First Search:
Iterative Formulation

1. Put the start state on a list OPEN

2. If OPEN is empty, output “DONE” and stop.

3. Select the first state on OPEN and call it S.

Delete S from OPEN.

Put S on CLOSED.

If S is a goal state, output its description

4. Generate the list L of successors of S and delete

from L those states already appearing on CLOSED.

5. Delete any members of OPEN that occur on L.

Insert all members of L at the front of OPEN.

6. Go to Step 2.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 11

Breadth-First Search:
Iterative Formulation

1. Put the start state on a list OPEN

2. If OPEN is empty, output “DONE” and stop.

3. Select the first state on OPEN and call it S.

Delete S from OPEN.

Put S on CLOSED.

If S is a goal state, output its description

4. Generate the list L of successors of S and delete

from L those states already appearing on CLOSED.

5. Delete any members of OPEN that occur on L.

Insert all members of L at the end of OPEN.

6. Go to Step 2.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 12

Iterative Deepening

We can combine the benefits of Depth FS and Breadth FS.
Instead of BFS, do a sequence of DFS steps, but with a depth limit. Let the
depth limit increase by 1 in each step.

Russell & Norvig

CSE 415, Univ. of Wash.

3/25/2017

3

Ss
State-space
Search

Basic Search Algorithms 13

Iterative Deepening
 = 0

Russell & Norvig

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 14

Iterative Deepening
 = 1

Russell & Norvig

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 15

Iterative Deepening
 = 2

Russell & Norvig

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 16

Iterative Deepening
 = 3

Russell & Norvig

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 17

Overhead for Iterative Deepening

Repeated work takes place mainly near the root, where there are
relatively few nodes.

With b = 2, the overhead is less than a factor of 2. (e.g., 57/31)

Depth N in level N in tree IDDFS

0 1 1 1

1 2 3 4

2 4 7 11

3 8 15 26

4 16 31 57

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 18

Search Algorithms
Alternative objectives:
Reach any goal state
Find a short or shortest path to a goal state

Alternative properties of the state space and moves:
Tree structured vs graph structured, cyclic/acyclic
Weighted/unweighted edges

Alternative programming paradigms:
Recursive
Iterative
Iterative deepening
Genetic algorithms

CSE 415, Univ. of Wash.

3/25/2017

4

Ss
State-space
Search

Basic Search Algorithms 19

State-Space Graphs with
Weighted Edges

Let S be space of possible states.
Let (si, sj) be an edge representing a move from si to sj.
w(si, sj) is the weight or cost associated with moving from si to sj.

The cost of a path [(s1, s2), (s2, s3), . . ., (sn-1, sn)] is the sum of the weights
of its edges.

A minimum-cost path P from s1 to sn has the property that for any other
path P’ from s1 to sn, cost(P)  cost(P’).

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 20

Graphs with Weighted Edges

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 21

Uniform-Cost Search
A more general version of breadth-first search.

Processes states in order of increasing path cost from the start state.

The list OPEN is maintained as a priority queue. Associated with each state is
its current best estimate of its distance from the start state.

As a state si from OPEN is processed, its successors are generated. The
tentative distance for a successor sj of state si is computed by adding w(si, sj)
to the distance for si.

If sj occurs on OPEN, the smaller of its old and new distances is retained. If sj
occurs on CLOSED, and its new distance is smaller than its old distance, then
it is taken off of CLOSED, put back on OPEN, but with the new, smaller
distance.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 22

Heuristics
A heuristic is a “rule of thumb” for operating in unknown, uncertain,
or complex environments or problem-solving contexts.

A heuristic evaluation function, in state-space search, is a function
h: S + that can be used as an estimate of how close a state is to
a goal or simply to prioritize states for attention.

Examples:

Euclidean distance between a city and the goal. (in the routing
problem)
Number of pieces not yet placed in a puzzle. (painted squares).
Average distance a puzzle piece (in the 8-puzzle) has to move on
the board to get to its destination.
Hot-cold (in a game of Find-the-hidden-object). Hot: close to 0.
Cold: much greater than 0.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 23

Best-First Search

Provided we have a heuristic evaluation function, we can
prioritize states for expansion using the function.

By changing our iterative formulation of Depth-First Search to
use a PRIORITY QUEUE to implement the OPEN list, we get
Best-First Search.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 24

Ideal Distances in A* Search

Let f(s) represent the cost (distance) of a shortest path that starts at
the start state, goes through s, and ends at a goal state.

Let g(s) represent the cost of a shortest path from the start state to s.

Let h(s) represent the cost of a shortest path from s to a goal state.

Then f(s) = g(s) + h(s)

During the search, the algorithm generally does not know the true
values of these functions.

CSE 415, Univ. of Wash.

3/25/2017

5

Ss
State-space
Search

Basic Search Algorithms 25

Estimated Distances in A* Search

Let g’(s) be an estimate of g(s) based on the currently known shortest
distance from the start state to s.

Let the h’(s) be a heuristic evaluation function that estimates the distance
(path length) from s to the nearest goal state.

Let f’(s) = g’(s) + h’(s)

Best-first search using f’(s) as the evaluation function is called A* search.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 26

Admissibility of A* Search
Under certain conditions, A* search will always reach a goal state and be
able to identify a shortest path to that state as soon as it arrives there.

The conditions are:
h(s) must not exceed h(s) for any s.
w(si, sj) > 0 for all si and sj.

This property of being able to find a shortest path to a goal state is known as
the admissibility property of A* search.

Sometimes we say that a particular A* algorithm is admissible. We can say
this when its h’ function satisfies the underestimation condition and the
underlying search problem involves positive weights.

CSE 415, Univ. of Wash.

Ss
State-space
Search

Basic Search Algorithms 27

Search Algorithm Summary

Unweighted graphs Weighted graphs

blind search Depth-first Depth-first
Breadth-first Uniform-cost

uses heuristics Best-first A*

CSE 415, Univ. of Wash.

