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Preface to the First Edition

We first came to focus on what is now known as reinforcement learning in late 1979.
We were both at the University of Massachusetts, working on one of the earliest
projects to revive the idea that networks ol neuronlike adaptive elements might prove
to be a promising approach to artificial adaptive intelligence. The project explored
the “heterostatic theory of adaptive systems” developed by A. Harry Klopl. Harry’s
work was a rich source of ideas, and we were permitted to explore them critically
and compare them with the long history of prior work in adaptive systems. Our
task became one of teasing the ideas apart and understanding their relationships
and relative importance. This continues today, but in 1979 we came to realize that
perhaps the simplest of the ideas, which had long been taken for granted, had received
surprisingly little attention from a computational perspective. This was simply the
idea of a learning system that wants something, that adapts its behavior in order to
maximize a special signal from its environment. This was the idea of a “hedonistic”
learning system, or, as we would say now, the idea of reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly ex-
plored in the early days of cybernetics and artificial intelligence. On closer inspection,
though, we found that it had been explored only slightly. While reinforcement learn-
ing had clearly motivated some of the earliest computational studies of learning,
most of these researchers had gone on to other things, such as pattern classifica-
tion, supervised learning, and adaptive control, or they had abandoned the study of
learning altogether. As a result, the special issues involved in learning how to get
something from the environment received relatively little attention. In retrospect,
focusing on this idea was the critical step that set this branch of research in motion.
Little progress could be made in the computational study of reinforcement. learning
until it was recognized that such a fundamental idea had not yet been thoroughly
explored.

The field has come a long way since then, evolving and maturing in several direc-
tions. Reinforcement learning has gradually become one of the most active research
areas in machine learning, artificial intelligence, and neural network research. The
field has developed strong mathematical foundations and impressive applications.
The computational study of reinforcement learning is now a large field, with hun-
dreds of active researchers around the world in diverse disciplines such as psychology,
control theory, artificial intelligence, and neuroscience. Particularly important have
been the contributions establishing and developing the relationships to the theory

ix
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of optimal control and dynamic programming. The overall problem of learning from
interaction to achieve goals is still far from being solved, but our understanding of
it has improved significantly. We can now place component ideas, such as temporal-
difference learning, dynamic programming, and function approximation, within a
coherent perspective with respect to the overall problem.

Our goal in writing this book was to provide a clear and simple account of the
key ideas and algorithms of reinforcement learning. We wanted our treatment to
be accessible to readers in all of the related disciplines, but we could not cover all
of these perspectives in detail. For the most part, our treatment takes the point
of view ol artificial intelligence and engineering. In this second edition, we plan
to have one chapter summarizing the connections to psychology and neuroscience,
which are many and rapidly developing. Coverage of connections to other fields we
leave to others or to another time. We also chose not to produce a rigorous formal
treatment of reinforcement learning. We did not. reach for the highest possible level
of mathematical abstraction and did not rely on a theoremproof format. We tried
to choose a level of mathematical detail that points the mathematically inclined in
the right directions without distracting from the simplicity and potential generality
of the underlying ideas.

The book is largely self-contained. The only mathematical background assumed is
familiarity with elementary concepts of probability, such as expectations of random
variables. Chapter 9 is substantially easier to digest if the reader has some knowledge
of artificial neural networks or some other kind of supervised learning method, but it
can be read without prior background. We strongly recommend working the exercises
provided throughout the book. Solution manuals are available to instructors. This
and other related and timely material is available via the Internet.

At the end of most chapters is a section entitled “Bibliographical and Histori-
cal Remarks,” wherein we credit the sources of the ideas presented in that chapter,
provide pointers to [urther reading and ongoing research, and describe relevant his-
torical background. Despite our attempts to make these sections authoritative and
complete, we have undoubtedly left out some important prior work. For that we apol-
ogize, and welcome corrections and extensions for incorporation into a subsequent
edition.

In some sense we have been working toward this book for thirty years, and we
have lots of people to thank. First, we thank those who have personally helped us
develop the overall view presented in this book: Harry Klopf, for helping us recognize
that reinforcement learning needed to be revived; Chris Watkins, Dimitri Bertsekas,
John Tsitsiklis, and Paul Werbos, for helping us see the value of the relationships
to dynamic programming; John Moore and Jim Kehoe, for insights and inspirations
from animal learning theory; Oliver Sellridge, for emphasizing the breadth and im-
portance of adaptation; and, more generally, our colleagues and students who have
contributed in countless ways: Ron Williams, Charles Anderson, Satinder Singh,
Sridhar Mahadevan, Steve Bradtke, Bob Crites, Peter Dayan, and Leemon Baird.
Our view of reinforcement learning has been significantly enriched by discussions
with Paul Cohen, Paul Utgofl, Martha Steenstrup, Gerry Tesauro, Mike Jordan,
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Leslie Kaelbling, Andrew Moore, Chris Atkeson, Tom Mitchell, Nils Nilsson, Stuart
Russell, Tom Dietterich, Tom Dean, and Bob Narendra. We thank Michael Littman,
Gerry Tesauro, Bob Crites, Satinder Singh, and Wei Zhang for providing specifics of
Sections 4.7, 15.1, 15.4, 15.5, and 15.6 respectively. We thank the the Air Force Of-
fice of Scientific Research, the National Science Foundation, and GTE Laboratories
for their long and farsighted support.

We also wish to thank the many people who have read drafts of this book and
provided valuable comments, including Tom Kalt, John Tsitsiklis, Pawel Cichosz,
Olle Géllmo, Chuck Anderson, Stuart Russell, Ben Van Roy, Paul Steenstrup, Paul
Cohen, Sridhar Mahadevan, Jette Randlov, Brian Sheppard, Thomas O’Connell,
Richard Coggins, Cristina Versino, John H. Hiett, Andreas Badelt, Jay Ponte, Joe
Beck, Justus Piater, Martha Steenstrup, Satinder Singh, Tommi Jaakkola, Dimitri
Bertsekas, Torbjorn Ekman, Christina Bjorkman, Jakob Carlstrom, and Olle Palm-
gren. Finally, we thank Gwyn Mitchell for helping in many ways, and Harry Stanton
and Bob Prior for being our champions at MIT Press.
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Preface to the Second Edition

It has been 18 years since the first edition came out, and a lot has changed during
that time. New results and new applications.

The second edition uses a slightly different notation that emphasizes the difference
between random variables, denoted with capital letters, and their instantiations,
denoted in lower case. Along with this, it is natural to also use lower case for value
functions (e.g., v;) and restrict capitals to their tabular estimates (e.g., Qi(s,a)).
Approximate value [unctions are deterministic functions of random parameters and
are thus also in lower case (e.g., #(s,0;) ~ v.(s)). All the changes in notation are
summarized in a table appearing early in the book.

The structure of the book is also slightly changed {rom the first edition. The first
part of the book comprising Chapters 2 though & are now all focused on tabular
methods without function approximation. Only after treating all the tabular meth-
ods, for both learning and planning, do we turn to function approximation. We then
treat linear function approximation in significantly more depth, with new chapters
on off-policy and policy-gradient learning methods. Also new in the second edition
are chapters on the intriguing relationships between reinforcement learning and psy-
chology (Chapter 12) and neuroscience (Chapter 13). Everything is updated with
new results where pertinent, including the chapter on case studies. We retain a focus
on core, on-line learning algorithms.

This book was designed to be used as a text in a one-semester course, perhaps
supplemented by readings from the literature or by a more mathematical text such
as Bertsekas and Tsitsiklis (1996) or Szepesvari (2010). This book can also be used
as part of a broader course on machine learning, artificial intelligence, or neural
networks. Throughout the book, sections that are more diflicult and not essential
to the rest of the book are marked with a %. These can be omitted on first reading
without creating problems later on. Some exercises are marked with a * to indicate
that they are more advanced and not essential to understanding the basic material
of the chapter.
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Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for
the values of random variables and for scalar functions. QQuantities that are required
to be real-valued vectors are written in bold and in lower case (even if random
variables). Matrices are bold capitals.

= an equality relationship that is true by definition
E[X] expectation of random variable X

Pr{X =z} probability that the random variable X takes on the value =
argmax, f(a) a value of @ at which f(a) takes its maximal value

£ probability of random action in s-greedy policy
a, 3 step-size parameters

y discount-rate parameter

A decay-rate parameter for eligibility traces

In a bandit problem:

k number of actions/arms

q(a) true value of action a

Q:(a) estimate at time ¢ of g(a)

Ni(a) the number of times action a has been selected up through time ¢
Hi(a) learned preference for selecting action a

In a Markov Decision Process:

5,8 states

a action

T reward

S set of all nonterminal states

§t set of all states, including the terminal state

Al(s) set of all actions possible in state s

R set. of all possible rewards

t discrete time step

T,T(t) final time step of an episode, or of the episode including time t
Ay action at time

Sy state at time ¢, typically due, stochastically, to S; 1 and A; ;

XV
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Gy
Gitr
Ly

Ot

Ei(S)
Ei{sn a)
Gt

m(s)

m(als)
p(s',rls, a)
p(s'|s,a)

SUMMARY OF NOTATION

reward at time £, typically due, stochastically, to S; ; and A4,

return (cumulative discounted reward) following time ¢
n-step return (Section 7.1)
A-return (Section 7.2)

temporal-difference error at ¢ (a random variable, even though not upper case)
eligibility trace at time [ for state s

eligibility trace at time ¢ for a state -action pair

vector of eligibility traces at time {

policy, decision-making rule

action taken in state s under deterministic policy w

probability of taking action a in state s under stochastic policy 7

probability of transition to state s’ with reward r, [rom state s taking action a
probability of transition to state s’, from state s taking action a

behavior policy used to select actions while estimating values for policy o
importance sampling ratio for time ¢ to time k > ¢ (Section 5.5)

value of state s under policy 7 (expected return)

value of state s under the optimal policy

value of taking action a in state s under policy =

value of taking action a in state s under the optimal policy
array estimates of state-value function v, or v,

array estimates ol action-value function g, or gq.

vector of parameters underlying an approximate value function or policy
ith component of learnable parameter vector

number of features and modifiable parameters in ¢ and @
number of 1s in a sparse binary feature vector

approximate value of state s given parameter vector 8
approximate value of state-action pair s,a given weights 8
vector of features visible when in state s

vector of features visible when in state s taking action a

ith component of feature vector

shorthand for ¢(S;) or (S, Ar)

inner product of vectors, 8" ¢ = > tidi eg., 0(s,0) = 0 o(s)
learned preference for selecting action a in state s



Chapter 1

The Reinforcement Learning

Problem

The idea that we learn by interacting with our environment is probably the first
to occur to us when we think about the nature of learning. When an infant plays,
waves its arms, or looks about, it has no explicit teacher, but it does have a direct
sensorimotor connection to its environment. Exercising this connection produces a
wealth of information about cause and eflect, about the consequences of actions, and
about what to do in order to achieve goals. Throughout our lives, such interactions
are undoubtedly a major source of knowledge about our environment and ourselves.
Whether we are learning to drive a car or to hold a conversation, we are acutely
aware of how our environment responds to what we do, and we seck to influence
what happens through our behavior. Learning [rom interaction is a foundational
idea underlying nearly all theories of learning and intelligence.

In this book we explore a compulalional approach to learning [rom interaction.
Rather than directly theorizing about how people or animals learn, we explore ide-
alized learning situations and evaluate the effectiveness of various learning methods.
That is, we adopt the perspective of an artificial intelligence researcher or engineer.
We explore designs for machines that are effective in solving learning problems of
scientific or economic interest, evaluating the designs through mathematical analysis
or computational experiments. The approach we explore, called reinforcement learn-
ing, is much more focused on goal-directed learning from interaction than are other
approaches to machine learning.

1.1 Reinforcement Learning

Reinforcement learning, like many topics whose names end with “ing,” such as ma-
chine learning and mountaineering, is simultaneously a problem, a class of solution
methods that work well on the class of problems, and the field that studies these prob-
lems and their solution methods. Reinforcement learning problems involve learning
what to do—how to map situations to actions—so as to maximize a numerical re-
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ward signal. In an essential way these are closed-loop problems because the learning
system’s actions influence its later inputs. Moreover, the learner is not told which
actions to take, as in many forms of machine learning, but instead must discover
which actions yield the most reward by trying them out. In the most interesting and
challenging cases, actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These three characteristics
being closed-loop in an essential way, not having direct instructions as to what actions
to take, and where the consequences ol actions, including reward signals, play out
over extended time periods—are the three most important distinguishing features of
the reinforcement learning problem.

A full specification of the reinforcement learning problem in terms of the optimal
control of Markov decision processes (MDPs) must wait until Chapter 3, but the
basic idea is simply to capture the most important aspects of the real problem facing
a learning agent interacting with its environment to achieve a goal. Clearly, such an
agent must be able to sense the state of the environment to some extent and must
be able to take actions that affect the state. The agent also must have a goal or
goals relating to the state of the environment. The MDP formulation is intended
to include just these three aspects—sensation, action, and goal —in their simplest
possible forms without trivializing any of them. Any method that is well suited to
solving such problems we consider to be a reinforcement learning method.

Reinforcement learning is different from supervised learning, the kind of learning
studied in most current research in field of machine learning. Supervised learn-
ing is learning [rom a training set of labeled examples provided by a knowledgable
external supervisor. Each example is a deseription of a situation together with a
specification—the label—of the correct action the system should take to that situa-
tion, which is often to identify a category to which the situation belongs. The object
of this kind of learning is for the system to extrapolate, or generalize, its responses
so that it acts correctly in situations not present in the training set. This is an
important kind of learning, but alone it is not adequate for learning from interac-
tion. In interactive problems it is often impractical to obtain examples of desired
behavior that are both correct and representative of all the situations in which the
agent has to act. In uncharted territory—where one would expect learning to he
most beneficial —an agent must be able to learn from its own experience.

Reinforcement learning is also different from what machine learning researchers call
unsupervised learning, which is typically about finding structure hidden in collections
of unlabeled data. The terms supervised learning and unsupervised learning appear
to exhaustively classify machine learning paradigms, but they do not. Although one
might be tempted to think of reinforcement learning as a kind of unsupervised learn-
ing because it does not rely on examples of correct behavior, reinforcement learning
is trying to maximize a reward signal instead of trying to find hidden structure. Un-
covering structure in an agent’s experience can certainly be useful in reinforcement
learning, but by itsell does not address the reinforcement learning agent’s problem
of maximizing a reward signal. We therefore consider reinforcement learning to be a
third machine learning paradigm, alongside of supervised learning and unsupervised
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learning, and perbaps other paradigms as well.

Omne of the challenges that arise in reinforcement learning, and not in other Kinds
of learning, is the trade-ofl between exploration and exploitation. To obtain a lob of
reward, & reinforeement learning agent must prefer actions that it bas (ried i the
past and found 1o be effective in producing reward. But o discover such actions, it
has o ey actions thal it has ool selected before, The agent has o erplod what i
already knows in order to oblain reward, but it also has to explore in order 1o make
better action selections in the Tuture, The dilemma s that peither exploration nor
exploitation can be pursned exclusively without failing at the task. The agent must
Lry & wariedy of actions aed progressively Tavor those thal appear 1o be Test, On
a stochastic task, each action must be tried many times to gain a reliable cstimate
itg expected reward,  The exploration exploitation dilemma has Teen intensively
sindied by mathematicians for many decades (see Chapter 2}, For now, we simply
note that the entire issue of balancing exploration and exploitation does not oven
arise in supervised apd unsupervised learning, al least in Cheir purist forms,

Another key feature of reinforcement learning is that it explicitly considers the
wdiede problem of a goal-direcied agent interacting with an unceriain covironment,
This is in contrast with many approaches that consider subproblems without address-
ing how they might G0 into & larger picture, For exampbe, we have mentioned thad
mneh of machine learning rescarch is concorned with supervised learning without ox-
plicitly specilying how such an aldlity would Goally be uselol, Other reseacchers have
developed theories of planning with general poals, but without considering planning’s
role in real-time decision-making, or the question of where the prodictive models noc-
easary for planning would come from. Although these appeoaches have yielded many
useful results, their focus on solated subproblems i= a significant limitation.

Beinforeement learning takes the opposite tack, starting with a complebe, intersme-
Live, goal-secking agent. All reinforcement learning agents have explicit goals, can
sense aspects ol their environments, amd can choose actions (o influence their envi-
ronments. Moreover, it is usually assumed from the beginning that the agent has
L aperate despite significant unceriainly aboul the eovicenment it faces,  When
reinforcement learning involves planning, it has to address the interplay between
planning and real-time action selection, as well as the guestion of how envicomment
rlels are acguivesd and mproved, When reinforeement learning involves supervized
learning, it does so for specific reasons that determine which capabilities are eritical
and which are not, For learning research toomake progress, important subproblems
have 1o be isolated and stodied, but they should be subproblems that play clear roles
in complede, interactive, goal-secking agents, even il all the details of the complete
agent cannot vel be filled in.

Mow by o complete, inleractive, goal-seeking agent we do pol alwavs mean some-
thing like a complete organism or robol. These are clearly examples, but a complete,
interactive, goal-seeking agent can alza be a component of a larger behaving svstem,
In this case, the agent directly interacts with the rest of the larger system and indi-
rectly interacts with the larger system’s eovironment, A simple cxample i3 an agent
Lhat monitors the charge level of robol’s batiery and sends commands Lo Che robol™s
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conbiol architecture, This agent’s eovironment s the rest of the robol together with
Lhe: robol’s eoviromment, I6 is important ool (o et the most obvious examples of
agenis amnd their eovironments limit understanding the generality of reinforcement
lesrning,

One aof the most exciting aspects of modern reinforcoment learning s its sob-
stantive amd [roitiol interactions with cther engineering and scientific disciplines,
Reinforcement learning is part of a decades-long trend within artificial intelligence
and machine learning toward greater integration with statistics, eptimisation, aod
other mathematical subjects. For example, the ability of some reinforoement learning
methaosds 1o learn with paramelerized approximators addresses Che classical “curse of
dimensionality” in operations research and control theory, More distinetively, rein-
foroement learning has alse interactesd steongly with psychology and nearoscienoe,
with substantial benelits going bhoth ways, OF all the forms of machine learning,
reinforcement. learning is the closest to the kind of learning that humans and other
pnimals doy and many of (he core algerithms of reinforcement learning were originally
inspired by bhiological learning systems. And reinforcement learning has also given
back, Twih through a psvchological mewdel of apimal learning that better matchies
sone of Lthe empirical data, and through an influential model of parts of the brain’s
reward system, The body of this book develops (he ideas of reinforcement Jearning
that pertain to engineering and artificial intelligence, with connections to pavehology
and mewroscienes summarized in Chapters 12 and 13,

Finally, reinforcement learning is also part of & larger trend in artificial intelligenee
back toward simple general principles. Sinee the late 1960Vs, many artificial intel-
ligenee researchers presumed that there are ne general priociples (o be discovered,
that intelligence is instead due to the possession of vast oumbers of special purpose
Lricks, procedures, amd heuristics, Tt was somelimes said that i we could just ged
enough rolevant facis into a machine, say one million, or one billion, then it would
become intelligent, Methods based on general principles, such az search or learning,
were characterized as “weak methods,” whereas those based on specific knowledge
were called “strong methods,” This view is still common today, but moch bess dom-
inant. From our point of view, it was simply promature: too little offort had beon
pial inte Lhe search for general principles o conclude that there were none, Modern
AT now ineludes much research looking for general principles of learning, scarch, and
decision-making, as well as trving to incorporate vast amonnis of domain knowledge.
It is not clear how [ar back the peodolum will swing, ol reinforeement learning re-
search is certainly part of the swing back toward simpler and fewer general principles
of artificial intelligence,

1.2  Examples

A pood way to understand reinforcement learning is to consider some of the cxamples
and possilde applications that have guided its development,

s A master chess playver makes a move. The choice is informed both by planning
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anticipating possible replies and counterreplics—and by immediabe, inbaibive
Juddgmeents of the desirability of particular positions and moves,

e Ap adaptive coptroller adjusts parsmeters of & petrolewm relinery’s operalion in
real time. The controller optimizes the vield /cost fquality trade-off on the basis
of speciliosd marginal eosts without sticking strictly (o the sed points originally
augpesia] by engineers.

o A paeelle call siruggles (o i feet mingies alter eing born, Hall an howr later
it is running at 20 miles per howr.

e A mobile robol decides whether it should enter a new room o search ol more
trash to collect or start trving Lo find ils way back o ils battery recharging
station, It makes iis decision based on the coreent charge level of its Batiery
and how quickly and easily it has been able to find the recharger in the past.

o Phil prepares his breaklast, Closely examinesd, even this appareotly miodane
activity reveals a complex web of conditional bebavior and interlocking goal
sulgoal relationships: walking o the cupboard, opening i, selecting a coreal
b, then reaching for, grasping, and retrieving the box. Other complex, tuned,
intoractive sequences of behavior are required to obiain a bowl, spoon, and milk
Jug. Each step involves a series of eve movements bo oblain information and bo
guide reaching and locomotion. Bapid judgmenis are continually made abowt
how 1o carry Lhe objects or whether it s better (o ferry some of them to the
dining table hefore obiaining others. Each step s goided by poals, such as
Erasping a spoon of gelting te the relvigerator, and is o service of other goals,
such as having the spoon (o eal with onee the cereal is prepared and ultimately
olvlaining nourishment,  Whether he i awaree of it or not, Phil s accessing
information about the state of his body that determines his nutritional noods,
fewvel of bunger, amd food preferences,

These examples share features that are so basic that they are easy to overlook.
All invoedve sulermelion bedween an active decision-making ageot and (08 eovironment,
within which the agent seeks to achieve a goal despite ancertainty about its environ-
ment, The agent’s actions are permitted to alfect the Tutare state of the envicoonment
(g, the next chess position, the level of eservoirs of the relinery, the robaot’s nexi
location and the future charge lovel of its battery), thereby affecting the options and
opportiunitics available 1o the agent al laler thmes, Correct cholee requires taking
into account. indireet, delayed conseqguences of actions, and thus may require foresight
or planning,

At the samo time, in all these cxamples the effecis of actions cannot bo fully
proedicted; thus the agenl must monitor (s eovironment Teguent]y and react appro-
priately. For example, Phil must watch the milk he pours into his cereal bow] to keep
it Teoam overllowing, All these examples nvolve goals that are explicit in the sense
that the agent can judee progress toward its goal based on what it can sense directly.
The chess player knows whether or not he wins, the reflinery controller knows how
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el petrelenm s being produced, the mobile robot knews when itz batieries fun
dowen, and Phil knows whether or pod he @5 enjoving his breaklast,

In all of these examples the agent can use its experience to improve its performanee
ower time, The chess player refines Che intaition be wses (o evaluabe positions, thereby
improving his play; the gazelle call improves the efficiency with which it can run;g
Phil learns 1o stresmline making his breakfasi, The knowledge the agenl Drings Lo
the task at the start—either from previous experience with relabed tasks or built inbo
it by alesign or evelution—influences what s oselul or casy (o learn, bat interaction
with the eovironment is essential for adjusting behavior to exploit specific features
of the task,

1.3  Elements of Reinforcement Learning

Beyvond the agent and the environment, one can identily four main subelements of
& reinforcement. learning svatem: o policy, o reward signal, o eedue funclion, aod,
optionally, a model of Lthe environmendt.

A policy delines the learning agent’s way of bebaving al a given Gime, Roughly
speaking, a policy is a mapping [rom perceived states of the environment o actions Lo
b taken when in those states, I6 correspomnds oo what in psychology wonld Tee called
a sol of stimulus response rules or associations (provided that stimuoli include those
Lhat can eome [rom within the animal), In some cases the policy may be a simple
function or lookup table, whereas in others it mav involve extensive computation
auch as a search process. The policy is the core of a reinforcement. learning agent in
Chee somse Chadt 16 alone s sollicient o determine bebavior, In general, policies may
b stochastic.

A e sagned defines the goal ina reinforeement learning problem, On each Gime
siop, the oovironment sends to the reinforcement learning agont a single number, a
reierd, The agent’s sole oljective i3 o maximize the total reward L peceives over
the long run. The reward signal thus defines what are the good and bad events for
Lhe agent, In a biological system, we might think of rewards as analogous to the
experiences of pleasure or pain. They are the immediate and defining features of the
protlem ool by the ageot,  As such, the process thal generates the reward signal
rnst T unalterable by the agent. The agent can alter the signal that the process
produces directly by its actions and indirectly by changing its environment's state
simee the reward signal depends on these—but L canpol change the Danciion thad
generabes the signal. In other words, the agent cannol simply change the problem
it 5 fcing inte apother ome, The reward signal s the primary basis o allering
tho policy. If an action solectod by the policy is followed by low reward, then the
policy may be changed (o select some other action in that situation in the foture, Tn
general, reward signals may be stochastic lunctions of the state of the environment
and the actions taken., In Chapler 3 we explain bow the des of a reward Tinetion
boing unaltorable by the agent is consistont with what wo see in biology whore roward
signals are penerated within an animal’s brain.
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Whereas the reward sigoal indicates what i good in an immediabe sense, o velue
SJunction specilics what is good in the loog ran, Boughly speaking, the eofwe of
a state is the total amount of reward an agent can expect to aceumulate over the
Dature, starting from that state, Whereas rewards determine Che immediate, otrin-
sic desirability of environmental states, values indicate the long-term desirability of
atates alter taking into account (he states that are likely (o follow, and the rewards
available in those states. For example, a state might always vield a low immediate
reward but sUll have s high value becanse 0t is regulardy followed by other states thad
yield high rewards. Or the reverse could be true. To make a buman analogy, rewards
e somewhat like pleasare (i high) aod pain (i low], whereas values correspomd Go
a more refined and farsighted judgment of how pleased or displessed we are that oor
environment is in a particular state. Expressed this way, we hope it is clear that
vislue functions formalize a basic aml Tuniliar idea,

Rewards are in a sense primary, whereas values, as predictions of rewards, are
secopdary,  Withouwt rewards there could e pe values, and the ooly purpose of
eatimating values i5 to achieve more reward. Mevertheless, it is values with which we
are mosl coneerned when making amd evaluating decisionz, Action choices are made
based on value judgments. We seek actions that bring about states of highest value,
ol highest reward, becpuse these actions obiain the greatest amount of reward for
us over the long min. In decision-making and planning, the derived quantity called
walue is the ome with which we are most concerned, Unfortunstely, it is muoch harder
Lo determine values than it is to determine rewards. Bewards are basically given
directly by the environment, but values must be estimated and re-estimated from
Lhve sespuences of observalions an agent makes over 18 entire Bletime, To Get, the mosi
important component of almost all reinforeement learning algorithms we consider is
o method Tor elliciently estimating values, The centeal role of value estimalion is
arguably the most imporiant thing we have learned about reinforcement learning
over the last few decades,

The fourth and final element of some reinforcement learning systems is a model of
Che cowviromment. This is something that mimics the Tehavior of the covironment,
or maore generally, that allows inferences to be made about how the environment will
behave, For example, given a state and action, the model might predict the pesolbant
nexl state amd pext reward, Models are wsed Tor plernag, by which we mean any
way ol deciding on a course of action by considering possible Doture situations before
Lhey are actually expericnces], Methods for zolving reinforcement. learning problems
that wse models and planning are called model-based methods, as opposed Lo simpler
mreewlel-free methosds that are explicitly trial-amnd-error learners— viewed as almost the
opposite of planning. In Chapier 8 we explore reinforcement loarning systoms that
simulianeously learn by Lrial and ercor, learn o model of the eoviromment, and ose
the model for planning. Modern reinforcement learning spans the spectrum from
lowe-Tewed, trinl-and-crror learning to high-level, deliberative planning,
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1.4 Limitations and Scope

Bost of the reinforcement learning methods we econsider in this book are stroc-
tured around cstimating value linctions, but it is nod sirictly nocessary to do this bo
solve reinforcement learning problems, For example, methods such as genedic algo-
rithms, genetic programming, simulated annealing, and other optimization methods
havve sen wsed Lo approach reinforeement learming problems withoul ever appealing
b value funetions, Those methods evaluate the “lifetime” behavior of many non-
learning agents, cach using a dilferent policy for inleracting with s environment,
and select those that are able o obtain the most reward. We call these evolulion-
aryy methods becanse their operation i3 analogous 1o the way biclogical evolution
produces organisms with skilled behavior oven when they do not learn during their
individual lifetimes. If the space of policies is sufficiently small, or can be strectared
s that good policies ave common or easy o lod—or (0 a lot of time §s avadlable for
the search— then evolutionary mothods can be effective. In addition, cvolutionary
methils have advanbages on problems in which the learning agent cannol accuralely
sense Lhe state of iks environment.

Dur foeus is on reinforcement learning methods that iovolve learning while inter-
acting with the environment, which evolutionary methods do not do (unless they
evilve learning algorithmes, as in gome of the approaches that have been stadied ),
It is our beliel that methods able to take sdvantage of the details of individual be-
hawioral interactions can be much more eflicient than evolutionary methods in many
cases, Evolutionary methods ignore much of the wselul structure of the reinforee-
ment. learning problem: they do oot use the fact that the policy they are searching
[ 5 a unction [rom states 1o actions; they do mol police which stales an individoal
passes Lhrough during its lifetime, or which actions it selects. In some cases this
information can e misleading (eg, when stales are misperceived), Tl more ofien
it. should enable more efficient search. Although evolution and learning share many
features and maturally work together, we do ol consider evolutionary methods by
themselves o be especially well suited to reinforcement learning problems. For sim-
plicity, in this book when we use the term “reinforcement Jearning method™ we do
not include evolutionary methods.

Howewer, we do include some methods thad, like evolutionary methods, do not
appeal too value unctions.  These methods search in spaces of palicies defimed by
a collection of numerical parameters. They estimate the directions the parametors
should be adjusted in order o most rapidly improve & policy™s performance,  Un-
like evolutionary methods, however, they produce these estimates while the agent is
interacting with its eoviromment and so can lake advantage of the details of individ-
ual behavioral interactions. Methods like this, called policy gradiend methods, have
proven uselul in many problems, amd some of the simplest reinforcement learning
methods [all into this category. In fact, some of these methods take advantage of
value [unction cstimates o improve their gradienl estimates, Owverall, the distine-
tion between policy pradient methods and othor methods we include as reinforcement
learning methods is not sharply defined.
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Reinforecement learning’s conpection 1o optimization methods deserves some ad-
ditional comment because i s a souroe of & common misunderstanding, When we
say that a reinforoement learning agent’s goal i= o maximize a oomerical reward
signal, we of eourse are nol insisting that the agent has (o actually ackhiove the goal
of maximum reward. Trying to maximize a quantity does not mean that that quan-
Lity i ever maximized, The point is that a reinforcement. learning agent is always
trying to increase the amount of rewarnd it receives. Many factors can prevent it from
achieving the maximam, even il one exisis, In other words, optimizsation is not the
same as optimality.

1.5 An Extended Example: Tic-Tac-Toe

Tor illustrate the geperal idea of reinforeement learning and contrast it with other
approaches, we next consider a single example in more detail.

Congider the Familiar childs gaame of tie-tac-toe, Two play-
era Lake turns plaving on a throe-byv-three board. One plaver
plavs Xs amd the other Os until one plaver wins by placing X 0|0
three marks in & row, horizontally, vertically, or diagonally, as
Lhe: X player has in the game shown to the cight, T5 Che Baoaad O [X|X

X

fills up with neither player geiting three in a row, the game
i5 o deaw, Because a skilled player can play 2o as never Lo
lose, let us assume that we are playing against an imperfect

plaver, one whose play is sometimes incorrect. and allows us to win, For the moment,
in fnct, et us congider draws aml losses 1o be egually bad for s, How might we
construct a plaver that will find the imperfections in ils opponent’s play and learn
Lo pacsiinize ik chances of winning?

Althongh this is a simple problem, it cannot readily be solved in a satisfactory
way Lhrough classical technigues, For example, the classical “minimax” solulion
from game theory is not correct here because it assumes a particular way of plaving
by ther opponent. For example, a minimax player would pever reach a0 gaoe siale
from which it could lose, even if in fact it alwavs won from that state becaonse
of ineorrect play by the opponent,  Classical oplimization methods for sequential
decision problems, such as dypamic programming, can compate an oplimal selobion
for any opponent, butl require as input a complete specification of that opponent,
incliuding the probabilities with which the epponent makes each move in each board
state. Let us assume that this information is not available a priccd or this problem,
as b s oot for the vast majorily of problems of practical interest,  On the other
hand, such information can bo estimated from exporience, in this caso by plaving
many games againsl the opponent,  Aboul the best one can de on this problem i=
first to learn a model of the opponent’s behavior, up to some level of confidence,
and then apply dyoamic programming o compube an aptimal selution given the
appraximate opporent model. In the end, this s not that differont from some of the
reinforcement. learning methods we examine later in this book.
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An evolutionary method appliesd to this problem would directly seacch the space
of possible policies for one with a high probability of winoing sgainst the opponent,
Here, a policy is a rule that tells the player what move to make for every state of the
game—every possible conliguration of X5 and O oo the threes-w-theee board, For
each policy considered, an estimate of ils winning probability would be obiained by
plaving some numbeer of games against the opponent, This evaluation wonald then
direct which policy or policies were considered next. A typical evolutionary method
wollld hill-climly in policy space, successively generating and evaluating policies in an
attempt to oblain incremental improvements. Or, perhaps, a genetic-siyle algorithm
could e used that would maintain amd evaluate a popalation of pelicies, Literally
hundreds of different. optimization methods could be applied.

Here is how Che Gle-tac-toe proldem would be appreoached with & method making
use of & value linction, First we sel up a lable of oumbers, ome for each possille
state of the game. Each number will be the latest estimate of the probability of
our winning [rom thal state, We breal this estimate as the stade’s volue, ad the
whole table is the learned value function. State A has higher value than state B, or
i5 considered “Teetfer” tham state I3, i the current estimate of the probabilicy of owr
winning from A 5 higher than it is from B, Assuming we always play Xs, then for
ol stabes with theee X2 in s row the probability of winning is 1, becaase we have
already won. Similarly, for all states with three (% in a row, or that are “filled up,”
Lhee correct probmbility s 0, a8 we cannot win from them, We sel the initial vadues
of all the other states to (L5, representing a puess that we have a 50% chance of
winning.

We play many games against the opponent, To select our moves we examine the
states that would result from each of our possible moves (one for each blank space
on the board ) amd Iook ap their current valoues o Che table, Most of Che time we
mowve gresdily, selecting the move that leads to the state with groatest valoo, that is,
wilth the highest estimated probability of winning, Oocasionally, however, we select
randomly [rom among the other moves instead. These are called erplomelory moves
becanse they cause us Lo experience stales that we might otherwise nover see, A
sequenee of moves made and considered during & game can be diagrammed as in

Figure 1.1,

While we are playing, we change the values of the states in which we lind ourselves
during the game. We attempt 1o make them more accuraie estimates of the proba-
biilities of winning, To do this, we “Tack up™ the value of the state aller each gresdy
move to the state before the move, as sngegested by the arrows in Figure 1.1 More
procisely, the currenl value of the earlier state is adjusted o be closer Lo the valoe
of the later state. This can be done by moving the earlier state’s value a [raction of
Ll way Loward the value of the later state, I5 we et s denobe the state before the
greedy move, and &' the state after the move, then the update to the estimated value
of &, denotedd Vis), can be wrillen as

V(s) + Vis)+ a|V(s) — V(s)],

where a is a small positive [raction called the slep-size porameler, which inflluences
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Cpponent's mova {
QU TEKE { I o

DpponeEnt's mona {

QT MR {

O PONEN's Mmiove '{

Qur mave '{

Figure 11: A sequence of tic-tac-toe moves, The solid lines represent the moves taken
during & game; the dashed lines represent. moves that we (our reinforcement bearning player)
considercd but did not make, Our second move was an exploratory move, meaning that
it was taken cven though snother sibling move, the one leading to e*, was ranked higher,
Exploratory moves do oot result in any learndng, bt each of oure other moves does, canaling
backigps as anggestoed by the cwarved arvows and detalled o the text.

glarting poston

Lhee pale of learning. This update rule s an example of a lemporal-difference learning
method, so called because its changes are based on a difference, V(21— V( 2], between
ealimabes sl two dillerent times,

The method deseribed above performs guite well on this task. For example, if the
slep-size parameter 15 reduced properly over Gme, this method converges, [or any
fixed opponont, to tho true probabilities of winning from each state given optimal
play by our plaver, Furthermore, the moves then taken (exoept on exploralory moves )
are in lfact the optimal moves against the opponent.  In other words, the method
canverges 1o an opbimal policy for playiog the game, 1T the step-sise parameter is
ol peduced all the way Lo wero over Lme, then this playver alse plavs well againsi
opponents that slowly change their way of playing.

This example llustrates the dillerences between esolubionary methods and (he
methods that learn value lunctions. To evaluate a policy an evolutionary method
hodds the podicy lxed and plays many games against the opponent, or simolate many
pames wsing a model of the opponent. The requency of wing gives an unbiased
eatimatbe of the probability of winning with that policy, and can be used (o direct
the next policy selection. But each policy change is made only afler many games,
and only the loal outcomne of each game 5 used; what happens dering Uhe games
is Ignored. For example, il the player wings, then all of its behavior in the game is
given credit, independently of bow specific moves might have been critical to the
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win, Credit is even given o moves Lhat never occurred! Value luncticn methods, in
conbrast, allow individual states o be evaluated, To the end, evolutionsry aond valoe
function methods both search the space of policies, but learning a value lnetion
Lakes advantage of information svailable docing (he course of play,

This simple example illustrates some of the key features of reinforcement. learning
methodds, First, there s the emphasis on learning while interacting with an envi-
ronment, in this case with an opponent player. Second, there is a clear goal, and
correct Trehavior reguives planoing or foresight that takes into account delayed eflecis
of one's choices. For example, the simple reinforcement learning plaver would learn
Lir sel wp multi-move Lraps for a shorigsighted opponent, T is s striking Teature of
the reinforeement learning solution that it can achieve the cffects of planning and
lookahead withool wsing & model of the opponent and without condoeting an explicit
search over possible seguences of Tuture stales and actions,

While this example illstrates some of the key features of reinforecement learning,
it is s gimple that it might give the impression that reinforcement learming is more
limited than it really is. Although tic-tac-toe is a two-person game, reinforcement
lesrning also applics in the case in which there is oo external adversary, thatl is, in
the case of a “game against nature.”  Beinforcement learning also s not restricted
Lo problems in which behavior hreaks down inlo separate episodes, like the separade
pames of tic-tac-toe, with reward only at the end of each epizode. It is just as applica-
ble when bebavior continwes indelinitely apd when rewards of various magnitudes can
be received at any time. Beinforcement learning is also applicable to problems that
do not oven break down into discrete time steps, like the plavs of tic-tac-too. The
general principles apply Lo conbinuous-time problems as well, although the theory
gets more complicated and we omit it from this intreductory treatment.

Tic-tac-toe has o relatively small, linite stabe sel, wheress reinforeement Jearning
can be used when the state sel is very large, or even infinite. For example, Gerry
Tesaura (1992, 1995) combined the algorithm deseribod above with an actificial neo-
ral network to learn to play backgammon, which has approximately 107" states.
With this many states it s impossilde ever Lo experience more Than a small [raction
of them. Tesauro's program learned o play far bebter than any previous program,
and mow plavs al the level of the world’s best hman players (see Chapler 14), The
peral network provides Che program with the ability 1o generalize rom s experi-
ence, so that in new states it selects moves based on information saved [rom similar
alates faced in the past, as determined oy itz petwork, How well a reinforcement
learning systom can work in problems with such large state sets is intimately tied to
how appropristely it can generalize [rom past experience, 10 s in this mole thal we
have the greatest need for supervised learning methods with reinforcement. learning.
Mewral networks are nol the only, or necessarily the best, way Lo do this,

In this tic-tac-toe example, learning started with no prior knowledge bevond the
cugdes of Che game, but reinforcement learning by oo means enbails a tabola cass view of
learning and intelligence. On the contrary, prior information can be incorporated into
reinforecment Iearning in & variely of wavs that can be critical Tor eflicient learning,
W alao had pecess Lo the true stade in Che Lie-lac-Loe example, whereas reinforcement
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learning can also be applied when pact of the stade is hidden, or when different states
appear to the learper 1o be the same, That case, however, i35 sulstantially more
difficult, and we do not cover it signilicantly in this book.

Finally, the tie-tac-toe player was alle to lock ahead and know the states that
would result rom each of its possible moves. To do this, it had to have a model
of the game that allowed it bo “think alaoul™ how ils environment would change in
response Lo moves that it might never make. Many problems are like this, but in
others even a shorl-term maslel of the elfects of actions is lacking, Reinforeement
learning can he applied in either case. No model is reguired, bot models can easily
b usesd i they are available or can e learned.

On the other hand, there are reinforcement. Iearning methods that do ool need
any kind of eovironment mode] al all, Model-Tree systems camnet even think abogi
how thedr eovironments will change in response beoa single action, The te-tac-toe
plaver 5 model-free in this sense with respect to its opponent: it has no model of
its opponenl of any kind, DBecagse models have o Tee reasonably accurate o be
uselul, model-free methods can have advantages over more complex methods when
Lhee real botilepeck in solving a problem is the dillically of constrocting a sufliciently
accurate environment model. Model-free methods are also important building blocks
for mosdel-based methods, I this ook we devole several chaplers o model-free
methods before we discuss how they can be wsed s components of more complex
mlel-based methods,

But reinforcement. learning can be used at both high and low levels in a system.
Although the tic-tac-toe player learned only about the basic moves of the game,
nothing prevents reinforcement. learning from working at higher levels where each of
the “actions” may itscll be the application of a possibly elaborate problem-solving
methosd, In hicrarchical learning systems, reinforcement. learning can work simulta-
neously on several levels.

Exercise 1.1: Self-Play  Suppose, instead of playing against a random opponent,
Lhee reinforcement learning algorithm deseribved above plaved against itsell, What do
you think would happen in this case? Would it learn & different way of playing?

Exercise 1.2: Symmelries  Many tic-tac-toe positions appear different bui are
readly the same becaose of svmmetrics,  How might we amend the reinforcement
learning algorithm describes] above to take advaniage of (thisT In whad ways would
thiz improve it? Now think again. Suppose the opponent did not take advantage of
avinmelries, In thal case, should wel Iz 0 Crue, then, that symametrically equivalent
positions should necessarily have the same value?

Exercise 1.3: Greedy Play  Buppose the reinforcement. learning plaver was greedy,
Lhat s, it alwavs played Che move Chal brooght it o the position that it rated the
best. Would it learn to play betler, or worse, than a nongreedy playver? Whadt
protdems might ocear?

Exercize 1.4: Learndng from Boploralion  Suppose learning apdates oocureed alter
all moves, including exploratory moves, [T the stop-size parameter s appropriately
reduced over Lime, then the state values would converge to & set of probahbilities.
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What are the two sels of probabilities computed when we do, and when we do oot
leswrn Troan explocatory mowves? Assuming that we do continoe (o make exploratory
mowves, which set of probabilities might be hetter to learn? Which would result in
e wins?!

Exercise 1.5: (Mher Improvemnenis  Can you think of other ways to improve the
reinforcement learning plaver? Can you Chink of any bedler way to solve Che Le-tac-
Lo problem as posed?

1.6 Summary

Reinforcement learning is & computational approach bo anderstanding and satomal-
ing goal-directed learning and decision-making. It is distingnished from other com-
putational approaches by ils emphasiz on learning by an agent Trom direct inberaction
with its environment, without relving on exemplary supervision or complete models
of the environment, In our opinien, reinforcement learning s the ficst [eld 1o se-
rivusly address the computational ssues that arise when learning from interaction
wilh an environment in order bo achiove long-term goals,

Reinforcement learning uses a formal framework defining the interaction between
a learning agent and s environment in terms of states, actionsg, and rewards, This
[ramework is intended o be a simple way of representing essential Teatures of the
artificial intelligence problem. These features include a sense of cause and effect, a
sense of uncertainby and nomdeberminism, aml the existence of explicit goals,

The concepts of value and value unctions are the key [eatures of most of the
reinforeement. learning methiods that we consider in this ook, We take e position
that value functions are important for efficient search in the space of policies. Their
e of value unctions distinguishes reinforcement learning methods from evolutionary
methods that search directly in policy space guided by sealar evaluations of entire
podicies,

1.7 History of Heinforcement Learning

The history of reinforcement learning has bwo main Cheeads, both long and rich, thad
wiere pursned independently belore infertwining in modern reinforeement learning,
One throad concerns learning by trial and crror that started in the psychology of
animal learping, This thread runs through some of the earliest work in actificial
intelligence and led to the revival of reinforcement learning in the early 19805, The
other thread concerns the problem of optimal control and s salution using valoe
functions and dynamic programming. For the maost part, this thread did not involve
learning, Although the two threads have been largely independent, the exeeplions
revolve around a third, less distinet thread concerning temporal-difference methods
such as wsed in the Ue-tac-toe example in this chapter. All three threads came
tooother in the late 195808 to prodoece the modern ficld of reinforcement learning as
we present it in this book.



I.7. HISTORY OF REINFORCEMENT LEARNING 1f

=1

The thread focusing on trial-and-error learning s the one with which we are mesi
Familiar aod alwout which we have the most Lo say in this beiel history, Before doing
that, howover, we brieflly discuss the optimal conirol thread.

The term “oplimal control” came into use in the late 19508 Lo deseribe the problem
of designing a controller to minimize a messure of a dynamical system's hehavior
over Lime, One of the approsches (o this problem was developed in the mid- 1950
by Richard Bellman and others through extending a nineteenth century theory of
Hamilton and Jacobi, This approach uses the concepts of a dypamical system’s stale
and of a value lunction, or “optimal return inction,” 1o define & nctional equation,
now often called the Bellman equation, The olass of methods for solving oplimal
control problems by solving this equation came (o be known as dynamic programming
(Bellman, 1957a), Bellman (19570} alzo introdoced the diserete stochastic version
of the optimal control problem koown as Markovian decision processes (MDPs), and
Ronald Howard [1960) devised the policy iteration method for MDPa. All of these
e eesential clements underlying the thecry and algerithms of modern reinfercement
learning.

Dvnaimic programming is widely congidered the only Teasible way of solving general
stochastic optimal control problems. I suffers from what Bellman called “the curse
of dimensionality,” meaning that 115 computational requircments grow exponentially
with the number of state variables, but it is still far more efficient and more widely
applicable than any olther geperal method, Dypamic programming bas been exien-
sively developed since the late 19508, including extensions to partially observable
MDTs (surveyed by Lovejoy, 1991), many applications (surveved by White, 1085,
1958, 19493), approximation methods (surveyed by Rust, 1996), and asynchronogs
methods (Bertsekas, 1952, 1883). Many excellent modern treatments of dynamic
programming are avallable (eg,, Bertsekas, 20006, 2012; Polerman, 1994; Ross, 1985;
and Whittle, 1982, 1983). Bryson (1996) provides an authoritative history of optimal
conlbiol,

In this book, we consider all of the work in optimal control also to be, in a sonse,
work in reinforeement learning, We deline a reinforcement. learning method as sy el
[ective way of solving reinforeement learning problems, and it is now clear that these
problems are closely related to optimal control problems, particalarly siochastic op-
Limal control problems such as those formulaied as MDP2 Accordingly, we musi
consider the solution methods of oplimal control, such as dypamic programming,
alan 1o be reinforcement leprning methods, Because almost all of the conventional
methods require complete knowledge of the system to be controlled., it fecls a litile
unnatural o sy Chal they are part of reinforeement fsorrdng,. On the other hanod,
many dynamic programming algorithms are incremental and iterative. Like learning
methosls, they gradually reach the correct answer through suceessive approximations,
As we show in the rest of this book, these similarities are far more than superficial.
The theories and solution methods for the eases of complete and incomplete koowl-
edge are g0 closely related that we feel they must be considered together as part of
Lhee saame subject matber,

Let us return now bo the other major theesd leading (o the modern eld of rein-
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[orocment learning, thal centered on the idea of trial-and-crror lesorning., We only
Loich om Lhe major peints of cootact here, taking ap this topic in mone detail in
Chapter 12, According to American pevchologist K. 5. Woodworth  the idea of trial-
and-crror learning goes as far back as the 18502 to Alexander Bain's discussion of
learning by “groping and experiment” and more explicitly to the British ethologist
and pavehologist Conway Lloyd Morgan®s 1884 wse of the term to describe his olb-
sorvations of animal behavior (Woodworth, 1938). Perhaps the first fo suecinetly
cxpress Lhe essence of trial-and-error learning as a principle of learning was Edward
Thorndike:

Of several responses made Lo the same sibuation, those which are accom-
panicd or closely [ollowed by satisfaction o the amimal will, other things
bedng egual, be more Gooly conpected with the situation, s that, when
it recurs, they will be morve likely to recur; those which are accompanied
or closely followed by discomioet 1o the animal will, other things Deing
edqual, have their connoctions with that situation weakened, so that, whon
it pecies, they will be less likely toooceur, The greater Che sadisfction
or discomlort, the greater the strengthening or weakening of the bond.
( Thormdike, 1911, p, 244)

Thornpdike called this the “Law of Effeet™ beeause i6 deseribes (he eflfect of reinforcing
events on the tendency Lo select actions. Thorndike later modified the law to better
account for accumulating data on animad learning (such as dilferenees between (he
effects of reward and punishment ), and the law in its various forms has generated con-
siderable controversy among learning theorists (eg., see Gallistel, 2006; Herrnstein,
1970 Kimble, 1961, 1967, Masur, 1994), Despite this, the Law of Eifect—in ooe
form or ancther— s widely regarded as a basic principle underlying much behavior
(eg, Hilgard and Bower, 1975; Dennett, 1978 Camphbell, 1960; Criko, 1995], 1i s
the basis of the influential learning theories of Clark Hull and experimental mothods
of B, F, Bkinner (e.g,, Hull, 1943; Skinner, 1938],

The term “reinforcement” in the context of animal learning came into use well
alter Thorpdike's expression of the Law of Eilect, to the best of our knowledge s
appearing in this context in the 1927 English translation of Pavlov's monograph on
conditioned rellexes, Reinforeement is the strengihening of & pattern of behavior as
a result of an anbmal feceiving a stimulus—a reinforcer—in an appeopriade lemporal
relationship with another stimulus or with a response. Some psychologists extended
its meaning Lo inchude the process of weakening in addition 1o strengihening, as well
applying wheon the omission or termination of an event changes behavior. Reinforoe-
menl produces changes in behavior that persist alter the reinforeer s withudrawn,
s0 that a stimulus that atiracts an animal's attention or that energizes its behavior
wilbsl producing lasting changes 15 nol considered to be a reinforeer,

The idea of implementing trial-and-error learning in a computer appeared among
Lhee earliest thoughis aboul the possibility of artificial mtelligence. In a 1948 report,
Alan Turing described a design for a “plessure-pain system” that worked along the
lines of the Law of Effect:



I.7. HISTORY OF REINFORCEMENT LEARNING 17

When a configuration iz reaches] For which the action s undetermined, a
randoan chobee for the missing data i3 made and the appropriate eolry s
made in the deseription, tentatively, and is applied. When a pain stimlus
oeenrs all teptabive enlries are caneclled, apd when a pleasure stimolos
ooeurs thoy are all made permanent. (Turing, 1948)

In 1952 Clande Shannon demonsirated a mase-running mouse named Thesous that
used trial and ercor Lo find ils way Lo oa goal location in s maee, with the maee
itself remembering the successful directions via magnets and relays under its [oor
(Shannon, 1952), (Mher early computational investigations of trial-and-crror learn-
ing wore those of Minsky and of Farley and Clark, both in 1954, In his Ph.DD.
disgeription, Minsky dizscussed computational models of reinforeement learning and
described his construction of an analog machine composed of components he called
ENARCs (Stochastic Neural-Analog Heinlorcement Calenlators). Farley and Clark
described another pewral-petwork learning machine desigoed to Jearn by brial and er-
ror. In the 196s the terms “reinforcement” and “reinforcement. learning” were used
in the engineering literature for the Oest time (e, Waltz and Fu, 1965 Mendel,
196 Fu, 1970; Mendel and MeClaren, 19700, Particnlarly influential was Minsky's
paper “Steps Toward Artificial Intelligence”™ (Minsky, 1961), which dizscussed several
issnes relevant to reinforcement learning, including what he called the eredil assign-
meend peodderrs How doo you distribote credit Tor success among the many decisions
that may have been involved in producing 107 All of the methods we discuss in this
book are, ina sense, directed bowand solving Chis problem,

The interesis of Farley and Clark (1854; Clark and Farley, 1955) shifted rom
trial-and-error learning to peneralization and pattern recognition, that is, from rein-
[orocment Iearning (o supervised learning, This began o patiern of confusion aboi
the relationship between these types of learning. Many researchers seemed to beliove
Chat theey were studying reinforcement learning when they sere actually stodving si-
porvised loarning. For example, neural network pioneers such as Hosonblatt (1962)
and Wideow and Holl [1960]) were clearly motivated by reinforeement learning — they
used the language of rewards and punishments— but the systems they studied were
supervised learming syatems suilable for pattern recognition amd pereepioal learning,
Even today, some researchers and texthooks minimize or blur the distinetion between
Lhese bypees of Iearning, For example, some pearal-network texibooks have ased ihe
Lerm “triad-and-error” (o deseribe nedworks that learn rom training examples, This is
an nnderstandable confusion bocanse thoso networks use error information to npdate
connection weights, bl this substantially misses Che cszential selectional character
of trial-and-error learning.

Partly as a resull of these conlisions, research inbo gennine trial-and-ceror learning
became rare in the the 1960s and 19705, In the next few paragraphs we discuss some
of the exceplions amnd partial exceptions 1o this Trend,

One of these was the work by a Mew Zealand researcher named John Andreae.
Arddreas (1963 developed a system called STeLLA that learned Dae driad aml error
in interaction with its eovironment. This system incloded an internal model of the
world and, later, an “internal monologue” to desl with problems of hidden state



18 CHAPTER 1. THE REINFORCEMENT LEARNING PROBLEM

(Andreac, [969%), Andreae’s later work (1977 placed more emphasis on learning
from a teacher, Db sl iocluded trial and error, Unfortunately, his pioneering
rescarch was nol well known, and did oot greatly impact subsequent reinforcement
learning research.

MMore influential was the work of Donald Michie. In 1961 and 1963 he described a
simple tral-and-error learning svstem for learning how Lo play Ge-Lae-Loe (or naoghis
and croases) called MENACE (for Matchbox Educable Nanghts and Crosses Engine).
It consisted of & matchbyox for each possible game position, cach matchbox containing
a number of colored beads, a different color for each possible move from that posi-
Lion, By drawing a bead al random from the matchbox corresponding o Che current
pame position, one could determine MENACE's move. When a game was over, beads
were added tooor removes] Trom the Teses used during play o reinforee or punish
MENACE's decisions, Michie and Chambers {(19658) descriles] apsther tie-tac-Loe
reinforcement. learner called GLEE (Game Learning Expectimaxing Engine) and a
reinforcement leprning conteoller called BOXES, They applicd BOXES (o the Lask
of learning to balance a pole hinged to a movable cart. on the basis of a [ilure signal
oceurring only when the pole el or the cart resched the end of a track, This Lask
was adapted from the earlior work of Widrow and Smith [1964), who used super-
vised learning methods, assaming instroction from a eacher already abde to badanes
the pole. Michie and Chambers's version of pole-balancing is one of the hest carly
examples of a reinforcement learning task umder conditions of incomplete koowledge,
It influenced much later work in reinforcement learning, beginning with some of our
own studics (Barto, Sutton, and Anderson, 1983 Sutton, 1984). Michie has con-
sigtently emphasized the role of trial and creor and learning as essential aspects of
artificial intolligonee [Michie, 1974).

Widrow, Gupta, and Maitea (1973) modified the Least-Mean-Square (LMS) al-
porithm of Widrow and Hoff [1%60) to produee a reinforoement. learning rule that
could learn [rom sueeess and failure sigoals instead of rom training examples. They
called this form of learning “selective bootstrap adapiation” and described it as
Tearning with a critic” instead of “learning with a teacher.” They analyveed this
rile amd showed how it could learn to play blackjack. This was an isolated foray
into reinforcement learning by Widrow, whose conteibutions to supervised learning
were much more nfluential, Our vse of the term “critic”™ 5 derived Teom Widrow,
Cupda, and Maitra's paper. Buchanan, Mitchell, Smith, and Johnson {197H) inde-
pendently used the term critie in the conlext of machioe learning (see also Dietterich
and Buchanan, 1984), but for them a eritic is an expert system able to do more than
eviluabe performanee,

Research on learning awlomata had a more direct influence on the trial-and-error
Chresd Jeading too maslern reinforcement learning research, These are methods Tor
solving a nonassociative, purely selectional learning problem known as the E-ermed
baredid Ty pmalogy 1o glol mackhine, or “ooe-acmed bandit,” exeept with & levers (see
Chapter 2). Learning automata are simple, low-memory machines for improving the
protuability of reward in these problems, Learning autemata, criginated with work in
Lhee 1550 of the Russian mathematician and physicist M, L, Tsetlin and colleagues
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[published postbumously in Taetling 1973) and bas been extensively deseloped sinee
then within engineering (see Narendra and Thathachar, 1974, 1989), These devel-
opments included the study of stechoslic learming anfomate, which are methods for
updating action probabilities on the basis of reward signals. Stochastic learning an-
tomata were foreshadowed by earlier work in psychology, beginning with William
Estes™ 1950 elfort toward a statistical theory of learning (Estes, 1950 and Tucther
developed by others, most. famously by psychologist Bobert Bush and statistician
Frederick Mosteller (Bush and Mosteller, 1955].

The statistical learning theories developed in psycholooy were adopbed by re-
searchers in coonomics, leading o s thread of research in that Geld devoled o
reinforcement learning. This work began in 1973 with the application of Bush and
Mosteller's learning theory tooa collection of classical cconemic maodels (Cross, 197380,
One goal of this research was (o study actilicial agents that act more like real peo-
ple than do traditional idealized cconomic agents (Arthar, 1991}, This approach
ecxpamded o the study of reioforeement learping in the context of game theory,
Although reinforcement learning in economics developed largely independently of
Lhe early work in artificial intelligence, einforeement learning aml game theory is
a Ltopic of current interest in both felds, but one that iz bevond the scope of this
book, Camerer [2003]) discusses the reinforcement learping iradition in economics,
and Mowe et al. (2012) provide an overview of the subject from the point of view
of multi-agent extensions to the approach thal we introduce in this ook, Rein-
foreement learning and pame theory s a much different subject from reinforeement
learning wsed in programs Lo play tic-tac-toe, checkers, and other recreational games.
Bews, for example, Szita (2012) lor an overview ol this aspect of reinforeement learning
and games.

John Holland (1975) outhined a general theory of adaplive systems basecd on se-
lectional principles. His early work concorned trial and error primarily in its nonas-
seciplive form, a8 in evolulionary methods and the E-armed bandit, In 1986 he
introduced classifier syslems, true reinforcement learning systems including associa-
Chom and walue lunctions, A key component of Haolland's classilicr systems was always
a genetic algoritfon, an ovolutionary method whose role was to evolve uscful repre-
senlations, Classificr systems have been extensively developed by many researchers
L forme & magor branch of reinforeoement leprning research (reviewed Ty Urbanowics
and Moore, 2000, but genetic algorithms — which we do ot consider to be reinforoe-
renl learning systems by themselves — have received much more atiention, as have
other approaches to evolutionary computation (o.g., Fogel, Owens and Walsh, 1966,
and Koes, 1992),

The individual most responsible for reviving the trial-and-error thread o rein-
foroement learning within actificial intelligence was Harry Klopl (1972, 1975, 1982,
Klopl recognized that essential aspects of adaptive behavior were being lost as learn-
ing researchers came o foows almost cxelusively on supervised learning. What was
missing, according to Klopl, were the bedonic aspects of behavior, the drive to achiove
smne resull from the eovironment, 1o control the eoviconment toward desiced eods
and away o undesired ends, This is the essential bdes of trial-and-error learning,
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Klopls ddeas were especially influential on the anthors because our assessment of
Lhem {Barto and Sutton, [981a) bed to our appreciation of the distinction between
supervissd and reinforcement learning, and to our eveninal focus on reinforcement
lesrning, Much of the early work that we and eolleagoes accomiplishesd was directed
toward showing that reinforcement learning and supervised learning were indeed
different (Barto, Subton, amd Brouwer, 1951 Barte aod Sutton, 19811y Barto and
Anandan, 1985). Other studies showed how reinforcement learning could address
important problems in nearal petwork learning, in particolar, how it could prodoes
learning algorithms lor multilayer petworks [Barto, Anderson, and Suiion, 1982
Barto and Anderson, 1985; Barto and Anandan, 1955 Barta, 1985, 1956; Barto anod
Jordan, 1987). We say more about the reinforcement. learning and neural networks
in Chapter 14.

We turm pow o the thind thread te the istory of reinforeement learning, Uhad
concerning temporal-difference learning. Temporal-difference learning methods are
distinetive in eing deiven by the differepce between temporally successive esiimates
of the same quantity— for example, of the probability of winning in the tic-tac-toe
exampbe, This thread is smaller and less distinel than the other two, buatl it has
plaved & particularly important role in the ficld, in part becanse temporal-difference
methads secm to be pew aod aoigue ooreinforecment learning,

The origing of temporal-difference learning are in part in animal learning payehol-
ogy, in particular, in the poticn of secopdury rednforcers, A secondary reinforeer iz
a stimulus that has been paired with a primary reinforcer such as food or pain and,
as a result, has come to take on gimilar reinforeing propertics. Minsky (1951) may
hawve been Che liest to realize that this psyehological principle eould e Domportant
for artificial learning systems.  Arthur Samuel (19549) was the first to propose and
implement a learning method that ineluded temporal-dilference ideas, a8 part of his
celehrated checkers-playing program.

Samuel made no relerence 1o Minsky's work or to possible connections Lo animal
learning. His inspiration apparently came from Claude Shannon's (1950 suggestion
Lhal & compater could e programmed Lo use an evaluation unction Lo play chess,
and that it might be able to improve its play by modifying this function on-line. (It
i5 possible that these ideas of Shannen's also influencs] Bellman, bul we know of oo
evidenee for this.) Minsky {1961) extensively dizseussed Samuel’s work in his “Steps”
paper, sugeesting the connection to secondary reinforcement. theories, both natural
and artificial,

As we have discussed, in the decade following the work of Minsky and Samuel,
litele computational work was dooe on tdal-and-ereor learning, and apparently oo
computational work at all was done on temporal-difference learning. Im 1972,
Klopl rought trial-and-crror learning togeiher with an impoctant component of
temporal-difference learning. Klopl was interested in principles that would scale to
leswrning in large svatems, and thus was intriguaed by ootiens of Iocal reinforoement,
wherely subcomponents of an overall learning svstom could reinforee one anothor.
He developed the bdea of “geperalized reinforecment,” wherehy every component
(ominadly, every peuron) views all of its inputs in reinforeocment terms: excitalory
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inpiets as rewands and inhibitory inputs as punishments, This is oot (he same dea
a8 what we now koow as temporal-difference learning, amd in retrospect it is facther
from it than was Samucls work. On the other hand, Klopl linked the idea with
Lrial-amd-error learning and related it to the massive empicical database of animal
learning pavehaology.

Sution (1978a, 1978h, 1978 developed Klopls wdeas Dorther, partieolacly the
links to animal learning theories, describing learning rules driven by changes in tem-
pocally successive predictions, He aod Bacte relined these ideas and developed
pavchological model of classical conditioning based on temporal-difference learning
(Suwiton and Barto, 1981a; Barto and Satton, 1952, There followed several othier in-
[uential psychological models of classical conditioning based on temporal-difference
lesrning (e, Klopd, 1985; Moore of al,, 1986; Sutton and Barto, 1987, 1990}, Some
netresciences models developed at this Gime ace well interpreted in terms of temporal-
difference learning (Hawking and Kandel, 1984; Byrne, Gingrich, and Baxter, 109(0;
Gelpering, Hoplicld, and Tank, 198%; Tesawre, 1986; Friston el al., 19894), although in
most cascs there was no historical connection.

Or carly work on temporal-difference learning was strongly influence] by animal
learning theories and by Klopl's work. Relationships to Minsky's “Steps” paper and
Lo Samued's checkers playvers appear to bave been recogniss] only allerward, By 1981,
however, we were hully aware of all the prior work mentioned above as part of the
Lemporal-dilference apd trial-pod-crror threads, AL this time we developesd o method
for nsing temporal-difference learning in trial-and-error learning, known as the actor
eritic architecture, and applicd this method to Michio and Chambers's pole-halancing
protdem (Barto, Sutton, amd Anderson, 1953), This method was extensively stadied
in Button's (1984) Ph.D. dissertation and extended to wse backpropagation neural
nebworks in Anderson™s (1986) Ph.D, dissertation. Arouml this tine, Holland § 1986)
incorporatod temporal-difference ideas oxplicitly into his classifier systems. A key
slep was Laken by Sulton in 1988 by separading temporal-difference learning Trom
control, treating it as a general prediction method. That paper also introdoeed the
T A) algorithm and proved some of i3 convergenoe properbies,

As we were finalizing our work on the actor critic architecture in 1951, we discov-
ered a paper by Tun Witten (1977) thal contains the earliest known publication of a
Lemporal-dilference learning rule, He proposed (he method that we pow call Lalalar
TIH0) for use as part of an adaptive controller for solving MDPs. Witten's work
was a descemndant of Andrease’s early experiments with STelLlA and other trial-and-
error learning systems. Thus, Witten's 1977 paper spanned both major thresds of
reinforeement learning research— trial-and-error learning and oplimal eontrol — while
making a distinct early contribution to temporal-difference learning,

The temporal-differenes and optimal control thresds were Tully eought together
in 1989 with Chris Waikins's development of Q-learning. This work extended and
integrated prior work in all three threads of reinforoement learning research, Paal
Werbos (1987) contributed to this integration by arguing for the convergence of trial-
and-crror learning and dyvoamie programming sinee 1977, By the time of Walkins's
work there had been tremendous growih in reinforcement learning rescarch, pri-
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marily in the machine learning subdield of artificial intelligence, bul alsoe inneural
nebworks amnd artificial intelligence more beoadly, Tn 1992, the remarkable suceess of
Gorry Tesanro’s backgammon plaving program, TD-Gammon,  brooght additional
albention Lo the Geld,

In the time since publication of the frst edition of this ook, a Qourishing subficld
of peuroseience developed (hal Tocuses on the elationship between reinforeement
learning algorithms and reinforcement learning in the nervous svatem. Most respon-
aibde for this is an uncanny similacity between the bebavior of temporal-dilferenee
alporithms and the activity of dopamine producing nenrons in the brain, as pointed
oul by a number of researchers (Friston of al., 19994 Barto, 19950; Houk, Adams,
and Barto, 1995; Montague, Dayan, and Sejnowski, 196; and Schults, Dayan, and
Montague, 1997}, Chapter 14 provides §s an introdoetion te this exciting aspect of
reinforeement leaning.

Other important contributions made in the recent. history of reinforcement. learning
are Lo piimerons o mention in Uthis beiel account; we cite many these al the emwd of
the individual chapters in which they arise.

1.8 Bibliographical Remarks

For additional gemeral coverage of reinforcement learning, we cefer the roader Lo the
books by Beepesvard (2010), Berisckas and Tritzikli= {1996), Kaelbling [1993a), and
Masashi Sugiyvama cb al, (2013}, Books thal take a control or operstion rescarch
porspective are those of 31 el al, (2004, Powell (2001, Lewis and Lio (3012), and
Bertsckas (2012). Three special issucs of the jouwrnal Machine Lesrning focus on
reinforeement leprning: Sution {1992), Kaelbling [1996]), and Singh (7). Uselul
aurveys are provided by Barto (19895h); Kaclbling, Littman, and Moore {(19406); and
Keerihi and Ravindrean (1997 ), The valume editesd Ty Weiring amnd van Otterle (2012
provides an excellent overview of recent. developments.

The example of Phil's beeakfast in this chapber was inspived Ty Agee [1958), We
direct the reader to Chapter 6 for referenees o the kind of temporal-differonce method
wee ised in the tie-tac-toe example,
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In this part of the ook we describe almost all the core deas of reinforcement
leswrning algorithmes in their simplest formes, that in which the state and action spaces
are small cnongh for the approximate value inctions to e represented as arrays,
or tables, In this case, the methods can often liod exact solutions, that iz, they can
often find exactly the optimal value lunction and the optimal policy. This conirasts
with the approximate methods described i the pext part of the ook, which only
find approximate solutions, but which in return can be applied effectively to muoch
larger problems,

The first chapler of this part of the book describes solution methods for the special
case of Lhe reinforcement learning proldem in which there s only a single state, called
bandit problems. The second chapter describes the general problem formulation that
wee Lreal throughout the rest of the book— linite markoy decision processes—and 12
maan deas including Bellman eguations and vadue lunctions.,

The next three chapters deseribe three indamental elasses of methods for solving
linite Markoy decision problems: dynamic programming, Moote Carlo methods, and
temporal-difference learning. Each class of methods has its strengihs and weaknesses.
Dyvoamic programming methods are well developed mathematically, bual reguine a
complete and aceurate model of the environment. Monte Carle methods don’t re-
auire & model and are coneeplually simple, bal are ool well suitesd Tor step-hy-step
incremental computation.  Finally, temporal-difference methods require no model
and are Tully incremental, bub ace more complex o analyze, The methods alse differ
in several wavs with respect to their efficiency and speed of convergence.

The remaining two chapters describe how these three classes of methods can be
combimed 1o obtain the st feptures of each of them. In one chapler we describe
how the strongths of Monte Carlo methods can be combined with the strengths of
Lemporal-dilference methods via the wse of eligibility traces, In the ioal chapier of
this part of the book we show how temporal-difference learning methods can be com-
bites] with model learning amd planning methods (soch as dyosmie programiming )
for a complete and unified solution to the tabular reinforcoment learning problem.
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Chapter 2

Multi-arm Bandits

The mest imporiant feadure distinguishing reinforcement learning [rom olbher by pes of
learning i5 that it uses training information that eoeleates the actions taken rather
Lhan srstracts by giving correct aclions. This s what creates the oeed [or active
exploration, for an explicit trial-and-crror search Tor good behavior, Purely evaluabive
[eedback indicates bow good the action taken is, but not whether it is the best or
Lhve worst action possible, Evaluative feedback iz the basis of methods Tor Tinetion
optimization, including evolutionary methods. Purcly instructive [eedback, on the
other hand, indicates the correct action o take, independently of the action actually
taken. This kind of feedback is the basis of supervised learning, which includes large
parts of pattern classilication, artificial pewral networks, and syvstem identilication, In
thoir puro forms, theso two kinds of feedback are quite distinet: evaluative feedback
depemnds entively on Lhe action taken, whereas instructive feedback is independent of
the action taken. There are also interesting intermediate cases in which evaluation
and instruction blend togetler,

In this chapter we study the evaluative aspect of reinforeement learning in a sim-
plified setting, one that does not iovolve learning to act in more than one situation.
This nenassocinlive selling s the one in which most prior work involving evaluabive
[eedback has been done, and it avoids much of the complexity of the full reinforee-
ment learning problem, Stodying this case will enable us 1o see most cleary ow
evaluative feedback differs from, and vet can be combined with, instroctive feedback.

The particular nonassociative, evaluative feedback proldem that we explore is o
simple version of the k-armed bandit problem. We use this problem fo introdoee
A mamber of basie learning methods which we extend in later chapiers (o apply Lo
the full reinforcement learning problem. At the end of this chapter, we take a step
closer to the full reinforcement. learning problem by discussing what happens when
Lhee Banedit problem becomes associalive, that is, when actions are taken in moee Uhan
one situatkion.
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2.1 A i~-Armed Bandit Problem

Consider the following learning problem. You are soed repeatedly with a chioice
pmong E dilferent options, or actions, Aler each cholee you reredve o nomerical
reward chosen [rom a stationary probability distribution that depends on the action
your selected, Your objective s o maximize the expected tobal ewand over some
tiree period, for example, over LOOD action sclections, or fme siepsa.

This is the original form of the k-armed baendit problem, so named by analogy to a
slot. machine, or “one-acmed bandit,” except that it has & levers instead of one, Each
action selection is like a play of one of the slot machine's levers, and the rewards are
Lhe: payodlz for hitting the jackpol, Through repeated action selections vou are Lo
maximize your winnings by concentrating vour actions on the best levers. Another
analogy s thal of a doctor choosing belween experimental treatments for a series of
seriously ill pationtz. Each action selection is a treatment selection, and each roward
i5 Lhe survival o well-Teing of the patieot, Today the term “bandit problem” =
sometimes used for a generalization of the problem deseribed above, but in this book
wie e 0L Lo refer just o this simple case,

In our E-armoesd bamdit problem, cach of the & actions has an expected or meeian
roward given that that action is solected; lot us call this the selue of that action. We
denote Lhe action selected on Wme step b as Ay, and the corresponding reward as By,
The value then of an arbitrary action a, denoted g.{a), is the expected reward given
Lhat o is selected:

duin) = E[B: | Ay=a].

Il vou koew the value of each action, then it would be trivial to solve Che Barmed
bandit problem: you would always select the action with highest value. We as-
sume that yvou do pot kpow the action values with cerlainby, although vou may have
catimates. We denote the estimated value of action a at time § as ((a) = q.(a).

Il vour maintain estimates of the action values, then at any Lime step there 38l
least, one action whose estimated value is greatest. We call these the greedy actions.
When vou seleel one of these actions, we say (hal you are explodimng your cirrent
knowledge of the values of the actions. If instead vou select one of the nongresdy
actions, then we say you are ecploving, because Lhis coaldes you (o lmpeove your
ealimabe of the nongreedy action’s value, Exploitation is the riglht thing to Jdo o
maximize tho expeociod reward on the one step, but exploration may prodose the
greater total reward in the long run. For example, suppose o greedy action's valoe
i5 known with certainty, while several other actions are estimated 1o be nearly as
goce] Tl with substantial uneertainty,  The uncertainty s such thal sl least one
of these other actions probably is actually botter than the gresdy action, but vou
don't kiow which one, IT vou have many time steps abead on which to make action
selections, then iE may be better fo explore the nongreedy actions and discover which
of them are better than the greedy action, Beward is lower o the short ran, doring
exploration, but higher in the long rmin becanse alfor von have dissovered the bobior
actions, you can exploit them many times, Becanse it is not possible both to explore
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and 1o exploil with any single action selection, one ofien refers o the “conflict”
between exploration and explodbation,

In any specific case, whether it is better to explore or exploit depends in & com-
plex way on the precise values of the estimates, uncertainties, and the oamber of
remaining steps. There are many sophisticated methods for balancing exploration
and exploitation for particular mathematical Tormualations of the B-armed bandil and
related problems. However, most of these methods make sirong assumptions abowt
ataticoarity and prior kpowledge that are either violated or imposgilde o verily in
applications and in the Ml reinforcement. learning problem that we consider in sub-
sequent. chapters, The guaraniess of oplimality or boumnded loss Tor these methods
are of little comfort when the assumptions of their theory do pot apply.

In this book we do pol worry aboul balancing exploration and exploitation in s
sophisticated way; we worry only aboul balapcing them ab all, In this chapler we
present several simple balancing methods for the E-armed bandit. problem and show
Chat thiey work mich better than methods that always explodt,  The poesd o balanes
exploration and exploitation is a distinctive challenge that arises in reinforcement
lesrning; the simplicity of the E-armed bandit problem eoaldes us bo show this inoa
particularly clear form.

2.2  Action-Value Methods

We begin by looking more closely at some simple methods for estimating the values
of actions and Tor using Che cstimates o make action selection decizions, Recall that
Che trwe value of an action is the mean reward when thal action s selected, Ooe
natural way to estimate this is by averaging the rewards actually received:

auny of mowards when a taken prior to f f : Ri-14,-a

Chlm) = (2.1)

numher of thes o taken prlor to @ - Ei': 1a.—a
L]

where 1gregicare donotes the random variable that is 1 if predicale is true and 0 if it i
nol, I the denominatior s sero, then we insteml define Cla) as some defaolt waloue,
auch as )y (a) = 0. As the denominator goes to infinity, by the law of large numbers,
Chla) copverges Lo ogela), We call this the somple-grerage method for estimaling
action values becanse cach estimate is an average of the sample of relevant. rewards.
Of course this is just one way to estimate action valuos, and not necessarily the bost
one, Mevertheless, Tor pow Jel us stay with this simple estimation method amd Larn
Lo the question of how the estimates might be used (o select actions.

The simplest action selection rule ig to select the actien {or one of the actions)
with highest estimated action wvalue, that is, to sclect at step § one of the greedy
actions, Af, lor which (A7) = max; ela), This greedy action selection medhod
can be written as

Ar = argmas £y (i), 12.2)
i
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where argmax, denotes the waloe of o al which the expression that follows s maxi-
mized (with ties broken arbitrarily). Greedy action selection always exploils current
knowledge to maximize immediate rewarnd; it spends no time at all sampling appar-
enlly inferior actions Lo see I they might ceally e better, A simple alternative 5 bo
behave greedily most of the time, but every once in a while, say with small probabil-
ity £, instead o select randomly Trom amongst all the actions with egual probaldlity
independently of the action-value estimates. We call methods using this near-greedy
action selection rule e-gresdy methods, An advaniage of these methods 2 that, in
the limit as the number of plays increases, every action will be sampled an infinite
number of times, thus ensaring that all the @4 {a) converge to g, {a). This of course
implics that the probability of selecting the optimal action converges to greater than
1 — =, that is, to near cortainty. These aro just asymplotic guarantees, however, and
aay Little about the practical ellfectiveness of the methods,

To roughly assess tho relative offoctiveness of the greesdy and s-groedy mothods,
wie commpared them pamerically on a suite of test problems, This was a sel of 2000
randomly generated k-armed bandit problems with & = 10, For each bandit problem,
such as that shown in Figure 2.1, the action values, guia), a = L., .., 10, were selected
according to a pormal (Gaussian) distribution with mean 0 and variance 1. Then,
when a learning method applied to that problem selected action Ay ab Gime §, the

5
2
J(4)
. Ful[51)
|. L
Reward o -N-"R _¥ __ rr'_[ I - -
distribution wl) o011
.(2)
. fa [ H)
.[li:l
e
3
| | | I 1 1 | 1 |
1 2 a 4 5 fi ¥ 5 g 0

Action

Figure 2.1 An exemplary bandit problem from the 1-armed testhed, The true valse g,{a)
af each of the ten actbons was seleeted aceording to a porosal distribution aroand zero with
unlt varlance, and then the actual rewards sere selected around g, (a) with unit varlanee, as
sugpgested by these gray distribatlons.
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actual reward By was selected from s pormal disteibation with mean g4 and
variagnee 1, IE is these disteibutions which are shown as gray in Figure 2,1, We
call this suite of test tasks the {i-armed testhed. For any learning method, we can
measire s performance and behavior as they improve with experbenos over LOOD
atops, averaged over the 2000 bandit problems making up the W-armed testhed.

Figure 2.2 compares a greedy method with two s-greedy methodz (£ = 0001 and
£ =101}, as described above, on the 1-armed testhed. Both methods formed their
action-value cstimates using the sample-average techoigue, The upper graph shows
the increase in expected reward with experience. The greedy method improved
alightly faster than the other methods sl the very beginning, bot then Teveles] off a
a lower level. It achieved a reward per step of ouly about 1, compared with the best
possible of about 155 on this tesilasd, The greedy method performs significantly
worse i the long run Tevanse it ollen gels stuck perlorming subaplimal actions,
The lower graph shows that the greedy mothod found the optimal action in only
approximately one-thind of the tasks, In the other two-thinds, s initial spmples of
the optimal action were disappeointing, and it never returned to it. The =-greedy
retbusls eventually perform eiter becanse they continne Lo explore and Lo improve
thoir chances of recognizing the oplimal action. The £ = L1 method oxploress more,
and usually finds the optimal action earlier, but pever seleets i more Chan @15 of

¢ = D igre=dy|

0
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Figure 2.2: Average performance of s-grecdy action-value methods on the D0-armed testhed.
These data are averaged over 2000 tasks, Al methods naed sample averages as thels action-
wvaliie estimates,
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Lhee Ll The & = 001 method improves moee slowly, bl eventually performs Debier
Lhan the & = 0,1 methosd on beth performance measoces, 10 is also possilde to redoes
£ over time bo try to get the best of both high and low values.

The addvantage of s-greedy over greedy methods depends on the task, For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisior
rewards it takes more exploration o ind the optimal action, and e-greedy methods
should [are even better relative to the greedy method. On the other hand, if the
reward variances were sero, Lhen the greedy method would koow the troe valoe of
ecach action alter trving it onee.  In this case the greedy method might actwally
perform best Decagse i would seon lind the optimal action and then pever explone,
But even in the deterministic case, there is a large advantage to exploring il we
weaken some of the other assumptions, For example, suppose the Tamdit task wene
nomstationary, that s, that the troe walues of the actions changed over Gime, Tn Chis
case exploration is necded even in the deterministic case to make sure one of the
popgreesdy actions has nol changed o ecome betlber than the greedy one, As we
will see in the next few chapters, effective nonstationarity is the case most commonly
encountered in reinforeement learning, Even i the anderlyving task is stationary and
deterministic, the learner faces a set of banditlibe decision tasks each of which changes
owver Lime due Lo Che learning process iisell, Reinforeement learning requires a badanes
between exploration and exploitation.

Exercise 2.1 In the comparizon shown in Figore 2.2, which method will perform best
i Ll long ran in terms of comolative reward and comolative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3  Incremental Implementation

The action-value methods we have discussed so lar all estimate action values as
sample averages of observed rewards, We pow taen Lo the guestion of how (hese
averages can be computed in a computationally ellicient manner, in particular, with
constant memory and per-time-step computation.

To simplily notation we concenirate on a single action. Let B, now denote the
reward reoeived alter the sth selection of s aclion, and let O, denode Che estimate
of ks action value aller 6 has been selected v — 1 times, which we can now wrile

simply as
By 4+ R4+ By
n = .
n—1

The: obwious implementation s o maintain a record of all the rewards amd then
perform this computation whenever the estimated value is needed. However, in this
case thie memory and compubational reguircments wonld grow over Bme a8 more a8
more rowards are seen.  Each additional roward reguires more memory o sbore it
and more computation Lo compabe the sum in the pumerator,

As yon might suspect, this is not really necossary. It is casy o devise incromental
[ormulas for updating averages with small, constant computation required to process
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each pew rewnrd, Given G, and the nih reward, B, the new average of all oorewards
can be compuied by

R
I-'-:|:.|'1|.|I = ;ZH-E

1 . ri—1
- 2 (mr g
n—1
(Hﬂ +{n— 1}& 3y Ri)
=1
(At (n— 1))
=~ (Ra+nQu—@0)
T

- O, + I—Il[R“ - cgn]. (2.3)

== F|=

which holds even for n = 1, oltaining e = Fy for arbitrary Q. This implementation
requires memory only for ¢y, and n, and only the small computation (2.3) for each
new reward,  Figure 2.3 gives peewdocode for a compleie banpdit algorithm using
incrementally computed sample averages and s-greedy action selection.

The: wpdate role (2,.3) is of & form thal occurs Ireguently throughout this book,
The general form is

NewEstimate + OldEstimate + StepSise [ngp: - n.';rfdﬂmmm], (2.4)

The: expression [Trugﬂ - ﬂMEﬁLiumh‘] is an error in the estimate, 16 is reduced by
Laking a step toward the “Targer,” The targed i presumed o indicade s desicalde
direction in which to move, though it may be noisy. In the case above, lor example,
Ll Largel s the nih reward,

Initialize, for a 1 o &

Qla) 0
Ni{a) ¢ 0

Repeat forever:
A4 { ATE s, ) with probahbility 1 — £ (breaking tics randomly)
a rendom action  with probability =
R & bandit{ A)
N{A) = N{A)+ 1
QUA) « QA + gl [ - Q(A)]

Fignre 2.3: A bamdit algoritho using incrementally computed sample averages and s-greedy
actlon selectbon. The function Seedit{n) I8 assumed to take an actlon and eeturn a corme-
spoamding rewarnd.
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Mode thal the step-sise parsmeler (SlepSize] used in the ineremental method
described above changes Trom Gime step to Gme step. In processing (he oih reward
for action a, that method uses a step-size parameter of % In this book weo denote
Lhee slepegize parameter by the symbaol o or, more generally, Ty ogla), We somelimes
use the informal shorthand o = % to reler to this case, leaving the dependence of w
on Lhe action impdicit, just as we have in this secbion,

2.4 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriale in a slalionary environment,
but not if the bandit is changing over time. As noted earlier, we often encounter
reinforcoment learning problems that are elfectively nonstationary,  In such casos
it makes sense o weight recenl rewards more heavily than long-past ones, Ooe of
the most popular ways of doing this is o use & constant step-size parameter. For

example, the ineremental aplate rale (2,3) for apdating an aversge Gy of the o — 1
past rewards s modified to be

Onir = O + a1 [H“ - {J,,], (2.5)

where the step-size parameter o € {0, 1" is constant. This resulis in ), being a
welghted average of past rewards and (he initial estimate Oy

a1 = Oato ’R,L—f,}“]
= ol + (1 — o)},
el + (1 — o) [afy g+ (1 — o)}, 4]
= afl, +(1—-aaf, 1 +(1 —ﬂ:ljlf.}n._|
= il + (1 —mpafla 1+ (1 —rr,'ll‘!rrR,L o+
4 (1= )Ry +(1— a)"Qy

= (1—a)* + Zﬂil — )" 'R, (2.6)

E=1

We call this a weighted average because the sum of the weights s {(1—a)"+ 300 w(1-
)™ = 1, as you ean check yoursell, Note that the weight, o 1 —a)™ ", given o the
reward & depends on how many rewands ago, w — 4, it was obsorved. The guantity
I — v is less than 1, amnd thus the weight given o By decreases as the number of
intervening rewards increases. In lact, the weight decays exponentially according Lo
Chee expronent on 1 —o (10 L —o =0, then all the weight goes on the very last reward,
R, hecanse of the convention that 0F = 1.) Aecordingly, this is sometimes called an
exporeendiod, recency-weighled average,

Sometimes it s convenient to vary the stop-sise paramcoter from step to step. Lot
ik () denole the step-sise parameter used Lo proeess the rewand received alter the

'Ihe natation (. B s set denotes the real interval between o aned b incheding b bat oot inchading
a. Thies, here we are saying here that 0 < o < 1
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vith selection of action o, As we bave noted, the choioe o, (o) = # resulis in the
sample-average method, which is guarantees] o converge to the troe action valoes by
the law of large mumbera. But of course convergence is nol guarantecd for all choices
ol the sequence {og{al}, A well-known result in stochastie approximation Uheory
gives us the conditions required {o assure convergence with probability 1:

=] = ]
Enﬂ [e]) = o0 anl Euﬁ{u}l < 060, (2.7)
=1 n=I

The first condition is required to guarantee that the steps are large enough 1o even-
Lually overcome: any initial conditions or candom Duetuastions, The second condition
puarantecs that eventually the stops hecome small enough to assure convergence.

Mot thial both comvergencs conditions are met [or the sample-average case, oglin) =
—:‘, but not for the case of constant step-sizo parametor, o, (2] = e, In the latter case,
Lhe second condition 2 not met, indicating that the estimates pever completely con-
verge but continue Lo vary in response to the most recently received rewards. As
wie menbioned abosee, This s actually desirable in & ponstationary environoment, and
problems that are offectively nonstationary are the norm in reinforcement. learn-
ing. In addition, sequences of step-size parametors that meet the conditions (2.7)
often converge very slowly or nesd consideralde tuning in order to oldain & satisfe-
tory convergence rate. Alithough sequences of step-size parameters that moet these
copvergenee conditions are ollen used in theoretical work, (they are seldom used o
applications and empirical research.

Exercise 2.2 If the step-sise parameters, o, are nob constant, then the estimate
2, 15 8 weighted average of previowsly recelve] rewards with a weighting different
from that given by [2.6). What is the woighting on each prior roward for the general
case, analogous 1o (2.6]), in terms of the sequence of step-sise paramebers?

Exercise 2.3 (programming) Design and conduct an experiment to demonstrate
Lhee difliculties that sample-average methods have for ponstationary problems, Use a
modified version of the M-armed testhed in which all the g,(a) start out equal and
then take independent random walks, Prepare plots like Figure 2.2 [or an action-
value method using sample averages, incrementally computed by o = T.n amd another
action-value method using & constant step-size parameter, o = 0.1, Use g = L1 and,
il nocessary, rns longer than LK plays.

2.5 Optimistic Initial Values

All the methods we have discussed so Tar are depemdent b some extent on the initial
action-value cstimates, Gy{a). In the language of statistics, these methods are binsed
by Lheir initial estimates, For the sample-average methods, the Dias disappears onee
all actions have been selected at least once, but for methods with constant o, the bias
i5 permancol, though decreasing over time a8 given by (26), In practice, this kind
of hias s usually not a problem and can sometimes bo very belpful. The downside is
that the initial estimates become, in effect, a set of parameters that must be picked
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by the wser, if ooly (o sel Chem all to sero, The upside is that they provide an easy
way Lo supply some prior knowledge aboul whatl level of rewards can be exgpectesd,

Initial action values can alzo be used as a simple way of encouraging exploration.
Suppose Lthat pstead of selting the initial action values (o sero, as owe did o the
Likarmed testbed, we set them all to +5. Recall that the ge(a) in this problem
are selected from a pormal disteibution with mean 0 and varianee 1, Ao initial
eatimate of +5 is thus wildly oplimistic. But this oplimism encourages action-value
methosds Lo explore, Whichever actions are initially selecied, the reward is less Chan
Lhe starting estimates; the learner switches to other actions, being “disappointed”
wilh the rewards it is receiving, The result is that all actions are trisd several Gmes
before the value estimates converge. The svstem does a [air amount of exploration
even i greedy actions are selected all the Lime,

Figure 2.4 shows the performanee on the 10-armed bandit testbed of & gresdy
method using (q(a) = 45, lor all a. For comparison, also shown 5 an e-greedy
retbew] with i) = 0. Initially, the opltimistic method performs worse Tocanse 0
explores more, bt oveninally it performs better becanse its exploration decreasos
with Lime, We call this technigue for encouraging exploration eplimisiie bl vel-
wes. We regard it as a simple trick that can be quite effective on stationary problems,
bait it is ar Teom Deing o generally uselul approach o encouraging exploration, For
example, it s ool woll suited o nonstationary probloms because its drive for ox-
ploration 5 inberently temporary, 15 the task changes, creating a renewed peed Tor
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way s uolikely to help with the goneral nonstationary case. The
beginning of tme ooeurs only ooee, aod thos we shiould ped Toess on i Goo mocd,
This criticism applics as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all sulsegquent rewands with eogual
wieighis, Mevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adegquate o peactice. In the rest of this book
we make frequent wse of several of Lthese simple exploration technigques.

potirnishic, graedy
@,=5 E=0
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Figure 24: The effect of optimistic inithal action-valse estimates on the W-armod testhed.
Baoth methods used a constant step-size parameter, o = (0.1,
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Exerciae 2.4 The resulis shown in Figure 2,4 should be guite reliable Tecase they
are averages over 20000 individual, randomly chosen [0-armesd bandit tasks, Whey,
then, are thore oscillations and spikes in the early part of the curve for the optimistic
methosd? In other words, whal might make this method pecform partiealacly Teiier
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
grecdy actions are (hose that look best sl present, Tul seme of the olther actions
may actually be better. s-greedy action selection forees the non-greedy actions Lo
b trbesd, Dt incdiseriminately, with no preference for those thal ace neary greedy or
particularly unecertain. It would be better to select among the non-greesdy actions
aecording to their potential for actually being oplimal, bking inlo account botl low
close their estimates are to being maximal and the uncertainties in those estimates.
One elfective way of doing this is to select actions as

Aq = argmax [r;n{aj +ef ;:’fr: } ‘ , (2.8)

where log ! denotes the natural logarithm of ¢ (the oumber that e == 271825 would
hawe b be radsed Goodn order Gooegqual £, Na) denotes the momber of times that
action a has been selected prior to time { (the denominator in (2.1)), and the number
o = () controls the degree of exploration. If Ny(a) = 0, then a is considered to be a
maximizing action,

The idea of this upper confidence bownd (UCB) action selection is that the sguare-
pod Lerm i5 a measuee of the uncertainly or varance in the estimabe of «’s value,
The guantity being max'ed over is thus a sort of upper bound on the possible troe
value of acticn a, with the ¢ parameter determining the conlidenes level, Each time
a is selected the uncertainty & proesumably reduced; Nila) is ineremented and, as it
appears in the depominstor of the uncertainty Lerm, the ferm s decreased, On (e
other hand, each time an action other than a is selected | s increased; as it appears in
Lhee numerator the uncerlainby estimate is incressed, The use of Cthe natural Togacitlm
means Lhat the increase gels smaller over time, but is unbounded; all actions will
eventually be selected, but as fime goes by it will be a longer wait, and thus a lower
selection [requency, for actions with a lower value estimate or Chat have aleeady been
selected more Limes.

Results with TTCE on the 10-armed testbed are shown in Figure 2.5, UCODB will
often porform well, as shown hore, but s more difficnlt than s-greedy o extond
bevomd bandits to the more general reinforeement learning setlings considered b the
rest of this book, One difficulty is in dealing with nonstationary problems; something
o complex than Che methods presented in Section 2.4 would be peeded, Another
difficulty is dealing with large state spaces, particularly lunction approximation as
developed in Part 11 of this book. In these more advanced seitings there is currently
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Figure 2.5: Average performance of OB action selection on the 10-armed testhed. As
shown, UUCE generally performs better that e-groedy action selecthon, ceccept o the frat &
plagea, when it solects rawdomly among tee as-vet-unpleed actions. TR with ¢ = 1 woald
pecform even botter but sould oot show the prominent spike I performance on the 11th
play. Can you think of an explanatbon of this spike?

oo koown practical way of wiilizing the idea of UCE action selection,

2.7 Gradient Bandits

S0 [ar in this chapier we have considered methods that estimate action values and
use those estimates to select actions. This s often a good approach, but it is not the
only one possible, In this section we consider learning a numerical preference M)
for cach action @. The larger the preference, the more often that sction s taken, bt
Lhe preference has po interpretation in terms of rewand, Only the relative preferenee
of one action over ancther is important; if we add W00 o all the preferences there is
oo eifect on the action probaldlities, which are determined acoording to a solt-max
distribution (ie., Gibbs or Boltzmann distribation] as follows:
Pr{dy—a} = — 2.9
rdi=ap = ———— = mlal). -
¢ ST el (2.9)
where here we have also ol rodoced a wselul pew potabion me) for the probability of
taking action a at time ¢. Initially all preferences are the same (e.g., Hy{a) = 0, ¥a)
s that all actions have an equal probability of being selected.

Thers is a natural learning algorithom for this setting ased on the ddea of stochastie
pradient. asoent. On cach step, aftor selecting the action 4 and receiving the reward
Hi, the preferences are upadated by

H“][:‘h:l i.!'Lﬂ:lf."l.:]'-l'i!I:I{H'J_— .ﬁ'j_]{l —Tl'gl:_."q}:h aunel
Hepr(a) = Hyfa) — a(Ry — Ri)mla), Va # A,
where a = () is a step-size parameter, and &, € B is the average of all the rewards
up through and including time {, which can be computed incrementally as described

(2.10)
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Figure 2.6: Average performance of the gradient-bandit algorithm with and without a
revward haseline on the karmeed testhed when the g, (a] are chosen to be near +4 rathes
than near zero.

in Section 2.3 (or Section 2.4 if the problem s nonstationary), The By term serves
as a hascline with which the reward is compared. If the reward is higher than the
baseline, then the probabdlity of taking A, in the lubure 2 increased, aod o0 the rewsard
i5 below baseline, then probability is decreased. The pon-selected actions move in
Ll opposite direction,

Figure 2.6 shows resulis with the gradieni-bandit algorithm on a variant of the
Likarmed testbhed in which the true expected rewards were selected according to a
normal distribution with a mean of 4 instead of zero (and with umil varianes as
before). This shifting up of all the rewards has absolutely no affect on the gradient-
bannedit adgorithm Decause of the reward baseline term, which instaptanpconsly adapis
to the new level. Dut if the bascline were omitted (that is, if Ry was taken to be
canstant sero in (2,10]], then pecformanes would be signilicantly degraded, as shown
in the figure.

One can gain a desper insight inbo this algorithm by aoderstanding it as & stochas-
tic approximation to gradient aseont. In exact gradient aseent, each proference H,(a)
woltld b inerementing proportiopal to the increment’s ellect on performancss

JE[R,]

Hepila) = Hila) + agEen

(2.11)

where the measuee of perlormance here is (he expectesd reward:
B[R] = m(bg.(b),
h

and the measure of the inerement’s effect i3 the parbiod desivative of this peclormanee
measure with respect to the preference. OF course, it s not possible to implement
gradient ascent exactly in our case because by assumption we do ool keow the g (b)),
bt in fact the npdates of our algorithm (2.10) are equal to (2.11) in expected valuoe,

making the algorithm an instance of slochastic gradient aseend.
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The ealculations showing this require only beginning caleulus, bul take several
ateps, IT vou are mathematically inclined, then vou will enjoy the rest of this secbion
in which we go through these steps. (And if you are not, then yon may skip the rest
of this section withoul preventing understanding of the rest of this book, ] First we
take a closer look at the exact performance gradient:

JER,) 8

HH_Q{E:I - HH| |:'|1:| ;NI [{']%{&J]
- Ay (B)
N Zﬁ-‘r‘f‘[maﬂ,gu}

axl{b)

where X; can be any sealar that does not depend on b, We can include it here becanse
Lhee gradient sums to zero over all the actions, ¥, :J;.Li =1l As Hyla) is changed,
somme actions’ probabilitics go up and some down, bub the sum of the changes must

b zero becanse the sum of the probabilitics must remain one.

gl
=Eﬁ:ﬂrih]{q:[fﬂl— ]ﬂ;.‘[ /)

The: expuadion is now in the form of an expectation, samming over all possible values
B ool the random variable 4y, then multiplving by the probability of taking those

winlues, Ths:

[{!I:{A!}' I‘!]E;E[E‘h]] -!{-‘i-!:']

= &| (- 1) e i)

where here we have chosen X = Ry and substituted B, for g.(4;). which is permitted
because E[f] = gu(A¢) and becanse all the other factors are non-random. Shortly
we will establish that S50 = mo(b) (1, — me(u}), where 1,y is defined to be | if
a=h, elae (b Asﬁuming tlhai_ for now, wo have

= E[( R — Re)mel A (Laen, — mela)) /7l Ac)]
= IE[ER\! - Eq](L.:.-t, - ﬂ-fl:n'}:l] :

Recall that our plan has been to write the performance gradient as an expectation of
snething that we can sample on each step, as we bave just dooe, and then apelate
on each step proportional to the sample. Substituting a sample of the expectation
abowe for the performance gradient in (2,11} yields:

Hyyi(a) = Hy(a) + a{ Ry — By){La=a, — mia)), Wa,
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which vou will recognize a8 being equivalent to our original algorithm (2,10,
Thus it remains only to show that :‘i’:i = m(b} 1 — mila)), as weo assumed.
Recall the standard gquotient rale for derivatives:

8 [fi2)] _ Hale) - 1)
i glz)*

gix)

Using this, we can write

dme(b) i

Gy (a)  BHa)
i e Ha(B)
~ GHifa) | TE | e

. k =
Bertil) ok He) _ pHe) I efle(c]

_ IHia] le) (by the quotient rule)

(5t emo)

1,y eHia) % LHile) _ oHi(B) oHila) L
— ok 2o - (because 9 = e7)

(Eﬁ-[ f_,H.(..j.]]

ln.—I.EH‘ 1] EH;[J:-}RHE [a}

= E:'__-_l_ el {Ef:_] ,_-.-H'.-[r:l}ir

= lg=bmell) — melb)mela)
= mi b L=t — mela))- [ LE.DD.

We have just shown that the expected update of the gradient-bandit. algorithm is
epual 1o Lhe gradient of expected roward, and thos that the algorithm is an instance of
stochastic gradient ascent. This assures us that the algorithm has robust comvergenes
properties,

Note that we did not require any properties of the rewarnd baseline other than that
it nol depend on the selected action. For example, we could have sel s 1o sero, or
Lo DOEWHD, e the algorithom would still be an instancee of stochastic gradient asceot,
The choice of the bascline doos not affect the expected update of the alporithm, bt
it does adlect the vardance of the update and thus the @ale of convergenee [as shown,
e, in Figure 2.6). Choosing it as the average of the rewards may not be the very
best, bl it iz simpde and works well in practioe,

2.8 Associative Search (Contextual Bandits)

S0 far in this chapier we have considered only nonassociative tasks, in which there
i5 oo peed Looassociate dillerent actions with different situations. In these tasks the
learner eitheor tries to find a single best action when the task is stationary, or tries
Lo track the best action as it changes over time when the task s nonstationary.
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However, in a general reinforcement learning task there i3 more than one situation,
and the goal is o learn a policys & mapping [rom sibuations (o the actions thal ane
best in those situations, To sel the stage for the Tull problem, we briefly discuss the
simplest way in which ponassociative tasks extemd o Che associalive seiting.

As an example, suppose there are several different b-armed bandit tasks, and
that on each play you conlront one of these chosen al candom. Thos, the Tandii
task changes randomly from playv to play. This would appear to vou as a single,
nonstationary E-armes] bandit task whose true action values change ramdomly Trom
plav to play. You could try using one of the methods deseribed in this chapier that
can handle poostationarity, bul unless the troe action values change slowly, (hese
methods will not work very well, Now suppose, however, that when a bandit task is
aelected for you, vou are given some distinetive clee alsout i3 ideotity (Tt et its
action values], Maybe vou are facing an actual glot machine that changes the color
of its display as it changes itz action values, Mow vou can learn a policy associating
each task, signaled by the color vou see, with the best action o take when [acing
that task—for instance, if red, play arm 1; if green, play arm 2. With the right policy
you can usually do much better than you conld in the absence of any informalion
distinguishing one bandit task from another.

This 1z an example of an associative search sk, so called because it involves hath
trial-and-error learning in the form of search lor the best actions and associalion of
ihese actions with the situations in which they are besi,? Associative search asks
are intermediate between the E-armed bandit problem and the full reinforeement
learning problom. They are like the ll reinforcement. learning problem in that they
ivodve learning a policy, but like our version of the B-armesd bandit problean in thad
each action alfects only the immediate reward. II actions are allowed o allect the
el sitwalion as well as the reward, then we have the Tull reinforoement. learning
problem. We presont this problem in the noed chapter and consider its ramilications
Lhroughout the rest of the book,

2.9 Summary

We have presented in this chapier several simple wavs of balancing exploration and
exploitation, The e-grevedy methods choose randomly & small Traction of the Gime,
whereas [JOR methods choose deterministically but achiove cxploration by subily
[avoring al each step Lthe actions thal have so far received fewer samples, Gradient-
bandit algorithms estimate not action values, but action prelerences, and [avor the
o preferred actions inoa graded, probabilistic manner using a soll-max distrib-
tion. The simple expedient of initializing estimates optimistically canses evon grosdy
methods to explore significantly.

i is patural o ask which of these methods s best, Alihowgh this iz a dilliculi
question to answer in general, we can certainly run them all on the 10-armed testbed
that we have used throughout this chapter and compare their performances. A

2 Assncintive search tnsks are often now termed conterfual bondits in the literstuare.
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Figure 2.7 A parameter stwdy of the variows handit algorithms presented in this chapter,
Each point is the average reward obtained over 1000 steps with a partionlsr algorithm st a
particnlar setting of its parameter,

caomplication is that they all bave a parameler; o gel a meandngghl comparizon we
will have to consider their performance as a lunction of their parameter. Our graphs
s far bave shown Che couwrse of learping over e for each algoritlun and pacameter
setting, but it would be too visually confusing to show such a learning cwrve for each
algorithm and pacameter valoe, Instesd we summarize o complote learning carve by
it pversge value over the 100 steps; this value i8 propoctiooal o the area under
the learning curves we have shown up to now. Figure 2.7 shows this measure [or the
varions bandit algorithms [Fom this chapler, each as a lnetion of 115 own parameier
shown on a single seale on tho x-axis. Note that the parameter values are variod by
[actors of two and presented on a log scale, Mole also the characteristic nverted-
Il shapes of each algorithm's performance; all the algorithms perform best ab an
intermedinte value of their parameter, oeither too large nor oo small, In assessing
an method, we should attend not just to how well it does at its best. paramotor
setling, bul also Lo how sepsitive iG s be s parameber valoe, All of these algorithms
are [airly insensitive, performing well over a range of parameter values varving by
about an order of magnitude, Overall, oo this problem, TR secms b perlorm Teesi,

Despite their simplicity, in owr opinion the methods presented in this chapter can
Fairly be considersd the state of the art. Thore are more sophisticated methods, bt
Lheir complexity and assumplions make them impractical for the full reinforeement
learning problem that is our real focus. Starting in Chapler 5 we present learning
methosds for solving the Dl reinforcement learning peoldem that use o pact the
simple methods explored in this chaptor.

Although the simple methods explored in this chapter may De the best we can doe
at present, they are far from a lully satisfactory solution to the problem of halancing
expMoration amd exploitation,

The classical solution to balancing exploration and exploitation in k-armed bandit
problems is to compute special inetions called Gillins indices. These provide an
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oplimal solution b a certain kind of bapdit problem more geperal than that con-
aidered bere but that assumes the prior distrilation of possilde problems is known,
Unfortunately, neither the theory nor the computational tractability of this method
appear 1o generalize Lo the Il reinforeement leprning problem that we eonsider in
the rest of the book.

PBayesion methods assume a prior over Lhe action-value distribations amd then
update those exactly afier each step (assuming that the true action values are sta-
Lionary ). In general, the update computations can be very comples, bt for certain
priors {called conjugale priors] thoy are casy. One possibility is to then select actions
sl each step according o their posterior probaldlity of beiog the best action, This
method, sometimes called posterior sampling or Thompson sampling, often performs
aimilacly to the Tetter of the prior-free methods we have presented in this chapier,

In the Bavesian selling is even copceivable (o computbe the opdimed balapee Te-
tween exploration and exploitation. Clearly, for any possible action we can compute
Lhee probability of each possible immediabe reward and the resultant posterior distri-
butions over action values. This evolving distribution becomes the information slale
of the problem, Given a borison, say of L0 plays, one can consider all possilde
actions, all possible resulting rewards, all possible next actions, all next, rewards, and
s on for all 1000 plays, Given the assumptions, the cewards and probalalities of
each possible chain of events can be determined, and one need only pick the besi.
But the tree of possibilitics grows extremely capidly; even il there are only twoe ac-
tions and two rewards, the tree will have 22" Jeaves. It is generally not feasible to
porform this immense computation exactly, bl perhaps it could be approximated
efliciently, This approach would elfectively turns the bapdit problem inlo an instanee
of the full reinforcement learning problem; it 5 bevond the current state of the ar,
bt someday 10 may be possible 1o use reinforeement. learning methaods such as those
prosented in Part 1T of this book to approximate this optimal solution.

Bibliographical and Historical Remarks

2.1 Bandit probloms have beoen studied in statistics, engineering, and psychology.
In statiztics, bamdit problems [all aoder the heading “scequential design of ex-
poriments,” introduced by Thompson (18633, 193} and Robbins (1952), and
studied by Bellman (1956), Berry and Fristedt (1985) provide an exiensive
Lreatment of bandit problems rom the perspective of statistics, Nareodes
and Thathachar {1981) treat bandit problems from the engineering porspec-
Live, providing a good discossion of the various theoretical traditions that
have focused on them. In pevchology, bandit problems have plaved roles in
statistical learning theory (eg., Bush and Mosteller, 1955; Estes, 1950].

The term greedy is often used in the heuristic search literature (e.g., Pearl,
1954), The conflict etween exploration and exploiiation iz known in contool
enginecring as the conflict between identification [or cstimation ] and control
ez, Witten, 1976). Feldbanm [1965) called it the dua! control problem,
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2.2

2.3-4

2.5

2.6

2.7

2.8

ceferring (o the peesd Lo solve the two problems of identification and con-
Lrod simultancously when teving to contral & svstem oaoder uoeertainty, In
discussing aspects of genetic algorithms, Holland [(1975) emphasized the im-
poctanee of Lthis conflict, referring 1o it as the eonflict between (he peed Lo
exploit and the need for new information.

Action-value methods for our kE-armed bandit problem were first, proposed by
Thathachar and Sastry (1985), These are oflen callesd estimalor algorilfiims
in the learning sutomats leratore, The term action safee s doe o Watkins
(19849). The first {0 wse s-greedy methods may also have been Watkins {1954,
o LBT ), bl Chee dedes is soosimple Chal some earlier use secms likely,

This material [alls under the general heading of stochastic iterative algo-
rithms, which is well covercd by Bertsokas and Tsitsiklis [ 1506G].

Oplimistic indtialization was wsed in reinforcement learning by Sutton { 19596),

Early work on using estimates of the upper confidence bound Lo select actions
was done by Lal and Robbins (19851, Kaelbling { 1993h), and Agacwal { 1995),
The UTCB algorithm we present. hore is called TTCBL in the litorature and was
firat developed by Auer, Cosa-Bianchi and Fischer (2002},

Ciradient-bandit algorithuns are a special case of the gradient-based reinforee-
menl learning algorithms inbroduced by Williams [1992), and that later de-
voloped into the actor critic and policy-gradient algorithms that wo trest
Lter in this ook, Our development bere was inlueneed by that by Balara-
man Ravindran., Further discussion of the choice of baseline is provided there

and by Greensmith, Bartletn, and Baster (2000, 2004) and Dick (2015},

The term softmar for the action selection rule [2.9) is due to Bridle {190940).
This rule appears Lo bave been first peoposed by Luce [ 1959],

The term associalive search apd the corpesponding problem were infrodueed
by Barte, Sution, and Broweeer (1981). The term assocunliee rednformenent
learning has aleo boen used for associative search [ Barto and Anandan, 1985),
bl wee prefer (o reserve thad Lerm a3 a synonyim for the full reinforcement
learning problem (as in Sutton, 1984}, (And, as we noted, the modern litera-
Lure also wses the term “contexiual bandits™ for this problem.) We note thad
Thorndike’s Law of Effect (guoted in Chapter 1) describes associative soarch
by referring 1o the formation of associabive links belween silualions [stales)
and actions. According to the terminclogy of operant, or instrumental, con-
ditioening (e, Skinoer, 1938), a diseriminative stimolos is a stimolos thid
signals tho prosonce of a particular reinforcoment. contingency. In our terms,
different discriminative stimuli correspond to different. states.
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The Gitting index approach is due to Gitting and Jones (1974). Dull {1995)
ahowes] how i i3 possilde (o leprn Gitting indices for baodit proldems throngh
reinforcement. learning.  Bellman (1956) was the first to show how dynamic
programming could be used (o compute the oplimal balance between explo-
ration and exploitation within a Bayesian [ormulation of the problem. The
aurvey by Bumar (1985%) provides a good discossion of Bayesian aod non-
Bayosian approaches to these problems. The term information siate comos
[rom the literspture on partially observable MIDPs; see, eg., Lovejoy (1991,



Chapter 3

Finite Markov Decision
Processes

In thiz chapler we introdoee the problem that we tey Lo solve in Che rest of (he
book. This problem could be considered to defline the ficld of reinforcement. learning:
any method that 18 suites] to solving this problem we consider o be a reinforcement
learning method.

Our oljective in this chapler is 1o deseribe the reinforeement learning problem o
a broad sense. We try to convey the wide range of possible applications that can be
framed as reinforcement learning tasks. We also describe mathematically idealized
[orms of the reinforecment learning probdem or which precise theoretical statements
can be made. We introdose key elements of the problom’s mathomatical structure,
such as value lipctions and Bellman equations. As in all of artificial intelligence,
there s a tension between breadih of applicability and mathematical tractability.
In this chapter we introduce this tension and discuss soeme o Che (rade-olls and
challenges that it implies.

3.1 The Agent—Environment Interface

The reinforcement learning problem is meant to e a steaightforwacd framing of the
proflem of learning [rom interaction o achieve a goal, The learner and decision-
maker is called the agend. The thing it interacts with, comprising everyihing outside
Lhe agent, is called the emmirormend, These interact continually, the agent selecting
actions and the environment responding o those actions and presenting now situa-
tions o the agent.,' The environment also gives rise 1o rewards, special numerical
values that the agent tries Lo maximize over time. A complete specification of an
environment delines a besk, one instance of the reinforeement learning problem,

More specilically, the agent and environment interact at each of a sequence of

"W use the terms egend, enmronmend, and oofien instend of the engineers” termes controfler,
controlled systemn (or pland), and cortrol signad becanse they are meaningful to s wider medience.
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Figure 3.1: The agent-environment interaction in reinforcement. learning,

discrete time steps, £ = 0,1,2.3....% At each time step §, the agent roceives some
representalion of the covironment’s slale, 5 £ 5, where & s Uhe set of possible stales,
and on that basis selects an action, Ay € A5 ), where A5 ) is the sel ol actions
availablo in state 5. One time stop later, in part a5 a consegquenes of its action, the
agent receives g numerical ressaed, By € B C R, and fiods isell in a pew stale,
5411 Figure 3.1 diagrams the agent environment interaction.

AL each time step, the agent implements o mapping [rom stales o probabilities
of selecting cach possible action. This mapping is called the agent's policy and is
denoted 7, where mpial%) is the prolability that 4y = a il 5 = 5 Reinforcement
learning methods spocify how the agent. changes its policy as a result of its experiones.
The agent’s goal, roughly speaking, is (o maximize the tolal amount of reward B
receives over the long run.

This framework s absiract and Hexible and can be applicd io many different
profdems in many dilferent wavs, For example, the time steps peed ool mefer te lixed
intervals of real time; they can refer to arbitrary successive stages of decision-making
and acting, The actions can be Jow-level eontrols, such as the voltages applied o the
medors of a robot arm, or high-level decisions, such as whether or not 1o have lunch
or boogo o graduate school, Similary, the states can take o wide variedy of forms,
They can be completely determined by low-level sonsations, such as direct sensor
readings, or they can be more high-level and abstract, such a2 svmbolic descriptions
of objecis in a room. Some of what makes up a state could be based on memaory
of past sensations or even e entively mental or subjective, For example, an agent
could e in the stabe of nol being sure wheee an object 1=, or of having just been
aurprised in some clearly defined sense.  Similarly, some actions might be dotally
mental or computational, For example, some actions might contrel whal an agent
chooses to think about, or where it focuses its attention. In general, actions can be
any decizions we wanl Lo learn how 1o make, and the states can be anvibing we can
know that might be useful in making them.

In particular, the boundary Belween agent and eovironment s not alten the saome

*Wae restrict attenthon to diserete time to keep things as simple as possible, even thongh many
of the ideas con be extended to the continons- time case (eg., see Bertselas and Tsitsiklis, 1996,
Werhas, 1992; Doya, 1909 ).

T s Mes instead obf £y e denote the reward due to Ay becanse it emphasizes that the next
reward and next state, i and 5., are jointly determined. Unfortunately, both comentions are
witlely umed in the literatoare.
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a8 Lhe phyzical boundary of a robol’s or animal's Body,  Usually, the boundary
i5 dlrawn closer to the ageot than that, For example, the motors and mechanical
linkages of a robot amd its sensing hardware should usoally be considered parts of
Lhe ecovironment rather than paris of the agent, Similarly, il we apply the Iramework
Lo a person or animal, the muscles, skeleton, and sensory organs should be considered
praart of the envirenment, Bewards, too, presamably are computes] inside the plivsical
bodies of natural and artilicial learning systems, but are considered external o the

el

The general rule we follow is that anything that cannot be changed arbitrarily by
Lhee aggent is consideresd Lo be outside of it and thos part of B2 environment, We do not
assume that everyvihing in the environment is unknown to the apent. For example,
Lhee apgent often Koows quite a bit about bow s rewacds are computesd as a Tunction
of its actions and the slates in which they are taken, Bul we always consider the
reward computation to be external to the agent because 6 defines the task facing
Lhee agent and thus most be bevond (s ability 1o change arbiteardly, In fact, in some
cases Lhe agent may know evergthing about how its environment works and still faee
a dillienlt reinforoement learming task, just ag we may know exactly how o paszle like
Rubik's cube works, but still be unable to solve it The agent - environment. boundary
represents (he limil of the agenl’s absolute condrel, not of 1is knowledge,

The agent-environment boundary can be located at different places for different
purposes, Inoa complicated robol, many dilferent agents may e operaling sl onoe,
each with its own boundary. For example, one agent may make high-level decisions
which form part of tho states facod by a lower-level agent that implements the high-
lewel decizgions. In practice, the agent - eovieonment boomndary s determined omee one
has selected particular states, actions, and rewards, and thus has identified a specific
decision-making task of inlerest,

The reinforcement learning [ramework is a considerable absiraction of the problem
of goal-directed learning Trom interaction. It proposes thal whatever the details of
the sensory, memory, and control apparatus, and whatever objective one is trving
L achieve, any problem of learning goal-directed behavior ean be redoeed 1o (hres
signals passing back and forth between an agent and its enwvironment: one signal bo
represent Lhe cholees made by the agent (the actions], one signal (o represent the
basis on which the chobees are miade (Uhe states), and one sigoal to define the agent’s
goal (the rewards). This framework may not be sullicient to represent all decision-
leswrning proddems uselully, Tt it has prosed (o be widely wsefol and applicatde,

O course, the particular states and actions vary greatly [rom task (o task, and
b Loy are represented can strongly alfect performance, In reinforeement learning,
as in other kinds of learning, such representational cholees are at present more art
than scienee, In this book we olfer some adviee and examples regarding good ways
of representing states and actions, bul our primary focus 5 on general principles for
leswrning how 1o behave onee Che representations have Teen selected,

Example 3.1: Biorcactor Suppose reinforoement learning i3 being applicd o
detormine momenit-by-moment temperatures and stirring ratos for a bioreactor (a
large vat of nuirienis and bacteria used to produce uselul chemicals). The actions in
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such an application might be targel temperatures and targel stirring rates thal are
prasse] Lo lower-level conteol svstems that, in turn, directly activate heating elements
and motors Lo attain the targets. The states are likely to be thermocouple and othor
sensory readings, perbaps l[ilersd and delayed, plos syvmbaolic inpuls representing
the ingredients in the vat and the target chemical. The rewards might be moment-
by-tmmment measures of the rate ot which the uselul chemical is prodoced by the
bioreactor. Notice that here ecach state is a list, or vector, of sensor readings and
avimbaodie inpuls, and each action s a vector consisting of a Largel temperatore and o
stirring rate. It is ivpical of reinforcement learning tasks to have states and actions
with such structured representations, Rewards, on the other hand, are always siongle
rhers. [ |

Example 3.2: Pick-and-Place Robot  Consider using reinforcement learning Lo
control the motion of a robol arm in a repetitive pick-and-place task. If we want Lo
leswrn movements Lhat are fast amd smooth, Che learning agent will hase to conteol the
midors directly and have low-latoney information about the current positions and
volocitios of the mechanical linkages., The actions in this case might be the voltages
applicd 1o each motor ot each joint, and the states might be the latest readings of
joint. angles and velocities. The reward might be +1 for each object sucoessiully
pickes] up and placed, To epcourage smooth movements, on each Gme slep a small,
negative reward can be given as a lunction of the moment-to-moment. “jerkiness” of
Lhee ot o, L]

Example 3.3: Recycling Robot A mobile robot has the job of collecting empty
sl cans in an ofliee environment. 10 has sensors for dedecting cans, and an arm
and pripper that can pick them up and place them in an onboard bing i€ runs on
a rechargeable battery, The rolwd’s conbeol system has components Tor interprebing
sensory information, for navigating, and for controlling the arm and gripper. High-
level decigions aboul how o search for cans are made by a ceinforcement. learning
agent based on the current charge level of the battery. This agent has to decide
whether the mobol should (1) actively search for a can [or & certain period of time,
(2] remain slationary and wail for someone Lo bring it a can, or (3) head Tack o Qs
home base to recharge its battory. This decision has to be made cither poriodically
or whenever certain events oocur, such as linding an cmply can, The agent (herelore
has three actions, and its state is determined by the state of the battery. The rewards
might e gero most of the Gime, but then beeome positive when the roled secures
an emplty can, or large and negative if the battery runs all the way down, In this
ecxample, the reinforcement learning agenl 5 oot the entive robot,  The stales i
monitors deseribe conditions within the robst itscll, not conditions of the mobot’s
exlernal eovironment. The agent’s environmen! therefore includes the rest of the
robod, which might contain other complex decision-making systems, as well as the
roled s external environment, |

Exercise 3.1 Devise three example tasks of your own that it inbo the reinforcement
learning framework, identilyiog lor each its stabes, actions, and rewards, Make the
throe examples as different from cach other as possible. The framework is abstract
and Hexible and can be applied in many different ways. Streich iis limils in some
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way inoal least one of vour examples.

Exercize 3.2 Is the reinforecment learning lramework adequate to uselully represent
all moal-directed learning tasks? Can vou think of any clear exceptions?

Exercise 3.3 Consider the problem of driving. You could define the actions in
Lerms of the aceclerator, steering wheel, and brake, that is, where vour body mectis
Lhee machine, Or you could defioe them facther out—say, where the rubber messts the
roidl, considering vour actions to be tire torgues. Or you could define thom farthor
inn—say, where vour brain meets vour body, the actions being musele twitches Lo
control your limbs, Or vou could go to a really high level and say that vour actions
are your chicices of where (o drive, What is the right level, the right place 1o deaw
the line botween agont and enviromment? On what basis s one location of the line
L e preferved over another?  Is there any liodamental reason for prelerring oone
location over ancther, or is it a free choice?

3.2 Goals and Rewards

In reinforcement. learning, the purpose or goal of the agent is formalized in terms of &
special reward signal passing rom the enviconment o the agent, Al each Uime siep,
Lhee reward §s a simpde numbaer, B € B Informally, the agent’s goad s Go masiombee the
total amount of reward it receives. This means maximizing not immediate reward,
bt enmulative reward in the Iong ran. We can clearly state this informal wles as
th reward fypalfesis:

That all of what we mean by goals and puarpeses can be well thought of
as the maximization of the expected value of the cumulative sum of a
roceivied scalar signal (called roward).

The use of a reward sigoal Lo ormalize the idea of a goal is one of the most distinebive
features of reinforcement learning.

Although formulading goals in terms of reward sigoals might s first appess Timil-
ing, in practice it has proved to be flexible and widely applicable. The best way Lo
see Lhis s o consider examples of how it has been, or could be, used, For example,
L make a robol learn Lo walk, researchers have provided reward on each Lime step
proporitional to the robot’s forward motion. In making a robot learn how 1o escape
[rom & maee, The rewand 12 olten —1 for every time step thal passes prior 1o escape;
this encourages the agent to cscape as gquickly as possible. To make a robot learn to
[ined and collect cmply soda cans for recveling, one might give it a reward of zero mosi
of the time, and then a reward of 41 for each can collected. One might also want Lo
give the robol pegalive rewards when 10 omps inbo things or when somebody yells
at it. For an agont to learn to play checkers or choss, the natural rewards are 41 for
winning, —1 for losing, and O for dreawing and for all pooterming positions,

You can see what is happening in all of these examples. The agent always learns
Lo maximize its reward. If we wanl it {0 do something for us, we must provide
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rewards Lo it in such a way Lhal in maximizing them the agent will also achieve our
goals, It is thos critical that the rewards we setoap trouly indicate what we want
accomplished. In particolar, the reward signal is not the place to impart 1o the
agenl prior knowledge about how Lo achieve whal we want it to do? For example, o
chess-playing agent should be rewarded only for actually winning, not for achieving
asubgoals such taking s oppopent’s pieces o gaining control of the center of the
board. If achicving these soris of subgoals were rewarded, then the agent might find
A way Lo achiove them without achieving the real goal, For example, i might find s
way to take the opponent’s pieces even at the cost of losing the game.  The reward
signal is your way of communicating to the robol whel you want it Lo achicve, not
hoe vou want it achioved.

Mewcomers Lo reinforcement learning are sometimes sueprised that the rewards
which dedine of the goal of learning—are computed in the enviconment rather than in
the agent. Certainly most ultimate goals for animals are recognized by computations
oceurring inside their Todies, Tor example, by sepsors for recognizing leod, hanger,
pain, and pleasure. Nevertheless, as we discussed in the previous section, one can
redeaw the agenl-environment inlerface in such & way that these paris of the body
are considerod to be outside of the agent (and thus part of the agent's environment ).
For example, il the goal copcerng a robol’s inlernal energy reseevoirs, hen hese
are considered to be part of the environment; if the goal concerns the positions of
Phe polwol’s limhs, then these ioo are congidersd o be part of the enviconmen
that is, the agent's boundary is drawn at the interface between the limbs and their
conbrol systems. These things are considered internal to the mobot bul external o
Lhee lerning agent, For our purposes, i s convenient to place the boumdary of the
learning agent niot. ab the limit of its physical body, but at the limit of its control.

The reason we do this 15 that the agent’s altimate goal shold De something over
which it has imperfoct control: it should not be able, for example, to simply decres
Lhat the reward has been reecived o the same way (hal it might arbitrarily chamnge
its actions. Therelore, we place the reward source outside of the agent. This does not
preclude the ageot from defining for itsell a kind of internal ceward, or a sequence of
internal rowards., Indeed, this s coactly what many reinforcomont. learning mothods
o,

3.3 Returns

So far we have discussed the objective of learning informally, We have said that the
agent's goal is Lo maximize the cumulative reward it receives in the long ron. How
might this be defined formally I the sequence of rewards received aller Lime step
{tis denoted B, B, Bips, ..., then what precise aspect of this sequence do we
wish to maximize? In geperal, we seck Lo maximize the espected retwen, where the
return 7, is defined as some specific luncetion of the reward sequence. [n the simplest

Y Better places lor impaerting this kind of prior knowledge wre the initial policy or walee hosction,
ar in inflienees on these. See Lin (1992), Mackin and Shavlik (1994, and Cloese 1996,
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cade Lhe petirn 8 the sum of the rewards:
sy = Rey1 + Aeyz + Reyz + -+ + Ry, (4.1}

where T i3 o linal time step, This approach makes sense in applications in which (hepe
i5 a natural notion of final time step, that is, when the agent-environment interaction
breaks naturally into subsequences, which we call episades,” such as plays of a game,
trips through a maze, or any sort of repeated interactions. Each episode ends in
a speciad stabe called the Levmdnad sbale, [ollowed by a resel booa standacd starting
state or to a sample [rom a standard distribution of starting states. Tasks with
epistles of this kind are called episodie nsks, In episodic tasks we sometimes need
Lo distingnish the set of all nontorminal states, denoted S, from the sot of all statos
plus the terminal state, denoted 81,

O the other bamd, in many cases the agent envicenment interaction does not
break naturally into identifiable episodes, but goes on continually without limit. For
examphe, this would bee the natural way (o formulate a continual process-control Lask,
or an application to a robot with a long life span. We call these continuing fnsks. The
ceturn formulation [3.1) is problematic for continuing tasks because Lhe loal Gime
step would be T = oo, and the return, which is what we are Lrving to maximize,
could isell easily e infinite, (For example, suppose the agenl reecives o rewsrd of
+1 at each time step.] Thus, in this book we nsually wse a definition of roturn that
i5 alightly more complex conceplually bl much simpler mathematically,

The additional coneept that wo noed is that of discounting.  According to this
approach, the agent tries to select actions so that the sum of the discounted rewards
it receives over e future s maximized, In pacticular, 6 chooses Ae oo masimize (he
expocted discounied returm

.
G = Rppn + v Hepa +“_|'!H:| g+ = Z‘}'t.ﬁ“t Pls 13.2)
k=13

where 7 is a parameter, 0 < v < 1, called the discownd rale

The digeount rate determines Che present valee of lotare rewards: o rewand received
k time steps in the future is worth only +* 1 times what it would be worth if it were
peceived immeslintely, IF 5 <0 1, the infinite sum bas a inite value as long as the
reward sequence { By} is bounded. Ify = 0, the agent is “myopic” in being concerned
only with maximizing immediate rewards: iis objective in this case s o learn liow
Lo choose 4; =0 as to maximize only Byo. Il cach of the agenl’s actions happened
Ler infloence ondy the immediate reward, ool Dotaee rewards as well, then a myopdie
agent could maximize (3.2) by separately maximizing each immediate reward. But
in general, acting o maximize immediate reward can reduce acoess Lo Iubure rewards
s thal the return may actuadly be reduced, As 5 approaches 1, the objective takes
future rewards into account more strongly: the agent becomes more farsighted.

Example 3.4: Pole-Bolancing  Figure 3.2 shows a task that served as an early
illusieation of reinforeement learning. The objective here is 0o apply forees 1o a carl

P Episodes are sometimes called *trials” in the literature,
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1 i [
Figure 3.2; The pole-balancing task,

moving along a track so as (o keep a pole hinged to the cart from [alling over. A
Failure is sadd to cocor iF the pole Talls past a given angle from vertical or i the cart
runs off the track. The pole is reset to vertical after cach [ailure. This task conld be
Lreabed as epiaodic, where the natural episodes are the repeated attempis o balanee
the pole. The reward in this case could be +1 for every time step on which [ailure did
ool oceur, s bhat the retarn st each Gime would e the number of steps antil Tadlare,
Alternatively, we could treat pole-balancing as a continuing task, using discounting.
In this case the reward would be —1 on each [ailure and 2ero al all olher Gimes,
The return at each time would then be related to —®, where K is the number of
Lime steps before failure. In either case, the return is maximized by keeping the pole
balanees] for as long as possible, [ ]

Exercize 3.4 Suppose you Lrealed pole-Talaneing as an episodie task but alao wazed
discounting, with all rewards wero except for —1 upon [aillure. What then would the
return be gl each time?  How does this retuen differ fom that o the disconnted,
continuing formulation of this task?

Exercize 3.5 Dmagine that you are designing a rolaod boorun o maee, Yoo decide
to give it a reward of +1 for escaping from the mase and a reward of zero at all
odher times, The task seems (o break down naturally inbe episodes— the sucoessive
runs through the maze —so0 you decide to treat i as an episosdic task, where the goal
i5 1o maximize expected total reward [3.1), Alver running the learning agent for o
while, vou find that it is showing no improvement in escaping from the maze. What
i5 poing wrong? Have you ellectively commumnicates] to the agent whal vou want it
Lo achiowe?

3.4  Unified Notation for Episodic and Continuing Tasks

In the preceding section we described fwo kinds of reinforeement learning tasks, one
in which the agent -enviromment interaction naturally breaks down into & sequenoe of
separple epigodes [episodic tasks], and ope in which 0 does pol (continning tasks),
The former case is mathematically easier because each action allects only the finite
pmbeer of rewards sulsegquently received doaring he episode, Tn this ook we consider
sometimes one kind of problem and sometimes the other, but ofien both, i is
therefore wseful to establish one notation that enables us to talk precisely abowt
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=1

both eases simuliancously,

Tao he precise abont episcdic tasks reqguires some additional notation. Bather than
one long sequence of time steps, we nesd fo consider a series of episodes, each of
which consisis of a linite sequence of tme steps, We pumber Phe Lime steps of each
epissde starting anew [rom sero. Therefore, we have to reler not just to 5, the state
representalion al time §, but (o S, the stabe representation al time @ ol episode
(and similarly for Ay, By .m0 T;, etel ). However, it turns oot that, when we discuss
epismlic tasks we will almost pever bave 1o distinguish between dillerent. epizodes,
We will almost, always be considering a particular single episode, or stating something
Lhat 1= true for all episodes, Accondingly, in practice we will almest always abuse
notation slightly by dropping the explicit reference to epizode number. That is, we
will write 5 to refer o 5 ;, and so on.

W peed one other convention Lo oblain & zingle nolabion that eovers both episodie
and continuing tasks. We have defined the return a5 a sum over a finite number of
Lerms in one case [3.1) and as a sum over an infinite oomber of terms in the other
(3.2). These can bo unificd by considering episode termination to be the entering
of a special abserbing slofe (thal transitions only b itzell and that geperates only
rewards of zero. For example, consider the state transition diagram

Ri=+1 R,=+1 Ei=+1 Ry=0

Here thie solid square represents the special absorbing state corresponding to the end
of an epizgode. Starting rom 5y, we gel the eward sequenes +1, 41, +1L0,0,0,. ..
Summing these, we get the same return whether we sum over the first T rewards
(here T = 3) or over the [ull infinite seqguence, This remadng toee even 00 we inteodoes:
discounting. Thus, we can define the return, in general, sacoording to {3.2), using the
convention of omitting epissde pumbers when they are ool peosded, and including
the possibility that + = 1 if the sum remains defined [e.g., becanse all episodes
Lerminabe ), Allernatively, we can also write the return as

Peit=1
5 = E +* Reyi, (3.3)

=11

including the possibility that T = oo or v = 1 {but not both®). We use these
canventions throughout the rest of the ook to simplily nolation and (o express the
clozse parallels between episodic and continuing tasks.

""r'l.’n.}'ri tor formulate tasks that are both continning and andiscounted are the subject of ourrent
reseirch (e.g., Mahadevan, 19%:; Schwart=, 1993; Tadepalli and ik, 1994). Some of the ideas are
disensms] in Section 11.2.
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‘3.5  The Markov Property

In ihe reinforcement leprning [ramework, the agent makes iis decisions as a lunclion
of a signal rom the environment called the environment's siele. In this section we
discuss what s reguired of the siate sigonal, aml what kKind of information we should
and should ot expect it o provide. In particular, we formally deline & properiy of
environments and Lheir stale signals that is of particular interest, called the Markaoy
UL,

Iin this ook, Ty “the stale™ we mean whatever information is available to Che agent,
We assume that the state 5 given by some preprocessing system that s pominally
part of the envicomment, We do ool address the issues of constrocting, changing,
or learning the state signal in this book. We fake this approsch not becauso we
consider state representation to be unimportant, but in order o focus fully on the
decision-making msues, In other words, our main concern & nob with designing the
state signal, but with deciding what action to take as a unction of whatever state
signal s pvailable,

Certainly the state signal should include immediate sensations such as sensory
reasurements, but it can eontain much more than that, Stale representalions can
be highly processed versions of original sensations, or they can be complex structures
bradlt g owver Gime feoan the segquenee of sensations, For example, we can move our
eyes over a seene, with only a tiny spot corresponding to the fovea visible in detail
ol oy one L, ved build apos rich and detadled representation of a scene, O, more
obviously, we can look at an object, then look away, and know that it is still there.
We can hear the word “ves” and consider ourselves to be in totally different states
depemling on the question that came belore and which 12 oo longer audible, AL a
more mundane level, a control system can measure position at two different times Lo
produce & state represeniation including information abowl velociiy, In all of (hese
cases Lthe state is constructed and maintained on the basis of immediate sensations
Logether with the previous state or some olher memory of past sensations, In this
book, we do not explore how that is done, but certainly it can be and has been done.
There is o repson Lo pestriet the stabe epresentation (o oomediale sepsations; o
typical applications we should expect the state representation to be able 1o inform
Lhee aygensl of more Chan that,

Om thee oiher hamd, Che state signal should ool be expectesd Go inform Che agent of
evorvihing about the covironment, or oven overything that would be welul to it in
making decisions. I the agent s plaving blackjack, we should not expect it 1o know
what the next card in the deck is. Il the agent is answering the phone, we should not
expeel 1 io konow in sadvanee who the caller 50 10 the agent ig a pacamedic called o
a road accident, we should not expect it to know immediately the internal injuries
of an uneonscions victim, In all of these cases there s hidden state information in
the environment, and that information would be useful if the agent knew it, but the
agenl cannol koow i Tecanse i has pever roceived any relevant sensations. ITn short,
wie don’t fanlt an agent for not knowing something that matters, bt only for having
known something and then forgotten it!
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What we would like, ideally, iz a stale signal thal summarises past sensalions
compactly, vel in such a way that all relevant information is retained, This pocmally
requires more than the immediate sensations, but never more than the complete
history of all past sensalions, A stale sigoal thal succeesds in retaining all relevant
information is said to be Markewn, or to have the Markor property (we define this
formally below),  For example, a checkers position—the current condigueation of
all the pieees on the board — would serve as a Markov state because it summarizes
everyvibing important abowl the eomplete sequence of positions that bed to i, Muock
of the information about the sequence is lost, but all that really matiers for the future
of the game 5 retained, Similacly, the current position and welocity of a cannontall
i5 all that matters for its oiure Oight. It dossn’t maiter how that position and
velocity came about. This is sometimes also referred to as an “independence of
podh™ property because all (hal matiers s in the current slade signal; ils meaning i=
independent. of the “path,” or history, of signals that have led up to it

We pow formally define the Markov property Tor the reinforcement learning probs-
lem. To keep the mathematics simple, we assume here that there are a finite number
of states amd rewand values, This enables us to work in terms of sums and proba-
bilitics rather than integrals and probability densities, but the argument can easily
b extepded to include continpous stales amd rewands, Copsider bow a geperal en-
vironment might respond at time { 4+ 1 to the action taken st time £ In the most
gencral, causal case Lhis response may depend on everything that has happems] ear-
lier. In this case the dynamics can be defined only by specilyving the complete joint
probability distribution:

Pr{& =&, B =r| So, Ao, Bua oo S, Aeoq, By, St A i3.4)

for all r, &', and all possible values of the past events: Sy, Ag. By, .. S, Ao,
ey Sey Aps IDhe state signal has the Markov peoperty, on the other haod, then the
enviromment’s response at £+ 1 depends only on the state and action represontations
al L, in which case the environment’s dypamics can be defined by specilving only

pla, r|=a) = Pr{.‘:'“] =& Ry =r|5%=584d= rl}, i4.5)

[or all 7, &', %, and &, In other words, & stade signal has the Markov propecty, and is a
Markov state, il and only if (3.5) 8 equal 1o pis, ¢S, Ay) Tor all ', ¢, and histories,
So. A, Bp, s S Ao, Be S As I this case, the environment and task as a
whale are also said (o have thie Markov property.

If an environment has the Markov property, then its one-step dynamics (3.5) enable
s to predict the pext stale and expected next reward given the corrent stale and
action. One can show that, by iterating this equation, omne can prediet all Tutore
states amd expected rewards [rom knowledge only of the current stade as well as
would be possible given the complete history up to the current time. 1 also follows
Lhat Markoy stabes provide the best possible basis Tor choosing actions, Thal s, the
bost policy for choosing actions as & function of a Markov state is just as good as
the best policy for choosing actions as a lunction of complete histories.
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Even when the state signal is non-Markow, i is sUill appropriste o think of the
abate in reinforcement learning a8 an approximation teoa Markey state, In particolar,
wie always want the state to be a good basis for predicting oture rewards and for
selecting actions.  In cases in which a model of the eovironment §s learnesd (see
Chapter 8), we also want the state to be a good basis for predicting subsequent
atates,  Markov stabes provide an unsurpassed basis for deing all of these (hings,
Tao the extent that the state approaches the ability of Markov states in these ways,
one will ohiain betier pecformanee [rom reinforeement learning syatems, For all of
these reasons, it s uselul 1o think of the state at each time step as an approsimation
L Blarkoy state, although one should remember that 06 may oot Dully satisly the
harkov property.

The Markoy property is important in reinforeement learning because decisions and
values are assumied Lo Tee s Munction only of the ciucrent =tade. In order for these Lo
b effective and informative, the state representation must be informative. All of
Lhee theory presented in this book assames Markoy stale signals, This means thad
not all the theory strictly applics to cases in which the Markov property does not
sirictly apply. However, the theory developes] for the Markov case still helps us Lo
understand the behavior of the algorithms, and the algorithms can be successfully
applicd 1o many tasks with stabes thad are pob strictly Mackov, A Dol uoderstanding
of the theory of the Markov case is an essential foundation for extending it to the
o eomplex amnd realistic npon-Markov case, Finally, we pote that the assamplion
of Markov state representations is not unigque to reinforcement learning but is also
present in most il not all other approaches o artificial intelligence.

Example 3.5: Pole-Balancing State  In the pole-balancing task introdoeed
ecarlier, a state signal would be Markov il it specified exactly, or made it possilde
Lo reconstruct exactly, the position and velocity of the cart along the track, the
angle between Che cart and the pole, and the rale al which this angle s changing
(the angular velocity). In an idealized cart pole system, this information would
b sullicient te exactly prediet the Tutore behavior of the cart and pole, given the
actions taken by the controller. In practice, bowever, it is never possible 1o know
this information exactly Tecase any real senscr would ioteeduce some distortion
and delay in its measurements. Furthermore, in any real cart-pole syvstem there are
alwavs other eifects, such as the bending of the pole, the lemperatures of the whes]
and pole bearings, and various orms of backlash, that slightly affect the bebavior of
the system. These lactors would cause violations of the Markov property if the state
signal were only the positions amd velocities of the cart aml the polie.

However, often the positions and velocities serve quite well as states. Some early
siudies of learning bo solve the pole-balancing task used a coarse stale signal thad
divided cart positions into three regions: right, loft, and middle (and similar rough
quantizations of the other three intrinsic stale variables ), This distinetly non-Markoy
state was suflicient to allow the task to be solved easily by reinforcement. learning
methuwls, In Tact, this coarse representation may bave fcilitated capdd learning by
forcing the learning agent 4o ignore line distinetions that would not have been useful
in solving the task. |
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Example 3.6: Draw Poker In deaw poker, cach player is deall a bhaod of fve
cards, There is a round of betting, in which each player exchanges some of his cards
for new ones, and then there s a final round of betting. At each round, cach playor
st malch or exeeed the highest beis of the other players, or else deop oot (Told ),
After the second round of betting, the player with the best hand who has not folded
i5 Liwe winoer and collects all the es,

The state signal in draw poker is different for each player. Each playver knows the
cards in his own haod, but can only guess sl those in the other players” hands, A
common mistake is o think that a Markov state signal should include the contents of
ol the players” bands and the cards remaining in the deck, In a fair game, however,
we assume thal the players are in principle unable to determine these things from
Lheir past olservations, IT a playver didd koow them, then she could peedict some
[ature events (swch as U cards one could exchange [or] kedter than by remembering
all past observations.

In auddition to koowledge of ane’s own cards, Uhe stabe in desw poker skoald inelade
the bets and the pumbers of cards drawn by the other players. For example, il one
of the other plagers deew Chree pew cands, vou may suspect e retained o paic and
adjust vour guess of the strength of his band accordingly. The plavers' bets also
inflenoe your assessment of (heir hands, In Get, moch of vour past history with
those particular plavers iz part of the Markov state. Does Ellen like to blafl, or does
she play copservatively? Does her face or demeanor provide elues (o the sirength
of her hand? How does Joe's play change when it is late at night, or when he has
already won a lob of money?

Although evervthing ever observed aboul the other players may hase an eilect
on the probahbilitics that they are holding various kinds of hands, in practice this is
[ar Loo much 1o remember and analyvee, and most of @0 will have no clear eflect on
one's predictions and decisions. Very good poker players are adept at remembering
just the key clues, amd alb sizing up npew plavers quickly, but oo one cemembers
evervihing that is relevant. As & result, the state representations people use to make
Lheir poker decisions are undoubledly non-Markoy, and the decisions themselves
are presumably imperfect. Mevertheless, people still make very good decisions in
such tasks, We conclude that the inability o ave access booa perfect Markow sbade

representalion i@ probably ol s severe probdem or a reinforcement learning agent,
[ |

Exercize 3.6: Broken Vizion Syvstem  Imagine thal youn are s vision sysiem,
Whon vou are first, turned on for the day, an image loods into vour camera. You can
aee lods of things, Dul ot all things, You can’t see objects that are ooeluded, and
of course vou can't see objects that are behind vou. After seeing that first seene, do
you have access Lo the Markov state of Lthe environmenl? Suppose your camases wss
broken that dav and you received no images at all, all day. Wonld vou have accoss
Lo the Markov state then?
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3.6 Markov Decision Processes

A reinforoement learning task that satisfies the Markov property is called & MWarkoo
decision process, or MDP, 1T the state and action spaces are [nite, then i is called o
Jimile Markov decision process [finile MDP). Finite MDPs are particularly important
Lor the theory of reinforecment learning, We treat them extensively throoghcul this
book; they are all you need to understand W% of modern reinforcement. learning,

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment, Given any #late and action s and o, the probalsdlily
of cach possible pair of next state and reward, s, r, is denoted

pl' vls,a) = Pr{Si=5 Ry =r | Si=5, Ai=a}. (3.6)

These quantitics completely specily the dynamics of a fnite MDP. Most of the theory
wie presenl in the pest of Lhis book implicitly assames the coviromment is a Goite M,

Given the dynamics as specifiod by (3.6), one can compute anvihing clse one might
wanl 1o know about the enviconment, such a8 the expected rewards lor staleaclion
[reirs,

ris,a) = E[Ryy

Sy=sAy=a] =3 _rY pl r|s,a), (3.7)

rER a'ER
Lhee stale-Imnsition probabililies,

P(#IF‘:E] = pf{ﬂu 1=4| H:=-“:-‘i.!="-l} = EF[Hraf‘
rel

8y}, (4.8)

and the expocted rowards for state action next-stato triples,

T e il s, )

pl']s. )

ris,a, 8" ) S E[Re | Se=s5, Ai=n, 541 =4 = (3.9)
In the first edition of this ook, the dynamics were expressed exclusively in terms of
the latter two quantities, which were denote P and RE, respectively. One weakness
of Lhat notation is that it 0l did ool lully charaeterize the dynamics of the rewards,
giving only their expectations. Another weakness is the excess of subscripis and
superscripls, In this edition we will predominantly wse the explichlt nodation of (3.6,
while somotimes referring direetly to the tramsition probabilities (3.8,

Example 3.7: Recveling Robot MDI*  The recveling robol [Example 3.3) can
be turned into a simple example of an MDP by simplifving it and providing some
o dledadls, (Our adm 15 o prodoee a simple example, ool a pacticulacly realistic
one) Heeall that the agent makes a decision at times determined by external evonts
Lo by odher parts of the rolol’s conbeol svsbem ). AL each such Lime the robot decides
whether it should (1) actively soarch for a can, (2) remain stationary and wait for
sonenie o bring i a can, or (G3) go back o home base Lo recharge 13 batlery,
Suppose the environment works as follows. The best way to find cans is 1o actively
search for them, but this runs down the robot’s battery, whereas waiting does noi.



J6. MARKOV DECISION PROCESSES il

Whenever the robol is searching, the possibility exists that ils battery will become
depleted, In this case the mobol must shob down aod wadl (o be pescoed [ prodecing
a low reward).

The agent makes its decisions solely a2 a lunction of the epergy level of the Taliery,
It can distinguish two levels, high and low, so that the state set is & = {high. low}.
Let us eall the possible decisions—the agent’s actions—wait, search, and recharge.
When the energy level is high, recharging would alwayvs be foolish, so we do not
pclude it in the action sel for this stale, The agentl’s action sels ane

Alhigh] = {search,wait}
Al{low) = {search,vait, recharge}.

Il the energy level is high, then o period of active search can adwavs be compleded
without risk of depleting the battery. A period of searching that begins with a high
energy level leaves the energy level high with probability o and reduces 6 (o low
with probability 1 — a. On the other band, a period of searching undertaken when
Lhee ecoergy level i Low leaves B0 Low with probability 2 and depleies the balltery with
probability 1 — 5. In the latter case, the robot must be rescued, and the battery
i# then recharged back to high. Each can collected by the robot counts as a unit
reward, whereas a reward of =3 resulis whenever the robol bas (o be eseaed, Let
Teaarch 8 Tugiz. With Pppareh = Pymie, respectively denote the expected number of
cans the robot will collect {(and henee the expected reward ) while searching and while
waiting. Finally, to keep things simple, suppose that no cans can be collected during
a run home for recharging, amd that o cans can be collected on a step in which the
battery is depleted. This svstem is then a finite MDP, and we can write down the
Lransition probabilities and the expected rewards, as o Talde 3.1,

A A" a e |aal | Flea, &)
high high search i Tosarch
high low search 1~ e Tosarch
low  high search 117 —4
low  low  search A Taearch
high high wait 1 Finit
high low  wait 1 Fuait
low  high wait 1 Fuait
low  low  wait 1 Fuait
low  high recharge | | i

low  low  recharge | [ 0.

Tahle 3.1: Transition probabilities and expected rowards for thee finite MDP of the recyeling
rohot example. There 1 a row for each possible combloation of current state, s, next state,
&, amd action posaible in the current state, o A8

A brensibion graph i3 a8 uselol way o summmarcize the dypamics of o linite MDD,
Figure 3.3 shows the transition graph for the recveling robot example. There are two
kinds of nodes: slale nodes and aclion nodes. There 5 a state node [or each possible
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o, Fegarch ]_':'-l Fasmrehy

Figure 3.8 Transithon graph for the reeveling robat esample.

atate (a large open circle labeled by the name of the state], and an action node for
each stale action padr (A small solid cirele labeled by the pame of the action and
connected by a line to the state node). Starting in state & and taking action & moves
o along the line from stale pode s 1o action oode (s 0], Then the enviromment
responds with a transition 1o the next stabe's node via one of the arrows leaving action
node (%, @), Each arrow corresponds to a triple (s, 5, a), where 8° is the next state,
and we lahel the arrow with the transition probability, p{s’]s, a), and the expected
reward for thal Lransition, v(s, o, ). Note that the transition probabilities Tabeling
the arrows leaving an action node alwavs sum to 1. [ ]

3.7 Value Functions

Almost all reinforcement learning algorithms involve estimating value funclions
Munctions of states {or of state-action pairs) that estimate bow good 06 @5 Tor the
agent to be in a given state (or how good it 8 to perform a given action in a given
state), The npion of “how good”™ here is defined o terms of Dobare rewards Chial can
be expecied, or, to be precise, in terms of expected return. OF course the rewards
Lhe agent can expect booreceive in the Tutare depemd on what actions i will take,
Accordingly, value functions are deflined with respect to particular policies.

Recall that a policy, 7, s a mapping lrom each state, s € &, and action, o £ A s),
to the probahility w(a|z) of taking action @ when in state s. Informally, the velue of
aostate s under o policy 7, depoted e (), i (he expected return when stacrting in s
and [ollowing o therealier, For MDPs, we can deline v (s]) lormally as

rg(8) = By | Se=5] = Err[\z: ‘rkﬁ|+,|,+] 3:=-'~'] ' [&.100)

4k

where E.l-] denotes the expected value of a random variable given that the agent
follows policy «, and s any time step. Note that the value of the terminal state, if
any, is always zero. We call the lunction v, the slate-value function for policy 7.
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Similarly, we define the valiee of taking action & in state s under o policy 7, denoted

gl s o), a8 the expected return stacting from s, taking the action &, and therealter
following policy

(= n]
ifxl#,0) = [E-a-r|ﬂ|: | Sp=2 4, = "1| =K, ZT*RHMJ
=

S:=R:Al=ﬂ] = [3-11}

We call ge Lhe acliop-value funclion for policy 7

The value lunctions v, and g can be estimated from experience. For example, i
an agent follows policy & and maintaing an average, Tor each stabe concountered, of
the actual returns that bave followed that state, then the average will converge Lo
Lhee slate’s value, v (8], as the opumber of Gmes that glate is encountersd approachies
infinity. If separate averages are kept for each action taken in a state, thon these aver-
apes will similarly converge to the action values, g2, 2). We call estimation methods
of this kind Mante Carlo methods becanse they involve averaging over many random
samples of aciual roturns. These kinds of methods are presented in Chapler 5. OF
coigrse, i Lhere are very many states, then b may ool be practical (o keep sepacaie
averages [or each state individually, Instead, the agent would have (o maintain o
and gy a8 paramelerized lunctions amd adjust the parameters o betber match the
ohserved returns. This can also produce accurato ostimates, although much deponds
on Lhe nature of the parameterized lunction approximator {(Chapler 9),

A hindamental proporty of value inctions wsed throughout reinforeoment learning
and dynamic programming is that they satisly particular reciesive relationships, For
any policy 7 and any state s, the following consistency condition holds between the
value of & and the value of its possible successor statos:

re(8] = E (7 | Si=4|
54=-'§]

il
= Ex E"."k-ﬂi+k+l
o
= E:|:Rf|1+’rz'frkﬂuk|z

kil

.ﬂl:H

k=0
= E wie|s) z E s rls, a) |+ F_r[E.,_.LZ & Riikia | S =.~5"] ]
0 @ 7 =il
= Z wlm|s) Zp[s‘l. s, a) [T- + ,r.,.w[x’}] . (5.12)
a o

where 1t b8 implicit that the actions, a, are taken [rom the set Als), the nexi states,
#, are taken from the set 8 (or from 81 in the case of an episodic problem), and the
cewards, r, are Laken [rom the sel B Nobe alse how o Che last equation we have
merged the two sums, one over all the values of 5 and the other over all values of r,
inta one sum o over all possible values of both. We will wse this Kind of merged som
often to simplify formulas. Note how the final expression can be read very easily as
an expected value. It is really a sum over all values of the three variables, a, 5°, and
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{a) ! {17] 5.4
T 5
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Figure 3.4: Backup diagrams for (a) v and (] ge.

r. For each triple, we compute its probability, ={a|s)p{s’,r|s, a), weight the quantity
in brackeis Do that probability, then sum over all possibilities te gl an expected
value.

Equation (3.12) is the Bellman equation for v, T expresses a relationship between
the value of a state and the values of its successor states. Think of looking ahead
[rom one state (o its possible successor states, as suggested by Figure 340, Each
open circle represenis a state and cach solid circle represenis & state action pair.
Starting from state s, the ool node at the top, the agent could take any of some
seb of actions— three are shown in Figure 3.4a. From each of these, the environment
could respond with one of several next states, #', along with a reward, v. The Bellman
eopuation (3.12) averages over all the possibilities, weighting cach by ils probalsdlity
of ocewrring. It states that the value of the start state must equal the {discountoed )
vialue of the expected pext stade, plus the reward expected along Uhe way,

The value lunction v, s the unigue solution o ils Bellman cqguation. We show
in subscguent chapiers how this Bellman eqguation forms the basis of a pumber of
ways to compute, approximate, and learn v, We call diagrams like those shown in
Figure 3.4 bwckup diogrms becanse they dingram relationshipz that form the basis
of the update or backup operations that are at the heart of reinforcement. learning
methosds, These operations ransler value information bock booa stale (or a siale
action pair) feom its successor stades (or stabe-action pairs), We use backop diagrams
thronghout the book to provide graphical summaries of the algorithms we discuss.
(MNobe that unlike transition graphs, the state nodes of backup diagrams do not
necessarily represent distinet stabes; for example, a state might be its own successor.
We also omil explicit arrowheads because time alwavs Dows dowoward inoa backup
diagram. ]

Example 3.8: Gridworld Figure 3.5a uses a recltangular grid o illustrate value
[anctions for a simple lnite MDY, The eells of the goid correspond 1o the states
of the environment., At each ecll, four actions are possible: north, south, east,
and west, which deterministically cause the agenl Lo move one cell in Lhe respective
direction on the grid. Actions that would take the agent off the grid leave its location
unchamged, bt also resull o a reward of —1, Odher actions mesall in a reward of 0,
excopt those that move the agent out of the special states A and B. From state A,
all four actions yield a reward of +10 and take the agent to A', From state B, all
actions yield a reward of +5 and take the agent to B'.

Suppose the agent selects all four actions with equal probability in all states.
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Figure 3.5: Grid example: exeeptional reward dynamics (left) and state-value function for
thie eqpuiprobable sandom poliey (right ).

Figure &060 shows the value Tunetion, vy, for this policy, Tor the discountes] eeward
case with v = (L% This value himction was computed by solving the svstem of
eouations (312}, Notice the negative values pear Che lower edge; these are (he resuli
of the high probability of hitting the edge of the grid there under the random policy.
State A ds the best state to Tee b aoder this policy, but its expected retorn is less
than 101, its immediate reward, bocanse from A the agent is taken to A', from which
it is likely to run into the edge of the grid. State B, on the other hand, is valued
more than 5, its immediate reward, because from B ihe agent is taken to B, which
has a positive value. From B the expected penalty (negative reward) for possibly
running inbo an edge s more Chan compensated For by the expected gain for possilly
stumbling onto A or B, [ |

Example 3.9: Goll To lormulate plaving a hole of goll as o reioforeement learning
task, we count a penalty {negative reward) of —1 for each stroke until we hit the
badl ko the bode, The stade is the location of the ball, The value of a stabe s (he
negative of the mumber of strokes to the hole from that location. Our actions are
how we aim and swing atb the ball, of course, and which club we select. Let us fake
Lhee Tormer as given and consider just the chodes of club, which we assame is cither a
puticer or a driver. Tho upper part of Figure 3.6 shows a possible state-value linetion,
tputt [ %), lor the policy that alwavs uses the putler, The terminal stale fn-the-hole
has a value of (1. From anywhere on the green we assume we can make a puttl; these
states have value —1 O the groen we cannol. reach the hiole by putting, and the
value is groater. IF we can reach the groon from a state by puiting, then that state
st bave value one less than the green™s value, that is, —2, For simplicity, lel ws
assume we can putl very precisely and deterministically, but with a limited range.
This gives us the sharp contour line labeled —2 in the Gguee; all locations belwesn
Chat line and the green regquice exactly twoe strokes 1o compleie the hole, Similary,
any location within putting range of the —2 coptour line must have a value of —3,
and sooon booget all the contour lines shown in the lgure, Patting docsn’t el ws
ot of sand traps, =0 they have a value of —oo. Owverall, it takes us six strokes bo get
[rom the tee Lo the hole by puiting, L |

Exercise 3.7 Whal iz the Bellman equation for action values, that is, for g7
I must give the action value g (s, a) in terms of the action values, g-(s", a'). of
possible successors to the stabe action pair (sa). As a hint, the backup disgram
corresponding to this equation is given in Figure 3.4b. Show the sequence of equations



itk CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Figure S.6: A golf example: the state-value functbon for putting (above) and the optimal
action-value henction for walng the driver |[below ).

analogous to (3.12), but for action values.

Excrcize 3.8 The Bellman equation (312} must hold for each state for the valoe
function vy shown in Figure 3.5b. As an example, show numerically that this equation
holds [or the center state, valued at +0.7, with respect to s four peighboring states,
valued at +2.3, 404, —04, and +0.7. (These numbeors are aceurate only to one
decimal place., )

Exercise 3.9 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the Gme, Are the signs of
theso rewards important, or only the intervals between them?  Prove, using (3.2),
Lhat adding & constant ¢ b0 all the rewards adds a constant, v, o the values of all
atates, and thus does not alfect the relative values of any states under any policies.
What is v, in terms of o and 57

Exercise 3.10 Mow consider adding a constant « to all the rewards in an episodic
Lask, such as mase running, Would this have any ellect, or would Qb leave the Lask
unchanged as in the coptinuing task above? Why or why not? Give an example.

Exercise 3.11 The value of a state depends on the the values of the actions possible
in that state and on how likely each action is to be taken under the current. policy.
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We ean think of this in terms of & small backup disgram rooted al the siale and
considering each possible action
taken with ~als)
1 ——
probabdlivy m(alz) T

- {al5.2)
I

Cive Lhe equation corresponding Lo this intuition aod disgeam for Che value al the
root node, v;(s), In terms of the value at the expected leal node, g.(s,a), given
5 = 5, This expectation depends on the policy, 7. Then give o second eguation in
which the expected value s written out explicitly in terms of w{als) such that no
expeecied valise notalion appears in the eoquation,

Exercize 3,12 The valwe of an action, gels @), depends on the expected nexi
roward and the expocted sum of the romaining rewards. Again we can think of this
in terms of a small backup diagram, this ene rooled al an action (stale action pair)
and branching Lo the possible next states:

g3

eopeiad
rewards
=, a

— . 5.0)

5 Vel5)
5 i3 5

Crive the equation corresponding to this intuition and diagram for the action value,
Grtlsad, in terms of the expectod next reward, By, and the expected next siale
value, vo{ 5 1), given that 5 =8 and 4; =a. Thon give a socond equation, writing
outl the expected value explicitly in terms of p(s', f|s, a) delined by (3.6), such that
no expected value notation appears in the equation.

3.8 Optimal Value Functions

Solving a reinforcement learning Lask means, roughly, loding a policy that achieves o
lot of reward over the long run. For finite MDPs, we can precisely defline an optimal
policy in the [ollowing way, Value Tinetions define a partial ordering over policies,
A poliey = g defined to be better than or equal to a poliey =" i its expected retarn
is greater than or equal to that of 7 for all states. In other words, 7 > 7' il and only
il vy (%) = wgel5) [or all s € &, There is always al least one policy that is better than
or equal to all other policies. This s an optimael policy. Although there may be more
L ooe, we denebe all the oplimal policies Ty g, They share the same state-valie
function, called the oplimael stale-value funclion, denoted v, and defined as

5] = |J:|1:rr'|.x1.'ﬂ-[:~']. (3. 135)

for all = € 8.

Optimal policies also share the same oplimal eclion-value Junction, denoted 4.,
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andd defined as
el s, 0] = m‘arle;t{-'s. i), (& 14)

for all 5 € & and & £ Alx). For the state-action pair (0], this linction gives the
expected return for taking action a in state 5 and thereafier following an oplimal
podicy, Thus, we can weile gq in terms of v as follows;

I?‘iﬂ..-ﬂ.] = E[R“ 1 +':|'-|:'_{H“ ]] | 51 =8, A:=ﬂ] : [-3-1-5}

Example 3.10: Optimal Value Functions for Golf The lower part. of Fignre 3.6
shows the contours of a possible oplimal action-valoe Iinetion g. (s, driver ). These
are the values of ecach state if we first plav a siroke with the driver and afterward
select either the driver or the putter, whichewver i3 better, The deiver enables us Lo
hit the ball farther, but with less accuracy. We can reach the hole in one shot using
Lhe driver ondy 0T we are already very close; thus the —1 contour for g, (%, driver)
covers only a small poction of the green,  ID we bave fwo girokes, however, then
we can reach the hole from much farther away, as shown by the —2 contour. In
Lhig case we don’t have (o dreive all the way 1o within the small =1 contoor, Fagi
only to anywhere on the green; from there we can use the putter. The oplimal
action-value Tupction gives the values alter committing te s particular fiest action,
in this case, to the driver, but alterward vsing whichever actions are best. The —3
contonr s 2l farther oul and ncludes the starting tee, From the tee, the Tesi
sequence of actions & two drives and one putt, sinking the ball in three strokes.
|

Because v, is the value function for a policy, it must satisly the sell-oonsistency
condition given by the Bellman equation for state values (3.12). Decause it is the
optimal value nction, however, o5 congistency condition can be writlen in a special
form without reference to any specilic policy. This is the Bellman equation for v,
or the Bellman opltimelily epualion,  Intuitively, the Bellman optimality egquation
expresses the fact that the value of a state under an optimal policy must equal the
expectes] return for the best action [rom that stabe;

r,(8)] = max &, i
W8] ﬂd»}qﬁ{ ()
= mix Eee|(y | 5i =35, Ay=a]

(= n]
= IITI[E-.-- Z’riﬁ'ukn
P

Li=r, A =r1]

]
= IIT.": Eqg- I'H: p1+ Z T'!Rf+j_-+g Si=% Ar=n
fe=Ib
= maxE[Ry ) + yn(Si) | Si=8, 4i=qa] (3.16)
a

— a@nﬂﬂ}; pla,rle,a) [r + & ]] (3.17)
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The Last bwo equadions are e forms of Lhe Bellman optimality eguation for e, The
Bellman optimality equation for g. s

el 8, 0) E [Hu 1+ TJJJI;:I.}'.QI.{S“ 1,0}

S=5 A= r;]

E pls', r|s &) [r + 7 max q,{ 8", r.L"]] .
uﬂ
=\

The backup diagrams in Figure 3.7 show graphically the spans of luture states and
actions congidered in the Bellman optimality equations for ve aod ge, These ae (he
same as the backup diagrams for v and g except that arcs have been added at the
agent s choice points Lo represend Uthat the maximom over that chodes is taken rather
than the expected value given some policy. Figure 3.7a graphically represents the
Bellman optimality equation (3,17),

For finite MDPz, the Bellman optimality equation (3.17) has a unigue solution
independent of the policy, The Bellman optimalily equation is actually a system of
eopuations, one for each state, so i there are N states, then there ace N eguations in
N unknowns. If the dynamics of the environment. are known (p{s', r|s, )], then in
principle one can solve this svalem of egquations for v, using any one of a varicty of
methods for solving svetems of nonlinear equations. One can solve a relabed set of
erpuations for g..

Onee one has v, it is relatively casy (o determine an oplimal policy. For each
state &, there will be ope or more actions al which the maxioom s obiained in
the Bellman optimality equation. Anyv policy that assigns nonzero probability only
L these actions 5 an oplimal policy, You can think of this as & one-step scarch,
Il vou have the optimal value lunction, v,, then the actions that appear best alter
a one-stop scarch will be oplimal actions. Anciher wav of saving this s that any
policy that is gresdy with respect 1o the optimal evalustion Tinetion o, s an opli-
mal policy. The term greedy 5 used in computer science to deseribe any search or
decision procedure that selects alternatives Tased only on local or imomediate con-
siderations, without considering the possibility that such a selection may provent
Daiure acoess o even betier alterpatives, Consequently, iU describes policies thad
select actions based only on their shori-term consequences. The beauty of v, is that
il ome uses it e evaluste the short-term conseguences of actions —specifically, (he

() : (b o

max

Figure 3.7; Brckup dingrams for (a) o and (b} q,
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ope-step consequences—then a greedy policy i8 actually oplimal o the long-term
sense in which we are inferested because v, already takes into aceount the reward
consequences of all possible future bebavior. By means of v,, the optimal expected
lomg-term return is turmesd into s quantity that s locally and immediately availalde
[or each state. Hence, a one-step-ahead search vields the long-term optimal actions.

Having 4. makes choosing oplimal actions siill easier, Wilh g, the agent does oot
even have to do a one-step-ahead search: [or any state s, it can simply find any action
Lhat maximizes gelsa), The action-value Tunction effectively caches the results of
all one-step-ahead searches. Ib provides the optimal expected long-term roturn as a
walue Lhat is locally and immediately available for each state action pair, Henee, al
the cost of representing & lupction of state action pairs, instead of just of states, the
optimal actioo-value lunction allows optimal actions (o be selected without having
Lo know anyihing aboul possible suceessor states and their values, thal =, without
having to kpnow anvihing about the environment's dynamics.

Example 3.11: Bellman Opiimality Equations for the Recyveling Robof Ts
ing (317}, we can explicitly give the Bellman optimality equation for the recyveling
robot example. To make things more compact, we abbroviate the states high and
low, and the acltions search, wait, and recharge respectively by b, 1, 5, w, and
re. Since there are only iwo states, the Bellman optimality equation consists of two
eopuations, The equation [or v, (h) can e writben as [ollows:

o) L { plhjb, s[r(h,s,h) +yua(h)] + p(1[h, s)[r(h, 8, 1) + ()], }

plbll, @) r{h, w. k) + v (b)] + p{2fh.w)[r (b w, 1) + yv.(1)]
N arfrg + i (h)] + (1 — aehlry + i (1]],
oo { 1[re + e (h)] + 0fry + vrai1)) }

- e + Y|ove{h) + (1 — apn (1)),
(TiF { ra + o (h) } .

Following the spme prooeduce for vo{1) vields the eqguation

Hrg — 31 — J) 4+ 7[(1 — Blre(b] + Foa(1)]
rell) = max § o+ vl .
e (h)

For any choice of rg, va, o, 3, and 5, with 0= 5 < 1, 0 < o, 8 < 1, there 1s exactly
one pair of numbers, v, (h) and v.(1), that simultaneously satisfy these two nonlinear
epualions, [ ]

Example 3.12; Solving the Gridworld  Suppose we solve Che Bellman eoquation
for 4, for the simple grid task introdueed in Example 3.8 and shown again in Fig-
ire do8a Recall that state A 8 [ollowed by a resward of +10 and transition Lo stde
A', while state B is followed by a reward of 45 and transition to state B, Figure .80
shiows the optimal value Tunction, and Figare 3.8c shows the corresponding optimal
policies. Where there are multiple arrows in a cell, any of the corresponding actions
is optimal. |
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Figure 3.8; Optimal solotions to the gridworld example,

Explicitly solving ithe Bellman optimality equation provides one route bo Gnding
an optimal policy, and thus o solving the reinforeement learning problem. However,
Lhis solution is rarely directly useful. It s akin (o an exhawstive search, looking ahead
at all possibilities, computing their probabilities of occurrence and their desirabili-
Lies in terms of expected rewards, This solution relies on al least three assumpd ions
that are rarely true in practice: (1) we accurately know the dynamics of the envi-
conment; (2) we have enough computational resourees (o complete the eompputation
of the solution; and () the Markov property. For the kinds of tasks in which we
are iplerested, one §s geperally nob able o implement this solution exactly becaose
various combinations of these assumptions are violated. For example, although the
first s thicd assumptions preseot oo problems foe the game of Tackgammon, the
second is a major impediment. Since the game has about 107 states, it would take
Lhousands of vears on boday's [astest compubers oo solve the Bellman equation Tor
gy el Lhe saume §s Lroe Tor lodiog g, In reinforcement leprning cne Lypically has
Lo settle for approximate solutions.

Moy dilferent decision-making methods can be viewed as wavs of approximaiely
solving the Bellman optimality equation. For example, heuristic search methods can
b viewed as expanding the right-hand side of (3.17) several times, up be some depilh,
forming a “tree” of possibilities, and then using a heuristic evaluation unction Lo
approximate v, al the *leal™ nodes, (Hearistic search methods such as A® are almosi
always based on the episodic case.) The methods of dynamic programming can be
relatesd] even more elosely o the Bellman optimality equation, Many reinforcement
learning methods can be clearly understood as approximately solving the Bellman
oplimality equation, using actual experienced transitions in place of kopowledge of
Lhe expecied transitions, We consider a varely of such methods o the following
chaptors.

Exercise 3.13 Draw or describe the optimal state-value [unction for the goll ex-
amplie,

Exercise 3.14 Draw or describe the contours of the optimal action-value funcition
for putting, g.(s, putter), for the goll example

Exercise 3.15 Give the Bellman equation for g, for the recveling robot.
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Exercize 3,16 Figure 38 gives the oplimal value of the best state of the gridworld
a8 244, vooone decimal place, Use your knowledge of the optimal policy and (3.2) to
express this value symbolically, and then to compute it 1o throo decimal places.

3.9 Optimality and Approximation

We have delined optimal value functions and optimal policies. Clearly, an agent that
leswrns an optimal policy has done veey well, ot in peactice this carely happens, For
the kinds of tasks in which we are interosted, optimal policies can be generated only
with extreme computational cost. A well-delined notion of oplimality organizes the
approach Lo learning we deserilse in this book and provides a oway (o aoderstand the
theoretical propertios of varions learning algorithms, but it is an ideal that agents
can only approximate o varying degrees, As we discussed above, even 0T we have o
complete and accurate model of the environment’s dynamics, it is usually not possible
L imgly compate an oplimal policy by solving the Bellman optimality eguation,
For example, board games such as chess are a tiny fraction of buman experienes, yot
Large, custome-designed compuiers sUll cannol compate the oplimal moves, A eritical
aspect of the problem facing the agent is alwavs the computational power available
Lov Bt i pasrticular, the amount of computation it can pecform in s single Gme step,

The memory available is also an important constraint. A larpe amount of memaory
i5 often required to build up approximations of value lunctions, policies, and models.
In tasks with small, lnite stale sets, i s possible o form these approximations using
arravs or Lables with one entry for ecach state [or state action pair). This we call
Lhee Lebielnr ease, and the corresponding methods we call tabular methods, T many
cases of practical interest, however, there are far more states than could possibly be
eolries in a lable. In these cases the [unctions must be approcimabed, using some
sort of more compact parameterized funetion representation.

Our framing of the reinforeement learming problem foroes us (o selthe for approxi-
mations. However, it also presents us with some unigque opportunities for achieving
usclul approximations.,  For example, in approximating optimal behavior, there may
b many states that Lthe agent laces with such a low probability that selecting subop-
tirnal actions [or them has little impact on the amount of reward the agent receives.
Tesaura’s backgammon player, for cxample, plays with exceplional skill even though
it. might make very bad decisions on board configurations that never occur in games
pgainsl experts, In fct, 16 is possible that TD=Gammon makes badd decisions for a
large [raction of the game's state sel. The on-line nature of reinforcomont learning
makes L possible o approximate oplimal policies in ways that puat more efloct ko
learning to make good decisions lor [requently encountered states, al the expense
of less ellort [or infreguently encountered states, This s one key property that dis-
tingnishes roinforcomeont. learning from other approsches to approximately solving
MDPs.



g0 SUMMARY T
3.10 Summary

Let us summarise the elements of the reinforeement learning problem thatl we have
prosented in this chapier. Beinforcoment learning is about learning from intoraction
how Lo bebave in order o achieve a goal, The reinforcement learning agend and
its environment interact over a sequence of discrete time steps. The specification
of their interface deflines a particolar task: the aclions are the cholees mande Ty the
agent; the slales are the basis for making the choicos; and the rewards are the basis
for evalualing the chioices, Everyihing inside the agent s completely known and
controllable by the agent; evervihing outside is incompletely controllable but may or
ey 0ok be completely known, A podicy i8 a stochastic rale by which the agent selects
actions as a inction of states. The agont’s obhjective is to maximize the amount of
reward it receives over time.

The vedwrn 15 the Dopetion of Iotuee rewards (hal the agent secks o maximize. Tt
has several different definitions depending upon the nature of the task and whether
one wishes Lo diseonnd delaved rewand, The undiscounted Tormualation is appeopeiate
for episodic fasks, in which the agent-environment interaction breaks naturally into
episodes; the discounted formulation is approprisate for condinsing tasks, in which the
interaction does not naturally break into episodes bul continwes without limit.

An eovironment satisiics the Markov propeety i ils stale sigoal compactly sum-
marizes the past without degrading the ability to predict the future. This is rarely
exactly troe, but often pearly soq the state signal should be chosen or constructed so
that the Markov property holds as nearly as possible. In this book we assome that
thiz has already been done and focus on the decision-making problem: how to decide
what 1o do as a looction of whatever state signal is available, I0ihe Markoy property
does hold, then the environment is called a Markev decision process (MDP). A finite
MDF is an MDD with linite state and action sels, Most of the eurvent theory of
reinforcoment learning is restricted to finite MDPs, but the methods and ideas apply
e generally,

A policy’s value funclions assign Lo each state, or state action pair, the expected
ceturn from that stale, or stade action padr, given that the agent wses the policy, The
aplital value furclions assign Lo each state, or stale-action pair, the largest expected
return achiovalle by any policy, A policy whose value [unctions are optimal 8 an
aplitnad podicy, Whereas (he optimal value Tunctions for stales and stale action paics
are unique for a given MDP, there can be many oplimal policies. Any policy that
i5 greedy with respect o the oplimal value inctions must be an optimal policy,
The Bellman epiimalily equations are special consistency condition that the optimal
walue Munetions must satislv and thal can, in principle, be solved for the oplimal
value functions, from which an optimal policy can be determined with relative case.

A reinforcement learning problem can be posed in a variedy of dillerent ways de-
pending on assumptions about the level of knowledge initially available 1o the agent.
In prablems of complele EBnowledge, the agent bas o compleie and accurate mode]
of the onvironment's dynamics. IF the environment s an MDP, then such a model
consists of the one-step ransition probabiities and expecled rewands for all states and
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Lheir allowable actions, In problems of incomepdele Bnowledge, a complete and peciee
maklel of the envircnment is nol available,

Even if the agent has a complete and accurate environment model, the agent is
Ly prically unalde (o perform epough computation per time step b Dolly wse i, The
memory avallable s also an important constraint. Memory may be required to baild
up accurale approximations of valoe lunctions, policies, and models, In most cases of
practical interest there are far more states than could possibly be entries in a table,
and approximations most be made,

A well-defined notion of optimality organizes the approach to learning we describe
in this book aml provides a way o anderstand the theoretical properties of varions
learning algorithms, but it i5 an ideal that reinforcement. learning agents can only ap-
prosimate b varying degrees, In reinforeement learning we are very much coneerned
with cases in which optimal solutions cannot De found utl must be approgimated in
HOHTIE WY,

Bibliographical and Historical Remarks

The reinforcement learning problem is deeply indebied to the idea of Markov decision
processes ( MDP2) [rom the Teld of optimal control, These historical influeonces and
other major influcnces [rom psychology ame described in the briel istory given in
Chapter 1. Reinforcement learning adds to MDP: a focus on approximation and
incomplete information for realistically large problems. MDPs and the reinforoement
learning problem are only weakly linked to traditional learning and decision-making
problems in arilicial ntelligence. Howesver, artificial intelligence s now vigorously
exploring MDFP formulations for planning and decision-making from a variety of
perspectives, MDP: are more general than previous formulations wsed o actificial
intelligenee in that they permit more general kinds of goals and uneertainty.

Or presentation of Lhe relnforcement learning problem was influcpced by Walkins
(1084).

3.1 The bioreactor example s based on the work of Ungar (1990) and Miller
and Williams {10%2). The recyeling robot example was inspired by the can-
collecting robob built by Jonathan Connel] {19849,

3.3-4 The terminology of epizodic and continuing tasks is difforent from that uso-
ally used in the MDD literature, In that literatoee it is eommen o distinguish
three types of tasks: (1) finite-horizon tasks, in which interaction terminates
aller o pacticular ficed number of Gme steps; (2) indeliniie-horison 1asks,
in which interaction can last arbitrarily long but must eventually terminate;
and (3) infinite-horizon tasks, in which interaction does pol terminate, Char
epissdic and continuing tasks are similar to indelinite-horizon and infinite-
horizon tasks, respectively, bul we prefer 1o cmphiasize the differenes o the
pature of the interaction. This difference seems more lundamental than the
difference in the objective functions emphasized by the usual terms. (Mien
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epismlic tasks use an indelinite-horizon objective Tunction aond conbining
Lasks an infinite-horison objective Tunction, Tl we see this as o comomon
coincidence rather than a lundamental difference.

The pole-balancing example is from Michie and Chambers (1965) and Barto,
Sutton, amnd Anderson [(1983),

For Turther discussion of the conoepd of stabe, see Minsky (1967),

The theory of MDPs is treated by, ez, Bertsekas (2005), Boss (1953), White
[19659), and Whittle { 1952, 1983), Thiz theory s also stwdied under 1he ead-
ing of stochastic optimal control, where adaplive optimal control methods are
st elosely relpted Lo reinforoement learning (e.g,, Kumar, 195%; Kuamar and
Varaiya, 1986).

The theory of MDPs evolved Trom ellorts to anderstand the problem of mak-
ing sequences of decisions under uncertainty, where each decision can depend
on the previous decisions and their ouleomes, T i sometimes called (e
theory of multistage decision processes, or sequential decision processes, and
has rootg in the statistical lerature on sequential sampling beginning with
the papers by Thompson (1933, 1934) and Bobbins {1952) that we cited in

Chapier 2 in connection with bapdit problems {which are protolypical MDIPs
il formulated as multiple-situation problems).

The earliest instance of which we are aware In which reinforcement learning
was discussed using the MDP formalizm is Andreac’s [1369h) deseription of
aounilied view of learning machines, Witten and Corbin (1973) experimented
with a reinforcement. learning svstem later analysed by Witten [1977) using
Lhee MDD formalizm, Although he did ool explicicly mention MDPs, Werbos
(1077) sugeresied approximate solution mothods for stochastic optimal control
problems that are related to modern reinforcement learning methods (see
alsn Werbwos, 1982, 1987, 1958, 198%, 1992). Although Werbos's dens were
not widely recopnized at the time, they wore prosciont in emphasizing the
importance of approximately solving oplimal conbiol problems ina vaciely of
domains, including artificial intelligence. The most influential integration of
reinforeement learming and MDPs is doe to Watkins (19895, His treatment of
reinforcoment. learning using the MDF formalism has heen widely adopiod.

Our characterization of the dynamies of an MDP in terms of p{s’, r|s, a)
is slightly wmesual. I s more common in the MDP literature to describe
the dynamics in terms of the state transition probabilitics pls'|s, ) and ex-
pocted noxt rowards rs a). In reinforcement learning, however, wo more
often have 1o refer to individual actual or sample rewards {rather than just
Lheir expected values). Our notation also makes it plainer that 5, and B
are n general jointly determined, and thas most bhave the same time index,
In toaching reinforcomeont. learning, wo have found our notation to be more
straightforward conceptually and easier to understand.
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3.7-8B  Assigning value on Lhe Basis of what is good or bad o the long run has ancient
rowds, Inoeonbrol theory, mapping states (o momerical values repeesenting (he
long-term consequences of control decisions is a key part of optimal control
Lheory, which was developed in the 19508 by extemding ninetecnth centary
state-function theories of classical mechanics (see, g, Schultz and Melsa,
196T) In descriling how a computer could be programmes] 1o play chess,
Shannon [ 1950 suggested using an evaluation lunction that took into account
Lhe long-term advantages and dissdvaniages of chess positions,

Whalkins's (1989) O-learning algorithm for estimating g (Chapler 6) made
action-value lunctions an important part of reinforcement learning, and con-
sequently these Dupctions are often called Q-functions, Bul the dea of an
action-value function is muech older than this. Shannon {1950) suggested
that a lunction k(P M) could be used by a chess-playing program to decide
whether a move M o position P s worlh explocing, Michie's (1961, 1963)
MENACE svstem and Michie and Chambers's (18] BOXES system can be
udersiood as estimating action-value inctions, In classical phyvsics, Hamil-
ton's principal lunction iz an action-value unction; Newtonian dynamics are
grecdy with respect Lo this Tunction [eg., Goldstein, 1957, Actiop-valoe
functions also plaved a central role in Denardo’s (196G7) theoretical treatment
of DI in terms of contraction mappings,

What we call the Bellman equation for o, was irst introdoced by Richard
Bellman (1957a), who ealled it the “basic functional equation.” The coun-
terpart of the Bellman oplimality equation for continuous time and state
problems 5 koown as the Hamilton-Jacobi- Bellman equation (or aften jusi
the Hamilton Jacobi equation), indicating its roots in classical physics (o,
Sclualiz and Melsa, 1967,

The goll example was suggesied by Chris Wadkins,



Chapter 4

Dynamic Programming

The terme dyoaumic progeamuming (D) refers o a collection of algoritlums thal can
be used to compute optimal policies given a perfect model of the environment as
a Markow decizsion process (MDIP), Classical DP algorithms are of limited atility
in reinforcement learning both becaase of their assumplion of a perfect model and
becanse of their greal computational expense, but they are still important. theoret-
ieallyv, DIF provides an essential foundation [or the anderstanding of the methiods
prosonted in the rest of this book. In fact, all of those methods can be viewod as
pllempls Lo achieve much the same elfect as DP, ooly with less computation and
withoul assuming & perfect model of the environment.

Starting with this chapber, we wsually assume that the eovironment §s & lnite
BMDP. That is, we assume that its stabe, action, and reward sets, 8, Als), and &, for
& € 8, are finite, and that its dynamics are given by a set of probabilities p{s’, r|s, a),
foralls € 8. a0 cA(s). r € R, and 5 £ 8" (8" is & plus a terminal state if the problem
i5 episodic), Although DI kleas can be applied 1o problems with continuous stale
and action spaces, exact solutions are possible only in special cases, A common way
of olaining approximate solutions for tasks with continuows stabes and actions s Lo
quantize the state and action spaces and then apply linite-gstate DP methods, The
methods we explore in Chapier 9 are applicable to continuous problems and are a
signilicant extension of that approach,

The key idea of DP, and of reinforcement learning generally, is the use of value
Manctions Lo organize and stouctare the search for gomd policies, In this chapber we
show how DP can be used to compute the value functions defined in Chapter 3. As
discussed there, we can easily obiain opiimal policies onee we have fownd e opiimal
value lunctions, ¢, or q,. which satisly the Bellman optimality equations:

nda) = maxE[Rgg + voa(S) | Si=a, Ay =al
= rlla.th'.h[.ﬁ":r|ﬁ:a:l|-1"+"rt.-_[s.:’]l (1.1)

(i
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ar
(s.0) = E[Rips 4 ymacan(Sin.a’) | Si=s A=al
— Zp[.ﬁ‘:r|fs:a][r+*rnlz]xq.{.u',n"]], (1.2)
=

for all s € &, a = A(s), and & € 87, As we shall see, DP algorithms are olidained by
turning Bellman equations such as these into assignments, that is, into update rules
for improving approximations of the desived value Tunctions,

4.1  Policy Evaluation
First we consider how Lo compute the state-value unction v for an arbiteary policy

w. This i5 called policy evalualion in the DP literature. We also reler fo it as the
prediction probles. Rocall from Chapler 3 that, for all = € 8,

I-‘:r|::l‘i:| = E'.I'[H«-|+| +FI'RH_3 +TEHI+3+”' | Hr=.‘|]

= Ex|Rep1 + 70el{S41) | St=14] (4.3)
= 3" wlals) 3wl rls.a) v+ gl (4.4)
i@ &

where w{a|s) ig the probability of taking action e in state 5 under policy =, and the
expectations are subseripted by 7 to indicate that they are conditional on 7 being
[ollowed, The exiztence and unigueness of vy are guarantesd as long as cither 5 < 1
or eventual termination & puarantecd from all states under the policy 7.

IT the: environment’s dynamics are completely known, then (4.4) 18 a system of |8
simultaneous linear equations in (8] unknowns (the vg(z), # € &). In principle, its
alution g a steaightlorward, i tediows, computation. For our purposes, ileralive
solution methods are most suitable. Consider a sequence of approximate value lune-
Lions . ¢, 9, . . . each mapping 8' to B. The initial approximation, v, is chosen
arbitrarily (exeepl that the terminal state, i§ any, mest be given value 0}, and each
sucoessive approximation is obtained by using the Bellman equation for v, (3.12) as
an update rule;

vgp1ls) = Ee|Regr +yvelSipa) | Se=s
= ZJT[MA]Z;H[H',PLH,H}[T+’:-i|:g,[3"]], i(1.5)

for all = € &, Clearly, vy, = 5 i5 a fixed point for this update rule becanse the Bellman
equation for vy assures us of equality in this case, Imndesd, the sequence {o} can
bo shown in general to converge to o, as & — o0 under the same conditions that
guaranies the existence of v, This algorithm s called deralive policy eoaliation,

To produce each successive approximation, vy, from vy, iterative policy evalua-
tion applies the same operation to each state 20 it replaces the old value of 5 with &
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new waloe obitained from the old values of the suceessor states of £, and the expected
nemelinte rewards, along all the ope-step transitions possilde aoder Che policy being
evaluated. We call this kind of operation a fiwll backup. Each iteration of iterative
policy evaluation backs wp the value of every slale once to prodoce the new approxi-
mate value linetion vy . There are several different kinds of full backups, depending
on whether a stabe (as here) or o stade action padr is being backed wp, aod depending
on the precise way the estimated values of the sueeessor states are combined. All the
backups done in D algorithms are called full hackups because they are based on all
possible next states rather than on a sample next state. The nature of a backup can
b expressed o an equation, as above, or inoa backap disgram like those inirodoeed
in Chapter 3. For example, Figure 3.4a is the backup diagram corresponding to the
full backup nsed in iterative policy ovalustion.

To write a seouential compuber program (o implement ilerative policy evalualion,
as miven by (4.5), you would have to use two arrays, one for the old valoes, ve(s),
and one for the opew valiues, vgppls). This way, the pew values can be computed
one by one from the old values without the old values being changed. O course it
i5 easter to use one arcay and apdate the values “in place,” that s, with each new
backed-up value immediately overwriting tho old one. Then, dopending on the ordor
in which the states are backed up, sometimes new values are used instead of old ones
on the right-hand side of {1.5). This slightly different algorithm also converges to vy
in [act, it usually converges Bster than the two-array version, a8 vou might expect,
gince it uses new data as soon as they are available. We think of the backups as
being done in a sweep through the state space. For the in-place algorithm, the order
in which states are backed up during the sweep bas a sigoilicant influemce on the rade
of convergence. We usually have the in-place version in mind when we think of DP
algorithms.

Ancther implementation point concerns the termination of the algorithm, For-
mally, iberative policy evaluation copverges only in the limit, bt in practice it mosi
be halted short of this. A ivpical stopping condition lor iterative policy evaluation is
Lo tesst the quantity max.cs |y (5) — el s]| alter each sweep and stop when it is sul-

Input 7, the policy 1o be evaluated
Initialize an array V(s) =0, for all 5 = §%
Ropeat
Fag o |
For cach = = &:
w4+ Va)
Vis)+ X, wlals) T, ple, rls,a)[r + 4V (s")]
A +— max(d, v — V(s)])
until A < # (A small positive number)
Oitpuatl Vo= oy

Figure 4.1; Iterative policy evaluation
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[iciently small, Figure 4.1 gives a complete algorithm for erative policy evaluation
with this stopping criterion,

Example 4.1 Consider the 4= 4 gridworld shown below.

1 2 3

a s |8 |7 R=-
on all transitions

a Ja |0

BCllons
12 i3 i+

The nonterminal stabes are § = {1,2,..., 14}, There are four actions possible in each
atate, A = {up, down, right, left}, which deterministically canse the corresponding
slale transitions, except that actions thal would take the agent off the grid in T
leawe the state unchanged. Thus, for instance, p(6, -1 | b, right) = 1, p(7, -1 |
T,right) = 1, and p(llh+ | 5, right) = 0 [or all » € & This 5 an andiscounted,
epismlic task, The rewand 5 —1 on all transitions aotil e terminad stale is reached,
The terminal state is shaded in the figure (although it is shown in two places, it is
formally one state), The expected reward Tunction is thus r(s, e, 5 = —1 [or all
atates s, 5" and actions a. Suppose the agent follows the equiprobable random policy
(all actions equally likely ], The et side of Figuee 4.2 shows the segquence of valoe
functions {vy, } computed by iterative policy evaluation. The final estimate is in fact
i, which in this case gives or each state the pegation of the expecte] number of
stops [rom that stabe until termination. [ |

Exercize 4.1 In Example 4.1, il « 8 the equiprobable random policy, whatl s
gl L1, down)? What s g5 (7, down)?

Exercise 4.2 In Example 1.1, suppose a new state 15 is added 1o the gridwsorld
just below state 13, amd its actions, left, up, right, amd down, take (he ageonl Lo
states 12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged, What, then, is vg{15) lor the equiprobalde random policy?
Mow suppose the dynamics of state 13 are also changed, such that action down from
abate 13 takes the agent (o the pew state 15,0 What s vg{15) for the equiprobalde
random policy in this case?

Exeorcise 4.3 What are the cquations analogous to (4.3}, (4.4), and {4.5) for the
action-value lunction gp and i3 sucosssive approximadion by a sequence of Dopetions
Go.q1. g2, - 7

Exercize 4.4 In some undiseounte] episodic tasks there may e policies for which
eventual termination is nol guarantesd. For example, in the grid problem above it is
possible boogo back and Torth between iwo states forever, In a task that is olherwise
perfectly sensible, vo{s) mav be negative infinity for some policies and states, in
which case the algorithm for erative policy evaluation given in Figure 4.0 will not
terminate. As a purely practical maiter, how might we amend this algorithm to as-
aure bermination even in this caze? Assume that eventual termination is puaranteed
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Vg for the Greedy Policy
Random Policy wrt Vg
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Figure 4.2: Convergence of iterative policy evaluation on a small gridworld. The left eolimn
5 the sequence of approsimations of the state-value function for the random policy (all
actiong equal). The right column B the soquence of greedy policies cormesponding to the
value function estimates (arrows are shown for sl actions achieving the maximom ], The Last
palicy s guarantesd only to be an improvement over the rendom policy, bat in this case it,
and sl policies after the third iteration, are optimal,
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wider the optimal policy.

4.2  Policy Improvement

Cur reason for computing the value hinction for a policy is o help find better policies.
Suppose we have determined the value Tunction o for an arbdbeary delerministie
policy 7, For some state s we wonuld like o kpow whether or not we should change
the policy to deterministically choose an action a # m(z). ' We know how good it s Lo
[opdlow the current policy [rom s that §s vels) bul would it be betler or worse Lo
change to the new policy? One way Lo answer this question is bo consider selecting o
in & and therealler following the existing policy, 7. The value of this way of behaving
is

gr(8.0) = EdRep1 +00(Se1) | Se=45, Ar=a] (41.6)
= Zp{x", s, a) ['r' + -rTJ,.,[H"]].

The key eriterion is whother this is groater than or less than v, {s). If it is groster

Lhat is, 00 00 15 better oo seleet o onee o s and (herealler Tollow & than it would be
Lo follow 7 all the time — then ope would expect it to be better still to select a every
Limme & 5 encounbered, amd that the new policy would in et be a betber one overall,

That this is true is a special case of a general result called the policy improvemmend
theorem. Let ® and 7' be any pair of deterministic policies such that, for all s € §,

arlm 7' (5)) = vals). (47)

Then the policy = must be as good as, or better than, =, That is, it must olitain
greater or equal expected return from all states 2 € 8:

e[ 8) = wg(8), (1.8)

borcover, if there is strict inequality of (4.7} at any state, then there must be strict
inepuality of (48] al al least one stale,  This result applics o particalar o the
two policies that we considered in the previous paragraph, an original deterministic
policy, 7, and a changed policy, 7', that is identical to 7 excepl that 7'(s) = a # 7(s).
Obwiously, (1.7} holds at all states other than s, Thus, if g.(s. a) > v.(2), then the
changed policy s indesd] Detter than .

The idea behind the proof of the policy improvement theorem s casy o under-
stand. Starting from [4.T), we keep expanding the g; side and reapplying (4.7 until
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wi gel drpe[5):

ve(8) = qgls7'(s))
= Enf Ry + 0. (5i40) | 5=+
< Ep[Rigr + 102 (Sep0. 7 (Se51)) | Se=4]
= Ep|Riy) +1Ex| Rz + v, (8a)] | =4
= E-.r"[RII'I.‘l"I'HLI:! + 9 vt Sep2) 5e=-‘$]
< Ex[Ris1 + 1Rivz + VP Rigs + Ve Siis) | Si=4]
= E-.l"'[R!|1+THLI!!+"I‘2H1|:++"I"HH1|-1+"'|SJ.=-'5]

e8]

S0 far we have seen how, given a policy and its value function, we can easily
evaluabe a change in the policy al a single state 1o a particular action, I s a netacal
extension Lo consider changes al all stales and (o ell possible actions, sclecling al
each state the action that appears best aceording to gr(2 0], In other words, Lo
consider the new greedy policy, 7, given by

(5] = argmaxgqg(s,a)

= argmaxE[Ry g + 1S ) | Si=5,4,=a] (1.9)
Lo}

= ArZax Z pis’ rls, a) [r + f:r:r,.{.u':l] .

where argmax, dencles the value of o al which the expression that follows s max-
imizedd (with ties broken arbitrarily). The greedy policy takes the action that looks
best i the shorl term—afler one step of lookaliead —according bo ve. By constrice-
tion, the greedy policy meets Lhe conditions of the policy improvement theorom (4.7),
s we kpow (hat it 2 as good as, or betber than, the origing policy, The process of
making a new policy thal improves on an onginal policy, by making it greedy with
respect to the value function of the original policy, s called palicy smprovemend.

Suppose the new greedy policy, 7', i a8 good as, bul not better than, the old
policy 7. Thon vy = v, and from (4.9) it follows that for all 2 € &:

ree(s) = IZIZI.;:IJ’-E'RJ r1+ T {Sega) | Si=8, Ar=a]

— L. . f
= max .Z: pls’ v s, a) [r + g [ & }] .
a.r

But this is the same as the Bellman optimality equation (4.1), and therefore, o must
b w,, and both 7 and 7' must be optimal policies. Policy improvement thus must
give us a steictly betier policy excepl when the original policy is already opiimal.
5o far in this section wo have considercd tho special case of detorministic policios.
In the general case, a stochastic policy 7 specifies probabilities, wia|s), for taking
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each action, o, in cach stade, 5, We will not go through the details, bat in et
all the ideas of this section extend easily to stochastic policies, Ino particolar, the
policy improvement. theorem carries through as stated for the stochastic case. In
addition, il there are Lies in policy improvement steps such as (4.9) - that is, il there
are several actions at which the maximum is achieved — then in the stochastic case we
need not select & single action from among them. Instesd, each maximizing action
can be given a portion of the probability of being selected in the new greedy policy.
Any apportioning scheme i3 allowed as long as all submaximal actions are given sero
probability.

The last row of Figure 4.2 shows an example of policy improvement for stochasiie
policies. Here the original policy, 7, is the equiprobable random policy, and the
new prlicy, 7, 5 gresdy with respect (0 e, The value Tunction vy is shown in (he
bottom-left dingram and the set of possible o s shown in e bottome-right disgram.,
The states with multiple arrows in the #° diagram are those in which several actions
achieve the maximom in (1.9); any apportionment of probabilily among these actions
is permitted. The value function of any such policy, v (8), can be seen by inspection
Lo be either —1, —2, or —3 al all stales, 5 € &, whereas vels) 8 al most — 14, Ths,
ter[z) = w.lz), or all & £ &, illustrating policy improvement.  Although in this
cage the new policy 7° happens o be opiimal, In general only an improvement is
guaranteed.

4.3 Policy Iteration

Onee a policy, 7, has been improved using v to vield a better policy, =°, we can then
compuie v amd improve it again to vield an even better 7. We can thus obtain a
sequence of monotonically improving policies and value [unctions:

E i E i E I E
Ty —F Uy, —F T —F Uiy —F Wy —F ~ - — T —F iy,

where ——+ denotes a policy evaluation and —— denotes a policy improvement. Each
policy is guarantess] Lo be a strict improvement. over the previous one (unless i s
already optimal). Becawse a finite MDP has only a finite number of policies, this
process mush converge Looan eplimal policy aod oplimal valoe Tooetion o oa loite
b of iberatioons,

This way of finding an optimal policy is called policy dleration. A complete al-
gorithm is given in Figure 4.3, Note that esch policy evaluation, itsell an iterabive
computation, is started with the value function for the provions policy. This fyp-
ieally resulis o a greal incresse in the spead of convergenee of paolicy evalualion
(presumably becanse the value function changes little from one policy to the next).

Policy iberation olten converges in surprisingly few iterations, This is ilustrated by
the example in Figure 4.2, The bottom-left diagram shows the value lnction for the
eopuiprabable random policy, and the Tt tom-right disgram shows a greedy policy Tor
this value function. The policy improvement theorom assures us that these policios
are better than the original random policy. In this case, however, these policies
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L. Initialization
V(2) € K and 7(&) € A{s) arhitrarily for all 2 € &

2, Policy Evaluation
Repeat
&1
For each & £ &:
v+ Vis)
Vi(s) e 3 ol rls mls)) [r 4+ 4V (#7]
A+ max(A, o — V(s)|)
until & < # (A small positive number)

4. Policy Improvement
perlicy-stable +— Lrue
For cach = € &:
o+ w{ %)
m(#) +— argmax, 3 ple’ r|a,a)[r+ V("]
Il e = wis), then policy-stable +— false
Il policy-stable, then stop and return Voand =7 else go to 2

Figure 4.3 Policy iteration {using iterative policy evaluation) for v, This algorithm has &
anbtle bug, in that it may never terminate if the policy continually switches between two or
more podicies that are equally good. The buog can be Bxed by adding additional Sags, bat it
makes the pacudocede so wgly that it s not worth 1L,

are pob just better, bul oplimal, procesding (o the terminal states o the minimom
number of steps. In this example, policy iteration would find the optimal policy alter
Just one iersdion,

Example 4.2: Jack’s Car Rental  Jack manages two locations for a pationwide
car rental company. Each day, some number of customers arrive al each location
b renl cars, 1T Jack has a car available, he rents it out and is credited $10 by the
national company. If he is out of cars at that location, thon the business is lost.
Cars become avadlable Tor renting the day alter they are returped. To help ensoane
Lhiatl cars are available where they are necded, Jack can move them between Che two
locations overnight, at a oost of 32 por car moved. We assume that the nomber of
cars regquested and returped sl each location are Poisson random variables, meaning
that the probability that the oumber is « is %E A where A is the expected number.
Suppose A s 3 and 4 for rental reguests ab the fest aod secomd lTocations aod 3 and 2
for returns. To simplily the problem slightly, we assume that there can be no more
than 20 cars al each location [any additional cars are returned o the pationwide
company, and thus disappear from the problem) and a maximum of five cars can
b mmowesd Troan ooe lovation (o the other in ooe night, We take the discount rade
bor b v = (L9 and formulate this as a continming finite MDP, whore the time stops

are days, the state is the number of cars at each location at the end of the day, and
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Figure 4.4 The sequence of policies found by policy iteration on Jack's car rental problem,
and the final state-value function. The first five disgrams show, for cach number of cars at
each location at the end of the day, the number of cars to be moved from the first loeation
tes the seoond (negative nmbsees Indieate teanasfers from the second location to the fisst].
Each sucerssive policy 15 a strict mproversent. over the previous poliey, and the last polley
is aptinoal.

the actions are the net numbers of cars moved between the two locations overnight.
Figure 4.4 shows the sequence of policies found by poliey iteration starting from the
policy thal never moves any cars, u

Exercise 4.5 (programming) Write a program for policy iteration and re-solve
Jack’s ear rental problem with the Bllowing changes, Ohoee of Jack™s emplovecs ab the
first loeation rides a bus home each night and lives pear the second location. She
i5 happy Lo shuttle one car o the second lecation [or [ree, Each additional car still
costs 82, as do all cars moved in the other direction. In addition, Jack has limited
parking space al each location, 1T more than 1 cars ace kept overnight al o location
(aler any moving of carsg), then an additional cost of 4 must be incarred 1o use
a second parking ot [(independent of how many cars are kept there). These soris
of ponlinearities and arbitrary dyvoamics often oocar in real problems and cannot
easily e handled by optimization methods other than dynamic programming. To
chieck vour progeam, liest replicate the resulits given for the original problem, IT vour
computer is oo slow for the full problem, cut all the numbers of cars in hall,

Exercize 4.6 How would policy leration be delioed for action salues?  Give a
complete algorithm for computing q,. analogows 1o Figure 4.3 for computing .
Please pay special attention (o this exercise, because the ideas involved will be used
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Lhroughout the rest of the book,

Exercize 4.7 Suppose you are restricted 1o considering only policies that are e-saff,
meaning that the probability of selecting cach action in cach state, s, is at least
e/[A{8)]. Describe qualitatively the changes thal would be required in each of the
atops 3, 2, and 1, in that order, of the policy iteration algorithm for o, (Figure 4.3).

4.4  Value Iteration

Onpe deawback to policy eration is that each of s ilerations involves policy eval-
uation, which may itsell be a protracted iterative computation requiring multiple
sweeps through the state sei. I policy evaluation is done iteratively, then conver-
genee exactly Woovy oceurs only in the lmit, Must we wall for exact convergenee,
or can we stop short of that? The example in Figure 4.2 certainly suggesis that it
may be possible to truncate policy evaloation, Tn that example, policy evalualion
iterations beyond the first three have no effect on the corresponding groedy policy.

In fact, the policy evaluation step of policy leration can e truneated in several
ways without losing the convergonoe guarantess of policy iteration. One important
special case s when policy evaluadion is stopped aller just one sweep (one backup
of each state). This algorithm is called value steration. [t can be written as a
particularly simple backup operation that combines the policy improvement and
Lruneabed policy evalualion steps;

mala) = |1:|rz|1_'u'.E[R,a+] + e[ Sis1) | Sp=5, Ay=aq] (4.10)

= |:|:|:1_1'_Zp|f#’: r|s,a) [-r + ’rﬂi{.u')] :
=

for all s € 8 For arbitrary vy, the sequence {op} can be shown Lo converge Lo i,
under the same conditions that guarantee the existence of v,.

Anciher way of upderstanding valwe ieration i by reference Lo the Bellman op-
timality equation (4.1). Note that value iteration is obtained simply by turning the
Bellman optimality equation intbo an apdate e, Also node bow e value iteration
backup is kentical to the policy evaluation backup (4.5) excepl that 0 peguires the
maximum to be taken over all actions. Apother way of secing this close relation-
ship 15 to compare the backup disgrams for these algoritloms: Figore 3,40 shows the
backup diagram for policy evaluation and Figure 3.7a shows the backup diagram for
wialue ileration, These two are the natural backup operations or computing oy and
Uy

Finally, let us consider how value eration terminates, Like policy evaluation,
value iteration formally requires an infinite number of iterations Lo converge exactly
L . In practies, we stop onee the value Tuoction changes by only a small amaoant
in a swoop. Figure 4.5 gives a completo value iteration algorithm with this kind of
Lermination condition.
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Initialize arvay V' oarbitrarily (e, Vi) =0 [or all 5 € 81)

Repeat
A+—D
For each s & &:
o Vis)
Vis) « masx, 3, pls', rls,a) [-r + ’rl’{#’]]
A max(A, v — F(a)])
unbil & < & {a small positive oumber)

Output & deterministic policy, 7, such that
mis) = argmax, 3 ple’ s a)[r+ 4V is)]

Figure 4.5 Value iteration.

Value ierption ellectively combdines, in each of s sweeps, one sweep of policy
evaluation and one sweep of policy improvement. Faster convergenee is often achioved
by interposing multiple policy evaluastion sweeps between each policy Tmpeovement
aweep. In peneral, the entire class of truncated policy iteration alporithms can be
Lhought of as sequences of sweeps, some of which wse policy evaluation backups and
soane of which wse value iteration backups, Sinee the max operation in (4,107 is the
only difference betweon these backups, this just meoans that the max opeoration is
added 1o some sweeps of policy evaluation, All of these algorithms converge Lo an
optimal policy for discounted finite MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportanity (o make bels
on the outcomes of a sequence of eoin Hips. IF the coin comes up heads, he wins as
many dollars as he has staked on that flip; if it is tails, he loses his stake. The game
ends when the gambler wins by reaching his goal of $100, or loses by running oul of
money. On each flip, the gambler must decide what portion of his capital to stake,
in integer pumbsers of dollars, This problem can be formulated az an undiscounied,
episodic, finite MDP. The state is the gambler's capital, s € {1,2, ... 99} and the
actions are stakes, o € {0, 1,...,min{s, 100—25)}. The reward 15 zero on all transitions
excopt those on which the gambler reaches his goal, when it s +1. The state-value
Manction then gives the probabdity of winoing [rom each stade, A policy s & mapping
from levels of capital to stakes. The optimal policy maximizes the probability of
reachimg the goal, Let oy, denote the probability of Che ooin coming ap heads. 1T g,
i5 known, then the entire proldem i3 koown and it can be solved, Tor nstance, by
value iteration. Figure 4.6 shows the change in the value lunction over suceessive
swerps of value iteration, and the lnal policy Tound, Tor the case of gy, = 004, This
policy is optimal, but not unigue. In faet, there is & whole family of optimal policios,
all corresponding to ties for the argmax action selection with respect 1o the oplimal
value function. Can vou guess what the entire family looks like? [ ]

Exercise 4.8 Why does the oplimal policy for the gambler’s problem have such a
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Figure 4.6: The solution to the gambler’s problem for py, = 4. The upper graph shows
tlae value function found by suceessive sweeps of value eratkon. The lower geaph shows the
final paolicy.

curious form? In particular, for capital of 50 it bets it all on one fip, but for capital
of 51 it does not, Why s this a good policy?

Exercize 4.9 (programming) Implement value iberation for the gamblers proldem
and solve it for py, = 0.25 and py, = 055, In programming, vou may find it convenient
Lo ot roeduee two dumimy states corresponding o lerminalion with capital of O and
LK), giving them values of 0 and 1 respoctively. Show vour rosults graphically, as in
Figure 4.6, Are vour resulls stable as 8 — 07

Exercize 4.10 What is the analog of the salue eration backup (410} for action
values, giy1 (s, a)?

4.5  Asynchronous Dynamic Programming

A major drawback to the DF methods that we have discussed so far s that they
ivolve operations over Lhe entive state sl of the MDP, that is, they reguice sweeps
of the state set. I the state set is very large, then even a single sweep can be
prohibitively expensive. For example, the game of backgammon has over 1027 siaies,
Even if we could porform the value iteration backup on a million states por second,
it would take over a thousand vears to complele a single sweep.
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Asgnelvonows DI algorithms are in-place ilecative DP algorithms that are not
organized in terms of systematic sweeps of the state sel, These algorithms Tack ap
the values of states in any onder whatsoever, using whatever values of other states
happen o be available, The values of some states may be backed ap several Gmes
before the values of others are backed up once. To converge correctly, however, an
asynchronous algorithm most continne o backup the values of all the states: 0 can’
irnore any state after some point in the computation. Asyvochronous DP algorithms
allow greal lexibility in selecting states o which backup operations are applicd.

For examplo, one version of asynchronous value iteration backs up the value, in
place, of only one stale, s, on each step, &, using the vadue iteration backop (4107,
IF 0 < = 1, asymplotic convergence to ¢, is guaranteed given only that all states
oceur i the sequence {5} an infinite nomber of times (the sequence could even be
siochastic], [(In the andiscounie] episodic case, il g possible that there are some
orderings of backups that do not result in convergence, but it s relatively easy Lo
avoid these, ) Similacly, it i possible (o intermix policy evalustion and valwe ileration
backups to produce a kind of asynchronous truncated policy iteration. Although the
details of this and other more wooseal DEP algorithms are beyond the scope of Chis
book, it is clear that a few different backups form building blocks that can be used
[lexildy in o wide varicly of sweepless NP algorithms,

O course, avoiding sweeps does not necessarily mean that we can pel away with
less computbation. I just means thal an algocithm docs pob peed o ged Jocked inboe
any hopelessly long sweep belore it can make progress improving a policy. We can try
by take advantage of this Hexibility by solecting the states to which we apply backups
a0 a8 1o improve the algorithm's rate of progress, We can try 1o order the backups Lo
let walue information propagate [rom state o state in an efficient way., Some states
may ol necd their values backed ap as often as olhers, We might even tey o skip
backing up some states entirely if they are not relevant to optimal bohavior. Some
ileas for doing this are dizcussed in Chapler 5.

Asvnchronous algorithms also make it easicr to intermix computation with real-
Ll interaction, To solve a given MDP, we can run an ibeeative DI algocithm of the
game lime thal an agend is aclually erperiencing the MDP, The agent’s experience
can be used Lo determine the states to which the D algorithm applies its backups,
Al the same Cime, the latest value and policy information om the DF algorithm
can guide the agent's decision-making. For example, we can apply backups to states
a8 Lhe agent visits them, This makes it possible o focus the D algorithm's backaps
onto parts of the state sot that are most relevant 1o the agent. This kind of Tocusing
i5 & repeated theme in reinforeement learning,

4.6 Generalized Policy lteration

Policy iteration consisls of two simuliancons, inleracting prooesses, one making the
value funetion consistent with the current. policy {policy evaluation), and the othor
making the policy greedy with respect to the enrrent. value function {policy improve-
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ment], In policy iteration, these bwo processes allernate, each completing before the
other begins, but this s ool really pecessacy, Inovalue leration, for example, only
a single iteration of policy evaluation is performed in betweoen each policy improve-
ment, In asvochronous D methods, the evalustion and improvement processes e
interleaved at an even finer grain. In some cases a single state is updated in one
process before returning (o Che other, As long as Toth processes continoe booapslate
all states, the ultimate result is typically the same — convergence to the optimal value
[anction and an oplimal policy,

We use the term generalized policy ileration (GPI) to refer

Lir Lhe general idea of letiing policy evaluation and policy im- evaluation
provement processes interact, independent of the granularity T Vg

and other details of the two processes, Almost all reinforoe-

el lemrning methods are well deseribed as GIPL That s, all T v
have identifiable policies and value functions, with the pol- s graziy ¥

ey always being improved with respect Lo Che value Tunction improvement
and the value function always being driven toward the value .
anction for the policy, as suggested by Che disgram (o the .

right. It is casy to see that if both the evaluation process and .

Lhee mprovement process staldilize, Chal is, oo longer prodoace .

changes, then the value function and policy must be optimal. T ..="“Iﬁl
The wadue Iunction stabilizes only when ib s consistent with

the current policy, and the policy stabilizes only when it is greedy with respect Lo
the current value unction. Thus, both processes stahbilize only when a policy has
been found that iz groedy with respect (o 115 own evaluation lionction, This implics
that the Bellman optimality equation (4.1} holds, and thus that the policy and the
wialue funetion are oplimal.

The evaluation and improvement processes in GPI can be viewod as both compet-
ing and cooperating. They compede in the sense Chat they pull in opposing directions,
hMaking the policy greedy with respect to the value lunction typically makes the value
Munction incorrect for the changed policy, amd making the value Tunction consistent
with the policy typically causes that policy no longer to be greody. In the long ron,
however, these bwo processes interact Lo dind a single joiot solution: Che oplimal valoe
Manction and an optimal policy,

One might also think of the inter-
action between the evaluation and im-
provement processes in G in terms of
bwi counsitraintis or goals — for example,
as two lines in two-dimensional space as
auggested by the disgram o the right,
Although the real geomeiry is much
e compicated than this, the disgram
sugeesis what happens in the real case.
Each process drives the value Tunction
or poliey toward one of the lines repre-

¥y Ma
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senbing a solution (o ope of the bwe goals, The goals interact because the two lines
are not orthogonal, Dreiving divectly toward one goal causes some movement away
from the othor goal. Incvitably, however, the joint process is brought closer 1o the
overall goal of oplimality, The arrows in this disgeasm correspomnd (o the behavior of
policy iteration in that each takes the system all the wav to achieving one of the two
goals completely, In GPT one eould also take smaller, incomplete steps towand each
poal. In cither case, the two processes together achiove the overall goal of optimality
even Lhough neither s atlempling o achieve it directly,

4.7 Efficiency of Dynamic Programming

DT may not be practical [or very large problems, but comparesd with other methods
[or solving MDPs, D methods are actually gquite eflicient, I we ignore a lew tech-
nical details, then the {worst case) time DP methods take to lond an optimal policy
i5 polyoomial in the oumber of states and actions, 15w and & denote the onmber of
states and actions, this means that a DP method takes a number of computational
opersplions Lthal is less than seme polvoomial Tunction of ooamd & A DF method
is puaranteed to find an optimal policy in polvnomial time even though the tolal
pombeer of (deterministic) policies s B, In this sense, DI s exponentially faster
than any direct search in policy space could be, becanse direct search wonld have Lo
exbaustively examine ecach policy (o provide the same guaranies. Linear program-
ming methods can alse be wsed (o solve MDPs, and in some cases CDhelr worsi-case
convergenee guarantecs are better than those of DP methods. But linear program-
ming methods ecome impractical at & much smaller onmber of giates than do DP
methods (by a factor of about 100}, For the largest problems, only DP methods are
[ensible,

DP iz somotimes thought to be of limited applicability because of the curse of
dimensionelity, the [et (hat the pumber of stales oflen grows exponentially with
the number of state variables. Large state sets do create difficulties, but these are
inbwerent difliculties of the problem, nol of DI az a solotion method. In Getl, D s
comparatively better suited to handling large state spaces than competing methods
such as direct search and linear progreamming,

In practice, DI methods can be used with beday's eomputers o solve MDPs with
millions of states. Both policy iteration and value ileration are widely used, and it
i5 il elear which, il either, is better in general, In practice, these methods asaally
comverge much fastor than their theoretical worst-case run times, particularly if they
e slarted with good initial value linctions or policies,

Omn probloms with large state spaces, asgmefrenous D methods are often pre-
[erred, To complete even one sweep of a syochronons method reguires computalion
and memory for every state. For some problems, even this much memory and com-
piitation s mpractical, ved the problem is stll poientially selvable ecanse only a
relatively fow states ocour along optimal solution trajoctories. Asynehronons meth-
ods and other variations of GPI can be applied in such cases and may lind good or
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oplimal policies much [ster than synchronous methods can,

4.8 Summary

In this chapier we have become [amiliar with the basic ideas and algorithms of
dy namic programming a3 they relate o solving nite MDPs, Poliey eealeation refers
by the [Eypicallv) itorative computation of the valee netions for a given policy.
Policy improvernend relers 1o the computation of an improved policy given the valoe
function for that policy. Puiting these two computations together, we obbain policy
dermbion amnd wadee depalion, the two most popalar D methods, Either of (hese
can be used to reliably compuie optimal policies and value unetions for finite MDPs
given complete knowledge of the MDP.

Classical DIF methods operate in sweeps through the state sel, performing a full
backup operation on each state. Each backup updates the value of one state based
on the vadues of all possible sucoessor states and their probabilities of occurring. Full
backups are closely related to Bellman equations: they are little more than these
couations turned inlo assignment stalements, When the backups oo longer resuli
in any changes in value, convergence has occourred to values that satisly the corre-
apomding Bellman eguation, Just as there are Tour primary value inctions (i, v,
G, and i, ). there are four corresponding Bellman equations and four cormrespond-
g [ull backups, An intuitive view of the operation of backups is given by bockup
edderginrns,

Insight into DP methods and, in fact, into almeost all reinforcement learning meth-
odls, can be gained by viewing them as gereralized policy demlion (GPL), GP@ s the
general idea of two interacting processes revolving around an approximate policy and
an approximale value Tupction, One prooess takes the policy as given and pecforms
some [form of policy evaluation, changing the value linetion to be more like the troe
value Mupction Tor the policy. The other process takes the value function as given
and performs some form of policy improvement, changing the policy to make it bet-
Ler, assuming thal the walue lunction 18 (8 valoe onction, Although each process
changes the basis for the other, overall they work together to find a joint solution:
a podicy and valoe Dopction that are unchaoged by edther process and, consegquoently,
are oplimal. In sone cases, GPD ean be prove] (o converge, most ootaldy Tor the
classical DP mothods that we have presonted in this chaplter. In other cases conver-
gence hag pol been preoved, Dt sUll che ey of GPT improves our uiderstanding of
the methods.

It is ol pecessary Lo pecform D methods o complete sweeps Chrough the state
sob. Asymchronous D methods are in-place iterative methods that back up states
in an arbitracy order, perhaps stochastically determined and using out-oldaste infor-
mation. Many of those methods can be viewed as fine-grained forms of GPL

Finally, we note one last special property of DEP methods, All of them apelate
eatimates of the values of states based on estimates of the values of suecessor states.
That iz, they update estimates on the basis of other estimates. We call this general
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ilea bocdstrappeng, Many reinforeement learning methods perform bootsirapping,
even those that do not reguice, as DEP requices, a complete and aecurate model of
the environment. In the nexti chapier we explore reinforcement learning methods
Lhat do ot regquire a mode] and do ool ootsteap,. In the chapler alier (hat we
explore methods that do not require a model but do bootstrap. These key features
and properties are separable, yel can be mixed in interesting combinaions.

Bibliographical and Historical Remarks

The term “dynamic programming” is due fo Bellman (1957a), who showed how
these methods could e applicd (o s wide range of problems, Extensive trealments
of DP can be found in many texts, inchuling Bertsekas (20006, 20012), Bertsekas and
Tsitziklis (1996), Dreylus and Law (1977), Ross (1983), White (1969}, and Whittle
(1982, 1983). Our interest in DP is restricted to its use in solving MDPs, buat DIP
alan applics o other vpes of proldems, Komar and Kanad (1958) provide a more
poncral look at DE

To the best of our knowledge, the first connection between DP and reinforeement
learning was made by Minsky [196]1) in commenting on Samuacl’s checkers player,
In a footnote, Minsky mentioned that it = possible to apply DP (o problems in
which Samuoels backing-up process can be handled in closed analviic form, This
remark may have misled artificial intelligence researchers into believing that DP was
restricted Lo analviically tractable problems and therelore largely irrelevant 1o arti-
ficial intelligenee. Androae (1969b) mentioned DP in the context of reinforeement
learning, specifically policy eration, although he did nob make specific connect jons
between DF and learning algorithms. Werbos (1977) suggested an approach to ap-
proximating DI called “hearistic dymamic programming” thal cmphasizes gradient-
descent. methods Tor continuous-state proldems (Werlwos, 1982, 1987, 1988, 1989,
15H12). These methods are closely related to the reinforcement learning alzorithms
that we discuss in this ook, Walkins [(1989) was explicit in connecting reinforee-
ment learning to DP, characterizing a class of meinforcement learning methods as
“incremental dynamic programming.”

4.1-4 These sections describe wellestablished D algorithms thal are coversd in
any of the general DP referenees cited above. The policy improvement. the-
orem and the policy ileration algorithm are due (o Bellman (1957a) and
Howard {1960, Our presentation was influenced by the local view of policy
improvement taken by Watkins (19883), Our disenssion of value lleration as a
form of truncated policy iteration is based on the approsch of Poterman and
EShin [1974), who presented a class of algorithms called modified policy itera-
Ly, which ineludes policy eration and value leration as special cases, An
analysis showing how value iteration can be made to find an optimal policy
in finite time is given by Berlsckas (1987],

Itcrative policy evaluation is an example of a classical succossive approxima-
tion algorithm for solving a sysiem of lincar equations. The version of the
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4.7

algorithm that uses bwo arcays, one bolding the old valiues while the other
i5 updated, i3 often called a Jecobi-stple algorithm, aller Jacobi®s classical
use of this method. 1t s also sometimes called a symehronows alporithm be-
cage i can be performesd in parallel, with separale processors simuliancously
updating the values of individual states using inpul from other processors.
The seeond arvay is needed to simolate this paralle] compatation seguentially,
The in-place version of the algorithm is often called a Gause Seidel-style algpo-
rithun alter the classical Gawss Seidel algorithm for solving systems of linear
equations. In addition to iterative policy evaluation, other DP algorithms can
b implemented in these different versions. Bertsekas and Tsisiklis (1984)
provide excollent. coverage of these variations and their performance differ-
CIEeS.

Asvnchronous DF algorithms are due fo Berisckas (1982, 1953, who also
called them distributed DP alporithms. The original motivation for asvo-
chiropous DI was ik implementation on s moltiprocessor svstem with eom-
munication delays between processors and no global synchronizing clock.
These algorithms are extensively discussed by Bertsekas and Tsitsiklis {1989,
Jacobi-stvle and Gauss Seidel-style DF algorithms are special cases of the
psynchronous version, Willimns and Baied {1990) presenbed DI algorithms
that are asynchronous at a finer grain than the ones we have discussed: the
backup operations themselves are broken into steps that can be performed
asynchronously.

This seetion, written with the help of Michacl Littman, is Based on LitGoman,
Dean, and Kaelbling (1995). The phrase “curse of dimensionality™ s due to

Bellman (1957).
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Chapter 5

Monte Carlo Methods

In ihis chapler we consider our lest legrning methods Tor estimating value lunetjons
and discovering optimal policies. Unlike the previous chapter, bere we do not as-
sume complete knowledge of the environment.  Moote Carlo methods respuiee only
experience —sample sequences of stales, actions, amd rewards [rom actual or simi-
lated interaction with an environment. Learning from aclual experience is striking
becanse it requires oo peior knowledge of the envimonments dyvoamics, vel ean s6ill
attain optimal behavior. Learning (rom simualated oxpeorionce is also powerful. Al-
Lhough a mode] i requived, the model peed only generale sample transitions, not
the complete probability distributions of all possible {ransitions that is required for
dy namie programming (DP). In surprisingly many cases i 08 casy L generale exppe-
ricnce samplod according to the desired probability distributions, but infessible to
obdain Lhe distribations in explicit Torm,

bMonte Carlo methods are wayvs of solving the reinforcomeont. learning problom based
on aversging sample returns. To ensure that well-defined returns are available, hepe
wee define Moote Carlo methods only for epizodic tasks, That is, we assume experieno:
i5 divided into episodes, and that all episodes eventually terminate no matter what
actions are selected, Onoly on the completion of an episode are value estimates and
policies changed. Monte Carle methods can thus be incremental in an episode-hy-
epismle sense, bul ol in s step-byv-step (online) sense, The term “Monte Cardo”
is often used more broadly for any estimation method whose operation imvolves a
signilicant random eomponent,  Here we use L specilically for methods based on
averaging complete returns (as opposed Lo methods that learn from partial returns,
congidered in the next chapter},

Monte Carlo methods sample and average relurne lor each state action pair much
like the bandit methods we explored in Chapter 2 sample and average rewards for each
action, The main difference s that now there are maltipls states, sach acting like a
different bandit problem (like an associative-search or contextual bandit) and that the
different bandil problems are ioferrelated, That iz, the return aller taking an action
in one state depends on the actions taken in later states in the same episode. Becanse
all the action selections are andergoing learning, the problem becomes nonstationary
from the point of view of the earlior stato.

a7
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To hamdle the nonstationarity, we adapt the idea of general policy iteration (GPT)
developed in Chapier 4 for DI, Whereas there we compuled value Tupetions [rom
knowledge of the MDP, here we learn value lunctions from sample returns with
thee MDFP, The walue Tinctions and corresponding policies still interact oo sl iain
optimality in eszentially the same way [(GPL). As in the DP chapter, first we consider
Lhee prediction proldem (Ehe computation of v and ge Tor a lxed arbiicary policy =)
then policy improvement, and, finally, the control problem and its solution by GPL
Each of these ideas taken from DP s extended to the Monte Carlo case in which
only sample expericnce is available.

3.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the stade-value Tinetion
for a given policy. Recall that the value of & state is the expected return—expected
cumilative Tuture discounted reward — starting from that state. An obvious wav Lo
ealimatbe it from experience, then, 8 gimply (o average the returns observed alter
visits Lo that state. As more returns are observed, the average should converge Lo
Ll expected valoe, This idea aoderlies all Monte Carlo methods,

In particular, suppose we wish to estimate v, (&), the value of a state & under
policy 7, given a sel of episodes oldained by Tollowing o and passing through s,
Each oocurrence of state & in an episosde is called a wisid do 2 O course, s may
b vigited multiple dmes in the game episede; et us call the first Bme iU s visited
in an episode the first visit to 5. The firsi-vigil MO method estimates o (8) as the
average of the returns Tollowing lirst visits to s, whereas the everg-visil MO redfaowd
averages the returns Dllowing all visits (o s, These two Moote Carlo {MOC) methods
are vory similar but have slightly different theoretical properties. First-vizit MO has
been most widely studied, dating back to the 194902, and is the one we ocus on
in this chapter. Every-visit MO extends more naturally to function approsimation
and eligibility traces, as discussed in Chapters 9 amd ¥, Ficsi-visit MC is shown in
procedural form in Figure 5.1,

Imitinlime:
7 4 poliey to be ovalunted
V4 an arbitrary stato-value netion
Retarna(s) « an empty list, for all s € §

Repeat forover:
Cenerate an opisode using
For cach state s appearing in the episode:
O+ peturn followlog the fisst ocourmence of &
Append & to Retirns(s)
Vs) + averagel Meturns(s))

Figure 5.1; The first-visit MO method for estimating o,
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Both first-visit MC and every-visit MO converge 1o vo0s) a8 the number of visits
(or first visits) toos goes Lo infinity, This is easy o see for the case of list-visil
BIC. In this case each return is an independent, identically distributed estimate of
el s) with linite variance, By the law of large numbers the sequence of averages of
these estimates converges bo their expected value, Each average is itsell an unhbissed
estimate, and the standard deviation of its error falls as 1/ /n, where # i2 the number
of returns averaged. Every-vigit MO 5 less straighiforward, ot its estimates also
converge asvmplotically bo egls) (Singh and Sulton, 1996],

The use of Monte Carlo methods is best illustrated throngh an example.

Example 5.1: Blackjack The object of the popular casine card game of Mackjack
i5 Lo obbain cands the sum of whose numerical values s as greal as possible withowt
exconding 21, All face cards count as 10, and an ace can count either as 1 or as 11,
We consider the version in which each player competes independently against the
dealer, The game begins with two cards dealt to both dealer and player, Onoe of (he
dealer's cards is face up and the other is face down. IF the plaver has 21 immediately
Can ace amd a I0-card), it is called a nefemd, He then wins unless Che dealer also has
a natural, in which case the game is a draw. If the plaver does not have a natural,
Lhen he can reguest additional cards, ome Ty one (Rids), until he either stops (sfioks)
or exceeds 21 (goes bust ). If be goes bust, bhe loses; if he sticks, then it becomes the
dealer’s turn, The dealer hits or sticks according tooa lxed strategy withoul elode:
he sticks on any sum of 17 or greater, and hits otherwise, I the dealer goes busi,
Lhen the player wins; otherwise, the outeome—win, lose, or draw— i3 determined by
whose final sum is closer to 21.

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of
blackjack i an episode, Rewards of +1, —1, and O are given for winming, losing, and
drawing, respectively. All rewards within a pame are zero, and we do oot discount
[« = 1); therelore these terminal rewards are also the reburns, The plaver’s actions
are bo hit or to stick. The states depend on the playver's cards and the dealer's showing
card, We assume thal cards are deall Irom an ionfinite deck (e, with replacement )
g0 that there is no advantage to keeping track of the cards already dealt. IF the
plaver holds an ace that be could count as 11 withoul going bust, then the ace =
said to be wsable. In this case it is always counted as 11 becanse counting it as 1
woulld make the swm 11 or less, in which case there is no decision o be made bocanse,
obwiously, the player should alwavs hit, Thus, the plaver makes decisions on the basis
of three variables: his current sum (12 21), the dealer’s one showing card (ace 1400},
and whether or nob he holds a usable ace, This makes for o olal of 200 stades,

Consider the policy that sticks il the player's sum i= 20 or 21, and otherwise hits.
Tao find the state-value lunction for this policy by a Monle Carlo approach, one
simulates many blackjack games using the policy and averages the returns following
each state, Note thal in this task the same stale pever eeurs within ope episode,
s0 there 5 no difference between firsi-visit and every-visit MO methods, In this
way, wie obiaimed the estimates of the state-value lunction shown in Figare 5.2, The
eatimates for states with a usable ace are less cortain and less rogular bocanse those
states are less common. In any event, after 300,000 sames the value linction is very
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Atter 10,000 episodas After 500,000 episodes

Figure 5.2; Approximate state-value functions for the blackjack policy that sticks only on
A or 21, computed by Moote Carlo polley evaluation.

wiell approximated,

Although we have complete knowledge of the environment in this task, it would
nol b easy oo apply D methods to compute the salue uonction,  DP methods
require tho distribution of next events —in partioular, they reguire the quantitios
s r|s ) amd it is nol easy Lo determine these for blackjack, For example, suppose
the player's sum s 14 and he chooses to stick,. What is his expected reward as a
Munction of the dealer’s showing card? All of these expected rewards and Cransition
probabilities must be computed befere DP can be applicd, and such computations are
often complex and crror-prone, In conteast, generaling the sample games required
by Monte Carle methosds is easy, This is the case surprisingly often; the aldlivy
of Monte Carle methods 4o work with sample episodes alone can be a significant
advantage even when one bas complete knowledge of the eovironment’s dynamics,

| |

Can we generalize the idea of backap diagrams o Monte Carlo algorithms? The
general idea of a backup diagram is o show sl e bop thie rool pode (o Te apdated
and to show below all the trapsitions and leal nodes whose rewards and estimated
vislues contribute to the update, For Monte Caclo estimation of e, the roob i3 o
atate node, and below it s the entire trajectory of transitions along a particular sin-
gle episode, ending sl the lerminal stabe, as in Figare 5.3, Whereas the DP diagram
( Figure 3.4a) shows all possible transitions, the Monte Clarlo diagram shows only
Cheose saampled on the ooe epigode, Whereas the D diagram inclhedes only one-step
transitions, the Monie Carlo diagram goes all the way to the end of the episode.
These dillerences in the disgrams aceurately rellect (he ndamental dilferences Tae-
tween the algorithms.

An important fact about Monte Carlo methods is that the estimates for cach state
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1 terminal stale

Figure 5.3 The backap diagram for Monte Carlo estimation of o,

are independent. The estimate for one state does not build upon the cstimate of
any other state, a8 is the case in DP In other words, Monbe Carlo metbods do oot
hoolsirap as we delined it in the previows chapier.

In particular, nole (hal the computational expense of estimating the value of &
single state is independent of the npumber of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states, One can generale many samphe episodes starting [rom the stales of inlerest,
averaging returns from only these states ignoring all others. This is a third advantage
Monte Carlo methods can bhave over DEP methods (afier the ability 1o lesrm Trom
actual experience and from simulated experience).

Example 5.2: Soap Bubble

Suppose a wire frame forming a closed loop is —— |
dunked in soapy waler 1o form a 2oap suefaoe
or bubble conforming at its edges to the wire
[ramee, I the geometey of the wire [rame s s
irregular but known, how can vou compute
Lhee shape of the surface? The shape has the
property Chat the tobal foree on each point
eoeerted by noighboring points is wero (or else
Lhee shape would change), This means that .
the surface’s height at any point s the aver- A bubble on a wire loop

age ol 1s hedghts al points in a small circle

around that point. In addition, the surface must meot at it boundaries with the
wire [rame. The usual approach (o problems of this kind is to put a geid over the
arca coversd by the surface and solve for its height at the grid points by an iterative
computation, Grid points ab the boumndary are foreed 1o (he wire [raome, amd all
others are adjusted toward the sverage of the heighis of their four nearest neighbors.
This process then iterates, much like D5 iterative policy evaluation, and ultimately

-,

iy
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converges Looa close approximation to the desired sarface,

This is similar to the kind of problem for which Monte Carlo methods were origi-
nally designed. Instead of the iterative computation described above, imagine stand-
i omn Bl surfnce and taking a random walk, stepping randomly from grid point o
neighboring grid point, with equal probability, until you reach the boundary, Tt turns
oul that the expected value of (he beight at the boundary §s a close approsimation
to the height of the desired surface at the starting point (in fact, it s exactly the
vialue computes] ey the iterative method described albove), Thus, one can closely
approximate the beight of the surface at a point by simply averaging the bound-
ary heights of many walks stacted ab (he point, IT ope is interested o oonly (he
value at one point, or any fixed small set of points, then this Monte Carlo method
can be e more eflicient than the iterative method based on lecal consistency.,

L |

Exercize 5.1 Consider the disgrams on the right in Figure 5.2, Why doces the
eatimated value lunction jump up for the last fwo rows in the rear? Why does it
decp ofl for the whole Iast row on the et Why are the [rontmost values higher in
Lhee upper disgrams than in Che Tower?

5.2 Monte Carlo Estimation of Action Values

Il & model 5 not available, then it is particulary vselul o estimate action values
(the values of state action pairs) rather than stale values. With a model, state
values alone are sufficient to determine a policy; one simply looks ahead one step
] chooses whichever action leads Lo the best eombination of reward and pext state,
as we did in the chapter on DP. Without a model, however, state values alone are
ool sullicient, Ope must explicitly estimate the walue of each action in order for
the values to be uselul in sugpesting & policy. Thus, one of our primary goals for
Monte Carle methods is to estimale g, To achicve this, we lirst consider the policy
evaluation problem for action values.

The policy evalustion probdem for action values §s Lo estimabe gl s, a), the expected
return when starting in state z, taking action o, and thereafter following policy 7.
The Monbe Carlo methods for this are essentially the same as just presented for
atate values, ecxcepl now we Lalk aboul visils 1o a stabe-action pair rather than booa
state. A state action pair 5, 2 is said to be visibed in an episode i ever the state s is
visited and action a is taken in it The evervevisit MO method estimates the valoe
of a state action pair as the average of the returns that have followed visits all the
wisits Lo i, The lrst-vigit MO method averages the returns following the first time in
each epizode that the stabe was visited and the action was selected. These methods
converge quadratically, as before, 1o the troe expected values as the number of visils
Lo each stabe action pair approaches infinity.

The only complication s thal many stabe-action padrs may oever be visites], 10
7 is a deterministic policy, then in following 7 one will obsorve returns only for
one of the actions [rom each state. With no returns io average, the Monte Carlo
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calimates of the other actions will pol improve with experience, This s a serions
protdem becanse the parpose of learning action values is o help in choosing among
the actions available in each state. To compare alternatives we need to estimate the
wialue of ol the actions [rom each state, nol just Che one we carrenlly Tavor,

This is the general problem of meintainieg ecploralion, as discussed in the context
of the E-armesd bandit problem in Chapler 2, For policy evaluation bo work Tor action
values, we must assure continual exploration. One way to do this is by specilving
Lhat the epismles slard in o stele ackion padn, and that every pair bas o nomeeroe
probability of being selected as the start. This guaranters that all state action pairs
will be visibed an infinite oomber of times in the lmit of an infinite pumber of
epissdes. We call this the assumption of erploring starts.

The assumplion of cxploring starts s sometimes uselul, but of course §L cannol
b relied wpon in general, pacticulacly when leprping directly [rom actual interaction
with an environment. In that case the starting conditions are unlikely to be so0
helplul. The most commaon alternative approach o assuring that all state-action
pairs are encountered 5 to consider only policies that are stochastic with a nonsero
protubility of selecting all actions in each stale, We discuss two impaoriant varianis
of this approach in later sections. For now, we retain the assumption of exploring
starls and complete the presentation of a Wl Moote Carlo control method,

Exercise 5.2 What is the backup diagram for Monte Carlo estimation of g.7

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can

b waed in control, that is, Lo approgimate oplimal policies, The evaluation
overall idea §s to procecd according to the sane paticrn as in —={x

the DP chapter, that is, according to the idea of generalized pol-

iy iteration (GPT). In GPI one maintaing both an approximate T Q
policy and an approximate value hinction. The value linction is 0

repeatedly altered to more closely approximate the valoe Tunc-
tion for the current policy, and the policy is repeatedly improved
with respect Lo the current value [unction, as suggested by the
diagram to the right. These two kinds of changes work against cach other to some
extent, as cach creptes o moving targel [or the other, Tl bogether they canse botl
policy and value function to approach optimality.

improvement

To begin, let us consider a Monte Carlo version of classical policy iteration. In
Lhis method, we perform allernating complete steps of policy evaluation aml policy
improvement, beginning with an arbitrary policy 75 and opding with ithe optimal
podicy and oplimal action-value Dunetion:

I£ 1 E 1 Iz 1 E
M —* Gy, —F T —F iy, —+ T —F =15 —F Ty —F i,

where — denotes a complote policy evaluation and ——+ denotes a complete pol-
icy improvement. Policy evaluation is done exactly as described in the preceding
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section,  Many epissdes are expericnced, with the approximate action-value [une-
Lion approaching the troe lunction asymplotically, For the moment, Iet s assame
that we do indecd observe an infinite number of episodes and that, in addition, the
epismles are generated with exploring starts, Under these assumpiions, the Mooie
Carlo methods will compute cach g, exactly, for arbitrary m.

Poliey improvement i3 done Ty making the policy greedy with respect (o Che current
value lunction. In this case we have an aclion-value lunction, and therefore no
kel is pesded (o construct the greedy policy, For any action-valoe Donction g, the
corresponding srecdy policy is the one that, for each & € 8, deterministicallv choosos
an action with masimal action-valoes

mis) = Arg max TENAE i)

Policy improvement then can be done by constructing each xp ;. ; as the greedy policy
with respect boogyr, . The policy improvement theorem (Section 4.2) then applies Lo
mg, and my,y becanse, for all 8 € 5,

Gm (8 T p1(s)) = q,t{ﬁ:mgilmxa}m[#,ﬂ]}

Max gy, [#,4)
(]

x5, Ti(5))

iy, (8]

KT Y

As we discussed in the previcos chapter, the theorem assures us that each wg. B8
uniformly better than . or just as gosd as 7, in which case they are both optimal
policies. This in turn assures us that the overall process converges to the oplimal
policy and optimal value fupetion. T this way Monpte Carlo methods can Te gzed
Lo find optimal policies given only sample episodes and no other knowledge of the
envirmonment’s dynamics,

We made two unlikely assumptions above in order to easily obbain this guarantee of
convergenee [or the Monte Carlo method, One was Chat the episodes have exploring
startz, and the other was that policy evaluation could be dope with an infinite number
of epigodes, To obiain o practical algoritlon we will have booremove ot assumptions,
We postpone consideration of the first assumption until later in this chapter.

For now we [ocws on the assumption that policy evalustion operates on an indinite
pumleer of eplzodes,  This assumplion 15 relatively casy oo remese,  In Gaet, the
same issue arises oven in classical DI methods such as itorative policy evaluation,
which alse converge only asymplotically to the teoe value Tuoction,  Ion e DI
and Monte Carlo cases there are two wavs to solve the problem. One s (o hold
firm tor the idea of approximaling gy, in esch policy evaluabion, Measurements and
assumptions are made to obiain bounds on the mapnitude and probability of ormor
inn the estimates, and then sullicient steps are taken during each policy evaluation Lo
assure that these bounds are sufliciently small. This approach can probably be made
completely satisfactory in the sense of goarantesing cormeel convergenoe up 1o sone
level of approcimation. However, it is also likely io require far too many opisodeos bo
be uselul in practice on any but the smallest. problems.
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The second approach Lo avolding e infinite pumber of epizodes pominally reguired
[or policy evaluation is o forge teving (o complete policy evaluation before relarning
Lo policy improvement. On each evaluation step we move the value function fowerd
iy, bt we do not expect b actually ged close excepl over many steps. Wi used Uhis
idea when we first introduced the idea of GPI in Section 4.6. One extreme form of
Chee bdesy i3 value iberation, in which only one iteration of iterative policy evaluation
i5 performed between each step of policy improvement.  The in-place version of
value Herption & even more exireme; there we allernote belween improvement. and
evaluation steps for single states.

For Monie Carlo policy evaluation it 32 natural to alternate etween evalualion
and improvement on an episode-by-episode basis. After each episode, the obeerved
returns are wsed for policy evaluation, and then the policy 5 improved sl all ile
atates visibed in the epizsode. A complete simple algorithm along these lines is given
in Figuro 5.4. Wo call this algorithm Monde Carla ES, for Monte Carlo with Exploring
Slarls,

In Monte Carlo ES, all the returns for each state action pair are acoumulated and
averaged, irrespective of whal policy was in foree when they were observed, 10 s easy
Lo see Lhat Monte Carle ES cannot converge 1o any suboptimal policy. I it did, then
Lhee wvalue Munction would evenbually eonverge to the valus fonction for that policy,
and that in turn would canse the policy to change. Stability is achioved only when
both the policy and the value Tinction are oplimal, Convergenese o this oplimal
[ixed point seems inevitable as the changes 1o the action-value lunction decrease
over timee, but has not vel been formally proved. In our opinion, this is one of the
sl fundasmental open theorebical questions in reinforoement lesrning (for a partial
aolution, see Tritsiklis, SO0

Example 5.3: Solving Blackjack It is straightlorward to apply Monte Carlo
ES to blackjack. Since the episodes are all simulated games, it is casy 1o arrange

Initialize, for all 5 € 8, & € Als]:
s, ) 4 arbitrary
i8] 4 arbitrary
Helwrns{s, a) « empty list

Repeat forever:
Choose 8, € 8 and Ay € A(5;) s.t. all pairs have probability = 0
Cremerate an eplaode starting from 5, Ay, following =
For each palr & o appearing o the epdsode:
04— peturn following the At occursence of & a
Append (7 to Heturns s, a)
LA, a) 4+ averagel Metwrens(s,al)
For each & in the epkode:
zi(a) +— argmax, {Hs, a)

Figure 5.4: Moote Carle ES: A Monte Carlo control algorithm assuming exploring starts
and that episodes always terminate for all policles.



LIMi CHAPTER 5. MONTE CARLO METHODS

Ty

.

sTick &

Usable J S g |-

a0 16

HIT by

13

12

1

ETTITETEIN

-

g
ETICK

Mo Ba
usabe :: -]
ace &
HIT 11 2

12

i1

AZIABGTEEN
Daaler shiowing

Figure 5% The optimal policy and state-value function for blackjack, found by Monte
Carle BES (Figure 5.4). The state-value function shown was computed from the action-value
fumetion found by Monte Carlo ES,

for exploring starts that include all possibilitics. In this case one simply picks the
dealer’s eards, the plavers sum, and whether or nol the player has a usable ace, all
al random with equal probability. As the initial policy we use the policy evaluated
in the previows blackjack example, that which sticks only on 200 or 21, The initial
action=value [mction can be zero [or all state-action pairg, Figure 5.5 shows the
optimal policy lor blackjack found by Monte Carle ES. This policy is the same as the
“Dasic” strategy of Thorp [(1966]) with the sole exception of the leltmost potch in the
policy for a usable ace, which is not present in Thorp's strategy. We are uncertain
of the reason for this discrepancy, bul confident that what is ghown here s indesd
the optimal policy for the version of blackjack we have deseribed. [ |

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only goneral way
L ensare that all actions are selected infinitely ofien is Tor the agent W continee Lo
select them. There are iwo approaches to ensuring this, resuliing in what we call
evi-pedicy methods and off-policy methods, Oo-policy methods attempt to evaluate
or improve the policy that is used to make decisions, wheress oll-policy methods
evpluabe or improve a policy dilferent from that used o geneeate the data, The
Monte Carlo ES method developed above is an example of an cn-policy method. In
Lhis section we show how an on-policy Monte Carle control method can be designed
that does not use the nnrealistic assumpiion of exploring starts. Of-policy methods
are congidersd in the next section.
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In on-policy conteol methods the policy is generally soft, meaning that «(a|s) = 0
for all 5 £ & and all & € A 5], bt gradually shifted closer and closer to a deterministic
optimal policy. Many of the meothods discussed in Chapter 2 provide mechanisms
for this, The op-policy method we present o this section uses g-greedy policies,
meaning that most of the time they choose an action that has maximal estimated
action value, bl with probability £ they instead select an action st randoem, That
is, all nongresdy actions are given the minimal probability of selection, Fﬁ:ﬂ and
Lhe remaining bulk of the probability, 1 —2 + m., is given 1o the greedy action,
The s-greedy policies are examples of c-s0fi policies, delined as policies for which
wla|s) = Iﬂf"ﬁl [or all stales and actions, for some & > 0, Among 2-sall. policics,
c-greedy policies are in some sense those Chal are closest (o greedy,

The overall idea of on-policy Monte Carlo control is still that of GPL As in Monte

Tarlo ES, we use irst-vigit MO methods to estimate the action-vadue Inoetion o (he
current. policy. Without the assumption of exploring starts, however, we cannot sim-
ply improve the policy by making it greedy with respect b the carrent value Tunetion,
becanse that would prevent further exploration of nongresdy actions. Fortunately,
GPL does pod requice that the poliey be taken all the way o a greedy policy, only
that it be moved toward a greedy policy. In our on-policy method we will move it
only o an e-greedy policy, For any e-gofl policy, =, any s-greedy policy with respect
Liv i, I8 guarantesd to be bettor than or equal to .

That any s-greedy policy with respect Lo gy is an improvement over any e-sofl
policy & 8 assured by the policy improvement theorem,  Let o' be the c-greedy
policy. The conditions of the policy improvement theorem apply because for any
%= B

qela, w(&)) = Z w'(als)gel s, a)

- |_v"1;-“]'| E*]‘rr'[-‘*:ﬂ:l + (11— E:IIZIZInﬂ_'l'.n']',-I:H., i) (5.2)

ZIT[-I'-I-l-"F]'

= il }IE%{H a) + (1 —‘]'E B, (s,a)

(Ll swm is a weighbed average with nonnegative wﬂghl.:-i summing 1o 1, and as such
it must be less than or equal to the largest number averaged)

— lﬂ;-#}lgqn{n:n} — m?q"[s:e] + gﬂ{ﬂh,]q‘__.[ﬂ:ﬂ}
= e ls).

Thus, by the policy improvement theorem, = = 7 [Le ; vpr(&) = wgls), [or all 5 £ &),
We now prove that equality can hold only when both 7 and = are optimal among the
e-m0ll policies, that s, when they are Bebier than or egual o all sther e-soll policies,

Consider a new environment that is just like the original environment, except with
Lhee respuirement that policies e g-soll “moves] inside™ the eoviromment, The new
enviromment has the same action and state set as the original and behaves as follows.
Il in state 5 and taking action o, then with probability 1 — = the new environment
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behaves exactly like (he old eovicomment, With probability & 50 repicks the action
b random, with cqual probabilities, and then ehaves like the ofd environment with
the new, random action. The best one can do in this new environment with general
policies 18 the same as Uhe best one could do in the original environment with e-soll
policies, Let 7, and g, denote the optimal value functions for the new environment.
Then a policy « is oplimal among e-solt policies i and only if vy = f.. From the
definition of ¥, we know that it is the unigque solution to

Bls) = (1— &) maxg,(s,a)+ m ;;f..;a, )

{1—g) mlal’l.xzp[x", v, a) [1.. + ,.r_-;‘[ﬁr}]
o
+ m ? :Z, pls’,r|s, a) [r + ':.-I-'.[H‘]] _

When equality holds amd the s-goll policy 7 05 oo lopger improved, then we alse
know, from (5.2), that

rela] = (1 —E;IIIIHH_'A'J]'“-['H,H.]- - M”E_‘FH Eu:qﬁgﬁ,n]

= (1—2) ||LuZp[s": rl=a) [r - "rf.ll-r[#'l]]
o

R |

However, this equation is the same as the previous one, except for the substitution
of v [or #,. Since ¥, is the unigque solution, it must be that v, = 4,

Initialize, for all & € &, a < A{z):
(M &, @) +— arhiteary
Heturnsis, a) « empty list
mials] + an arbitcary e-soft policy

Repeat forever:
(n) Generate an episode using =
(k) For ench pair s, a apperring in the cpisode:
O i mebnrn following the first ocewrrence of 5,0
Append & to Feturns{s, a)
e, 1) i mverame] Beburns(s, a))
i) For ench # in the episode
A* i prg mec, O 5, a)
For all & € A{z):
1 —e+4ef|Afs)| ifa=A"
x(als) ¢ { £ /| A s)| if @ £ A*

Figure 5.6; An on-policy first-visit MC control algorithm for s-soft. policies,
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I cesence, we have shown in the last few pages thal policy ileration works for e-aoli
podicies, Taing the natural notion of greedy policy for e-soll policies, one s assared
of improvement on every step, except when the best policy has been found among
Lhee g-s0dl. policies, This apalysis is independent of how (e actiop-value lincbions are
determined at each stage, but it does assume that they are computed exactly. This
brings us to roughly the same poiot a8 in the previous section, Now we only achicve
the best policy among the s-soft. policies, but on the other hand, we have eliminated
Lhe assumplion of exploring starts, The complete algorithm is given in Figure 5.6,

5.5 Off-policy Prediction via Importance Sampling

All learning control methods face a dilemma: They seek to learn action values con-
ditional on subsequent oplimad behavior, ol they peed (o ehave pon-optimally in
order to explore all actions (Lo find the oplimal actions). How can they learn abowt
Ll optimad policy while behaving according o an exploratory policy? The on-policy
approach in the proceding section s actually a compromise — it learns action values
ool for the opiimal policy, ol for a pear-optimal policy that s6ll explores, A more
straightforward approach is to use two policies, one that is learned aboul and that
becones the optimal policy, and one that 5 more exploratory and s osel o gen-
erate behavior., The policy being learned about is called the ferget policy, and the
policy used Lo geperate bebavior s called the befoeior policn, In this case we say
Lhat learning s from dats “ofl™ the targed policy, and the overall process s Lermed
aff-policy learning.

Throughout the rest of this book we consider bolh op-policy and ofl-policy meth-
ods. On-policy methods are generally simpler and are considered first.  Oi-policy
rethiwls recpuire additional concepits and ootation, aod ecaese the data is due Lo
a different poliey, off-policy methods are often of greater variance and aro slower Lo
copverge, On the other hand, ofl-policy methods are more posseriol and general,
They include on-policy methods as the special case in which the target and behavior
policies are the same, Oll-policy methods also have o varely of additional uses in
applications. For example, they can often be applied (o learn from data penerated by
o copventional poo-learning controller, or from s hoaman expect, DH-policy learning
i5 also seen by some a8 key (o learning malti-step predictive ooedasls of the world™s
dynamics (Sutton, 2000, 2011).

In this section we begin the study of off-policy methods by considering the predie-
Lion problem, in which both target and bohavior policies are fixed. That is, suppose
wie wish Lo estimate vy or gg, bul all we have are episcdes ollowing ancther policy
ft, where u # 7. In this case, 7 is the target policy, g is the behavior policy, and
both peolicies are considered [xed and given.

In order to use episodes [rom g to estimate values for 7, we require that every
action taken under 7 15 also taken, al least oceasionally, under o, Thatb b8, we reguire
that w(als) = 0 implies plalz) = 0. This is called the assumplion of coverage. It
[ollows from coverage that g must be stochastic in states where it s nod identical
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L . The targed policy =, on the other band, may e deterministic, and, in Tact,
Lhig is a case of particular interest in control proldems, In control, the target policy
is tvpically the detorministic greedy policy with respect o the corrent action-value
[anction estimate, This policy ecomes a deterministic oplimal poliey while the
behavior policy remaing stochastic and more exploratory, for example, an s-proedy
policy, In this section, however, we consider the prodiction problem, in which « is
unchanging and given.

Almost all ofl-policy methods atiliee dnporlence sampling, a general techniguee Tor
eatimating expected values under one distribution given samples from another. We
apply imporiance sampling (o ofl-policy learning by weighling returns aceording Lo
the relative probability of their trajectories occurring under the target and behavior
policies, called the Gmportance-sampding mde, Given a starting state S, the prob-
ability of the subsequent state-action (rajectory, Ae, Sepn, Avgr. .., 50, ocourring
under any policy * is

T=1

TT #(AclSidp(Sir ]Sk, Au),
k=i

where @ here is the state-transition probability function defined by [(3.8). Thus,
Lhe relative probability of the trajectory under the target and behavior policies {((he
importance-sampling ratio) is

o = iy T AP |Se, Ar) H [ Ax|Se) (5.3)

r - . . . e
TTrc e Akl Sl S| Sies Ax) pARS)

Mote that although the trajectory probabilities depepd on the MDI's iransition

probabilities, which are generally unknown, all the transition probahilities caneel.

The: mmporiance sampling catio ends wp depending only on the twa policies and ool
at all on the MDP.

Now we are ready (o give a Monie Carto algorithm that uses a badeh of olbserved
episodes following policy g to estimate o, (2). It is convenient here to number time
sleps ina wiy thad increases across episode boundaries, That is, 00 the st episode
of the batch ends in a terminal state at time L), then the next episode begins at
Lime ¢ = 101, This enables us bo use Gme-step mumbers to refer o particiular sbeps in
particilar episodes, In pacticalar, we can define the sel of all time steps o which state
# i8 visited, denoted T(&). This s for an every-visit method; for a first-visit method,
Ti&) would only inclede time sleps thal were [icst visits 1o s within their episodes,
Also, let T'(E) denote the first time of termination following time ¢, and (7 denote the
peburn after £ up through Tit), Then {( }epq are the returns that pertain (o state

%, aned {p?“l] beeris) are the corresponding imporiance-sampling ratios. To estimate
#y(&), we simply scale the returns by the ratios and average the rosulis:

T i
Emc'h:;.-] ' [E]E’l

Via) = FT(s)]

(5.4)
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When importanee sampling is done as a simple average in Chis way i s called ordinaerey
srnportanee sainpding,

An important alternative is weighled imporiance sompling, which uses a weighied
average, defined as

T e
v . LaeTim P G -
(&) = — i5.5)
LET{=) 'y

or sero il the depominator is sero, To understand these two varieties of importanee
sampling, consider their estimates alter observing a single return. In the weighied-
average estimate, the ratio FT[:] for the single return cancels in the numerator and
denominator, so that the estimate is equal (o the observesd retuen independent. of
the ratio (assuming the ratio is nongero). Given that this return was the only one
obgerved, this is a reasonable estimade, but of course ils expectation is vy(s) rather
than v.(#), and in this statistical sense it s biased. In contrast, the simple average
(5.4} s always ve#) in expectation (0 5 unbissed), ot 0 can be extreme, Suppose
the ratio were ten, indicating that the trajectory observed is ten times as likely under
Lhe targetl policy a8 ander the behavior policy, o this case the ordinary importance-
sampling cstimate would be fen times the observed return,. That is, it would be qguite
ar Troan Che observed retoen even though the episode’s trajectory s considered very
representalive of the target policy,

Formally, the difference between the two kinds of importance sampling is expressed
in their biases and variances, The ordinary imporiance-sanpling estimabor is wnli-
ased whereas the weighted importance-sampling estimator is biased (the bias con-
vorges asymplodically o zera). On the other haod, the variance of (he ordinary
importancesampling estimator i5 in general unbounded becanse the variance of the
ratios can e unbounded, whereas in the weighted estimator the largest weight on
any single return 5 one. In fact, assuming bounded returns, the variance of the
wielghtes] importance-sampling estimator converges W sero even il the variance of
thie ratiog thomselves is infinite (Precup, Sutton, and Dasgupta 2001). In practice,
the weighted estimator usnally has dramatically lower variance and is strongly pre-
[erred, Mevertheless, we will pod todally alvdon ordinary imporiance sampling as
it is easior to extend to the approximate mothods using lunction approximation that
wee coplore in the second part of this beok.

A complebe overy-visit MO algorithm for ofl-policy policy evaluation nsing welghiod
importance sampling s given in the pext section in Figore 5.9,

Example 5.4: Off-policy Estimation of a Blackjack State Value

We applied both ordinacy and weighted importance-sampling methods 1o estimate
the value of a single blackjack state from off-policy data. Recall that one of the
advantages of Mopte Carlo methods is that they can be wsed Lo evaluate o single
state without forming estimates lor any other states. In this example, we evaluated
Lhee state in which the dealer s showing a deace, Che sum ol the plaver’s eards s
13, and the plaver has a uwsable ace (that is, the player holds an ace and & dewes,
or equivalently three aces). The data was generated by starting in this state then
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4
L] nary
Mean /' Importance
L= Ll o
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arrar -
{average over
100 runs)
Weighted importance sampling
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Figure 5.7 Weighted importance sampling produces lower orror estimates of the valie of a
single hlackjack state from off-paolicy cplaodes (see Example 5.4).

chioosing Lo hit or stick sl raodom with cqual probability {ihe behavior policy ], The
Larget policy was Lo stick only on a sam of 200 or 21, a5 in Example 510 The valoe
of this state under the target policy is approcdmately —0.27726 (this was dotormined
by separately generating one-hundeed million episodes wsing the targel policy and
averaging their returns]. Both off-policy methods closely approximated this value
alter 1000 ofl-policy epizodes using the random policy. Figure 5.5 shows the mean
aquared crror (estimated from 1N independent runs) for each method as a fonetion
of pumber of epigodes, The weighted importanee-sampling method bas mech Tower
overall error in this example, as is typical in practice. [ ]

Example 5.5: Infinite Variance

The estimates of ordinary importance sampling will typically have infinite variance,
and s unsstisfhbclory convergenoe properties, whenever the sealed returns have
infinite variance —and this can casily bappon in off-policy loarning when trajecto-
ries contain loops, A simple example 15 shown insel in Figure 5.8, There i@ only
one ponterminal state & and bwo actions, end and back. The end action causes a
deterministic transition b termination, whereas the back action transitions, with
protability 0,9, back o s or, with probability 0.1, on o termination, The rewards
are +1 on the latter transition and otherwise gero. Consider the targel policy that
alwavs selects back, All epigodes under this policy consist of some number (possildy
zero) of transitions back to s followed by termination with a reward and retwrn of
+1. Thus the value of s under the target policy is 1 Suppose we ae estimaling Uhis
value from off-policy data using the behavior policy that selects end and back with
eopual prolability,

The lower part of Figure 5.8 shows ten independent runs of the frst-visit MO
algorithm using ordinary importance sampling,  Even alter millions of epizodes,
the estimates fail to converge to the correct value of 1. In contrast, the weighted
importance-sampling alporithm would give an estimate of exactly 1 everalter the
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Fipure 5.8 Ordinary importance sampling prodoces surprisingly unstable estimates on the
ane-state MDEP slown inset (Exanple 551, The correct estimate heee B 1, and, even thouagh
this s the expected value of & sample return (after portance sampling), the variance of
tlie sanepdes i8 infindte, and the esthmates do oot convergence to this valoe, These mesalts ave
for off-policy first-visit MO,

first episode that was consistent with the target policy (ie., that ended with the
back action), This is clear becanse thal algorithm produces a weighted average of
tho returns consistent with the target policy, all of which would be exactly 1.

We can verily thal the varianee of the importance-sampling-scaled returns is infi-
nite im this cxample by a simple caleulation. The variance of any random variable
X s the expected value of the deviation [rom iis mean X, which can be wrilben

Var[X] = E[(X - X)*| = E[X? - 2XX + X% = B[X?] - X2

Thus, il the mean is finite, az it is in our case, the variance is infinite if and only if
Lhe expectation of the square of the random variable is infinite, Thus, we need only
show that the expected square of the importance-sampling-sealed return is infinite:

= ﬁt—m'lﬁ*]ﬂ.. 2
L wiays)

To compute this expectation, we break it down inio cases based on episode lengih
and termination, First pobe that, for any episode ending with the end action, the
importance sampling ratio is zero, because the target policy would never take this
action; these episodes thus contribute nothing 1o the expectation (the quantity in
parenthesis will be zero) and can be ignored. We need only consider episodes that
involve some number (possibly zero) of back actions that transition back to the
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pontermingl state, followed by a back action Lransitioning to termination. All of (hese
epismles bave a return of 1, o the &g fetor can be ignored, To get (he expected
squane wo noed only consider each lengih of episode, multiplving the probability of
Lhe epissde’s occurrence by Lhe square of i3 importance-sampling ratio, and add
Lhese up

2
= % Al (%) (the length 1 episode)
+£-l]!-}-£-[ll LL ’ (the length 2 episode)
TR R NTEATY P Jengi S apimce
2
1 1 1 I 1 1
I e — . . — . — a 2 Pl “
+ 5 0.9 3 (.49 5 (.1 ("_5”_5“.5) (Lhe length 3 episode)
+ EEa

e a]
=00y 092tz

Bl

(s )
[I.EZLH""

k=

= .

Exercise 6.3 What is the equation analogous to (5.5) for action values s, a)
instead of state values Vis), again given returns generated using pf

Exercise 5.4 In learning curves such as those shown in Figure 5.7 error generally
decreases with training, a8 indesd happened for the ondinary importanee-sampling
method. But for the weighted importance-sampling method error lrst increased and
Lhen deereased. Why do you think this appemed?

Exercise 5.5 The resulis with Example 5.5 and shown in Figure 5.8 used a firsi-
visit MO medhad, Suppose that instesd an every-visit MO method was used on the
same problem. Would the variance of the cstimator still be infinite? Why or why
ol

5.6 Incremental Implementation

Bonte Carlo prediction methods can be implemented incrementally, on an episode-
by-opissde basis, using extensions of the technigues doscribed in Chapter 2 [ Sec-
tion 2.3), Whereas in Chapler 2 we averaged rewards, in Moote Carle methods e
average reftwrns, Inall other respects exactly the same methods as used in Chapter
2 can be used lor er-policy Monte Carlo methods, For off-policy Monbe Carla meth-
ods, we noed to soparately consider those that use erdinery importance sampling
and those that use weighted importance sampling.
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In ordinary importance sampling, the returns are 2ealed by the imporiance sam-
pling ratio ,rr:r':” (5.4, then simply averaged, For these methods we can again ase
Lo incromental methods of Chapter 2, but using the scaled returns in place of the
rewards of thal chapier, This leaves the case of ofl-policy methods using weiphled
importance sampling. Here we have to form a weighted average of the returns, and
a slightly different incremental algorithm s required.

Suppose we have a sequence of returns &, e, L. G, all starting in Uhe saone
stabe and each with a eorresponding random weight, Wy (eg, Wi = ﬁ'il"lr]}l We wish

Lir form the estimate
=1 gur g
Vo= :=| |"|"||-f:l'|||-
T W
and keep it up-to-date as we obtain a single additional retwrn €, In addition to

keeping track of Vi, we must maintain for each stabe the ewmulabive soam O of the
welghis given to the first % returns. The update rule for V, is

. >3 i5.6)

W
Vot = Vi + F: [r:;,t - v,,]. 1, (5.7)
sl

Crpr = Cn + Waga,

where €y = 01 {and V) is arbitrary and thus neod not be specified). Figore 5.9 gives
a complete episode-by-episode incremental algorithm for Monte Carlo policy evalua-
Lhonn, The algorithm is nominally For the ofl-policy case, using weightoed impoctanee

Initialize, for all & € &, a € A{a):
L} e a) + arbitrary
e al + 0
plals) +— an arbitrary soft belavior policy
alax|a) + an arbitrary target polley

Repeat forever:

Cenerate an episode using
S Aay ooy Se_y Ar_y, By S

& n

W1

Ford 9 1,1 2,.... downto i
ﬂ 1 ’rﬂ | f‘ll|;+|
E{Sﬂ|a‘11} L E{Sﬂna“L} | H"r
QS ) ¢ QIS0 A) + o 16— QS AL
W e W

IF W o b then ExitForLoop

Figure 5.5% An incremental every-visit MO policy-evaluation algorithm, using weighteod
importance sampling.  The approximation ) converges to g (for all enconntered state-
action pairs] cven though all actions are selected according to a potentially different policy,
pi In the on-policy ease (7o g}, Wois always 1,
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sampling, bl applies as well (o the on-policy case just by choosing the targel and
behavior policies as the same,

Exercise 5.6 Modily the algorithm for lirst-visit MO policy evaluation {(Figure 5.1)
Lo use the incremental implementation for sample averages described in Section 2.3,

Exercise 5.7 Derive the weighted-average update rule (5.7) from (5.6). Follow the
pastbern of the decivation of the unweighbed rule [2.3].

5.7  Off-Policy Monte Carlo Control

Wo are now ready to present an example of the second elass of learning conirol
methosds we consider in this ook: ofl-policy methods, Reeall that the distinguishing
feature of on-policy methods is that they estimate the value of a policy while using
it for eontrol, In ofl-palicy methods these two [unctions are sepacated, The policy
nsed Lo goporate behavior, called the behovior policy, may in fsct bo unrelated to
Lhee podicy that i evaluabed and impeoved, called the erged policy, An advantage of
this separation is that the target policy may be deterministic (e, greedy), while
Lhee Teehiwvior palicy can continue to sample all possible actions.,

Oil-policy Monte Carlo conteol methods wse one of the techoigues presented oo the
proceding two sections. They ollow the behavior policy while learning about and
improving the targel policy. These techinigues reguires that the behavior policy has
a nongero probability of selecting all actions that might be selected by the target
podicy (ooverage), To explore all possibilities, we cequice that the bebavior policy be

Initialize, for all & € &, a € Als):
LFa,a) +— arbitrary
A, m) 1
&)+ a deterministic policy that s greesdy with respect to 63

Repeeat forower:
Generate an cpisode ualng any soft policy

Fort =T — 1.7 -2 ... downto (b
il f1';+|
E{Sﬂ|1’1]}‘ {ﬂ{Sll.qu::l | |r'|-"
Q5. Ar) — QIS Ae) + 7 77 [G — QIS A
(&) + argmax, {5, a)  {with ties broken consistontly)
If Ap w08 then ExitForLoop

g 1
W W

Figure 5.10: An off-policy every-visit MO control algorithm, using welghted importance
sampling. The polley = converges to optimal at all encountered states even though actbons
are selocted according to a different. soft. poliey o, which may change between of evien within
eplacdes,
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sl (L, that it select all actions in all states with ponezero probabilicy ).

Figure 5,10 shows an ofl-policy Monte Carlo method, based on GPI and weighted
importance sampling, for estimating g,. The target policy 7 is the greedy policy with
respect Lo G which is an estimate of e, The bebavior policy o can be anyihing,
but in order to assure convergence of 7 to the optimal policy, an infinite number of
returns must be obdained o cach pair of late and actioen, Thiz can be assueed by
choosing y to be z-soft.

A potential proldem is that this method learns only [rom the feds of episodes,
after the last pongrecdy action. I nongreedy actions are [requent, then learning
will T glow, particulacly Tor slates appearing in the early portions of long epizodes,
Potentially, this could greatly slow learning. There has been insufficient. experience
with ofl-policy Monte Carlo methods 1o assess how seriong this problem is, 170 s
serious, the most important way Lo address B0 i probably by incorpessding temporal-
difference learning, the algorithmic idea developed in the next chapter. Alternatively,
il = is less than 1, then the idea developed in the pext section may alse help signili-
cantly.

Exercize 5.8: Racetrack (programming) Coosider driviog & race car around
a turn like those shown in Figure 511 You want to go as fast as possible, bul not
s [asl as 1o ran ofl the track, Tnoour simplifed racetrack, the car is al ome of a
discrete sot of grid positions, the cells in the diagram. The velocity is alsn discrote,
a number of grid cells moved horizontally and vertically per time step. The actions
are inerements b the velocity components, Each may e changed by +1, =1, or 0
in one step, for a total of nine actions. Both velocily componentis are restricted Lo
b ponnegative amnd less than 5, and they cannol both e zero, Each episode hegins
in one of the randomly selected start states and ends when the car crosses the linish
line, The rewards are —1 for cach step that stays on the track, and =5 i the agent
tries to drive off the track. Actually leaving the track is not allowed, but the position
i5 always advanced by al least one oell along either Che borizontal or vertical axes,

Finish
line

Firmzh
s

Faning lina Saning ling

Figure 5.11: A couple of right turns for the reectrack task
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With these restrictions and considering only right turps, soch as shown in the lgare,
all epigodes are guaranbeed o terminste, yeb the optimal policy s unlikely to be
excluded. To make the task more challenging, we assume that on half of the time
steps the position i3 displaced Torwand or Lo the right by one additional ool beyond
that specified by the velocity. Apply a Monte Carlo control method to this task Lo
compute the optimal policy Trom each starting state,  Exhilsit several Grajectories
following the optimal policy.

‘5.8 Return-Specific Importance Sampling

The oll-policy methods that we have considered so far are based on forming importance-
sampling weights for returns considered as unitary wholes, without taking into ac-
count the returns” interpal structures as sums of discounted rewards, In this section
wi hriclly consider eutiing-edge research ideas for using this structure to significantly
peslivce the varianes of ofl-policy cstimators.,

For cxample, consider the case where episodes are long and < is significantly less
than 1. For concreteness, sy Lhal episodes last 100 sieps and that < = 0. The return
from time F will then be just G = Ky, but its importance sampling ratio will be

miAnlSe) wlANS) | ®lde|Saa)
1 ||.|.l:.l‘|||||.":'|:\|:l I||.|:.-‘|| .':|] #{.{mlh‘r;j

pling, the return will be scaled by the entire product, but it is reslly only necessary

b scale by the first factor, by Eﬂ—:ﬁ:—:} The other 9 [actors ;::I::E::]I :E:}: ::1":]'

are irrelevant because after the first reward the return has already been determined.
These Inter factors are all independent of the retuen and of expected value 1; they do
not change the expected update, but they add enormouwsly to its variance. In some
cases Lhey could even make the vardance infinite, Let ws now consider an idea for
avoiding this large extraneous variance.

a product of W0 factors . In ordinary importance sam-

The essence of the idea is 1o think of discounting as determining a probability of
termination or, equivalently, a degree of partial termination. For any + € [}, 1], we
can think of the return Gy as pactly lerminsding in one step, o the degree 1 — -,
producing a return of just the st reward, By, amd as pactly terminating aller fwo
ateps, to the degree (1 — )y, producing a return of /) + R;, and so on. The latter
degree eorresponds (o erminating on the secomd step, 1 —5, and nol having already
terminated on the first step, 7. The degree of termination on the third step is thus
(1 — =197, with the % rellecting that termination did noi oceur en cither of the Tirst
two steps. The partial returns here are called ol partial returmns:

G‘,‘f‘ﬁﬁl“+ﬁ“2+---+ﬁ'n, D=it=h<T,

where “flat” denotes the absence of discounting, and “partial” denotes that these
returns do ool extend all the way to lermination but instead stop at f, called the
horizon (and T is the time of termination of the episode). The convontional full
return Oy can be viewed as a sum of flat partial returns as suggested above as
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[ialLevars;

(s = Heya +’FR1:|!+’TZR:|:1+---+':|-T"_]R.T
= (1 -7}
+ {1 — vk (R + Hoga)
+ (1 =) (Rysr + Riga + Rygs)

+(1 - T]'TT_I_E{RM 1+ Hyye <-4+ Bry)
'|"'rT1_E_1 (Repr + RHepa + -+ Ry}
T-1
fa=t+1
Mow we need to scale the flat partial returns by an importance sampling ratio that
is similarly trumcated, As E;':" only involves rewards up to s borizon i, we only need

Lhee rabio of the probabilities up b b, We define an ondinary importanee-sampling
eatimator, analogous to (5.1), as

Tienen ((1-NERT bl 4+ AT 170G o
v btk
|T(=)
and a weighted importance-sampling estimator, analogous Lo (5.5), as
i) . T(t) 5T
Ell:']'l:.v] {“‘ _r:"::' Eﬁfﬁ_il "I'h B ]ll'?::hﬂ::k + ,.rT[t] t ].ﬂ: I:!}l:': [f]:]
! T
otc(s) [:{1 - -’]EhE¢]| Loptipgh 4 i1, {!:I}

We eall these two estimators discownding-owere imporiance sampling cstimators,
They take into account the discount rate but have no alfect (are the same as the
oll-policy egtimators Trom Section 5.5) if+ = 1.

Vis) =

Vis) =

. (5.9)

There is one more way in which the structure of the return as a sum of rewards
can be Laken inbe acoount in ofl-policy importanee sampling, a way that may be able
to reduce variance even in the absence of discounting (that is, even if v = 1). In the
ofl-palicy estimators (540 and (551, each term of the som in the nomerator is isell
A SN

T ea T T
wGy=py (R +yfla+--+7 "Ry
=i Res1 +70¢ Rz + 4" R (5.10)
The ol-policy estimators rely on the expected values of these terms; let us see i we
can wrile them in a simpler way, Mote (hat each sub-tecm of (510} @2 a prodoct of

a random reward and a random importanee-sampling ratio. For example, the first
sub-term can be written, wsing (5.3}, as

FTR.! - Ay |5 TI'|:.|"1|I+]|SH'|_]Trl::.":ngng.'.;r}_” JT[:‘!.T-_||ST_]]R|I ]
P (S plAei[Sear) plAcialSega) plAroa)Sroa)
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Now motiee thal, of all these fetors, only the st and the last {(the reward) aee
correlated; all the other ratios are independent random vardables whose expected
value is one:

w(Ag|Se)] LTl SE) .y
E""”‘f[m] - gﬂ{ﬂlhjn{ulﬁti - gi{ﬂlh} -h

Thus, Becanse the cxpectation of the prodoct of independent random vacialdes is the
product of thoir expectations, all the ratios excopt tho frst drop out in cxpectation,
leawing just

E[pf Ruy1] = E[p}" Resa] -

If wo repoat. this analyeis for the kth torm of [5.10), we get

E[of Rie] = o " Risa] -

It [dlows then that the expectation of our original term (5.10] can be wrillen
E[of G| =E|@].

where
Gi=p "B +9 Rz + 770 P Resa 4+ ol By

Woe call thiz ides per-rewerd imporiance sampling, I follows immediabely that there
is an altermate importance-sampling estimator, with the same unbissed oxpectation
a8 the OI5 estimator (5.4), using Gy

P 1eT) &
[Tial

which we might expect o sometimes be of lower varianoe,

I5 there a per-reward version of weighted importance sampling? This is less clear.
Bo far, all the estimators that have been propesed Tor this that we know of are ool
consisbont.

Vis) = . (5.11)

Excrcize 5.9 Modily the algorithm for ofl-policy Monte Carlo conteol (Figaee 5. 10)
Lo use the idea of the truncated weighted-average estimator (5.9, Note that vou will
lirst meed booconverh Chis equation to action valoes,

5.9 Summary

The Monie Carlo methods presented in this chapter learn value [unctions and op-
Limal policies Tvom experience in the form ol sample epasodes, This gives them al
least throo kinds of advantagos over DPF mothods, First, thoy can be used to learn
optimal behavior directly from interaction with the environment, with no model of
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Lhe enviconment’s dyoamics, Second, they can be used with simulation or somgple
meewlels, For surprisingly many applications it is casy to simolate sample cpisodos
even though it is difficelt to constroct the kind of explicit model of transition proba-
biilities reguived by D methods, Thicd, i is easy and eflicient o focus Monte Carlo
methods on a small subset of the states. A region of special interest can be accurately
eviluabed withowt going (o the expense of accurately evaluating the rest of Che state
sob [wie oxplore this lrther in Chapler 8.

A Tourth advantage of Monte Carle methods, which we discuss Iater in the book,
is that thev may be less harmed by viclations of the Markov property. This is
becanse they do not apdate Cheir value estimates on the basis of the value estimates
of suecessor states, In other words, it is becanse they do not bootstrap.

In designing Monte Carlo conteol methods we have Tollowes] the overall schema of
generalized policy depation (GPI) inteodsced in Chapler 4. GPI iovolves interacting
processes of policy evaluation and policy improvement. Monte Carlo methods provide
an alterpative policy cvaluation process, Rather than use a model 10 compuate the
value of each state, they simply average many returns that start in the state. Becanse
aostade’s value §s Lhe expected return, this average can beeome o good approsimation
to the value. In control methods we are particularly interested in approximating
action=value Tinctions, because these can be used o improve the policy withomt
requiring a model of the environment's trapsition dypamics. Monte Carlo methods
intermix policy evaluation and policy improvement steps on an episode-Tyv-episode
hasis, and can be inerementally implemented on an episode-by-episode basis.

Maintaining sufficien! exploralion is an issue in Monte Carlo conbrol methods. Tt
i5 not enough just to select thie actions currently estimated bo be Test, becanss then
no returns will be obtained for alternative actions, and it may nover be learned that
Lhey are actually better, Onpe approach is o gnere Chis problem by assuming thad
epissdes begin with state action pairs randomly selected to cover all possibilities.
Such erplorng stavis can sometimes be armanged o applications with simolated
epistdes, but are unlikely in learning from real experience. In on-policy mothods,
Lhe agenl commils Lo always exploring and treies o nd the best policy that still
explores. In off-policy methods, the agent also explores, but learns a deterministic
oplimal policy thal may be unrelated o the policy Tollowed,

(-policy prediction refers to learning the value lunction of a lergel policy from
data generated by a different dehovior policy. Such learning methods are based on
smne form of dmportence sompling, Lthal is, on weighting returns by the ratio of the
probabilities of taking the observed actions under the two policies.  Ovdinary im-
perctaiece soinpding wses a simple average of the weighted returns, whereas weighled
importance sampling nses a weighted average. Orndinary importance sampling pro-
duces unbiased estimates, ol has larger, possibly infinite, variance, whereas weighted
importance sampling always has finite variance and are preferred in practice. Despite
Lheir conceptual simplicity, off-pelicy Monte Carlo methods for both prediction and
control remain unseiiled and are & subject of ongoing research.

The Monte Carle methods treated in this chapter differ Trom the DP methods
Lreales] in the previous chapler in two major wavs, Fist, they operpie on sample
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ecxperience, amd thus can be used for divect learning without a model. Second, they
o et bootsteap, That s, they do ol update their value estimates on the basis
of other value estimates. These two differences are nod tightly linked, and can be
separpled. In the pext chapler we consider methodds that learn from experienee, like
bMonte Carlo methods, but also bootstrap, like DP methods.

Bibliographieal and Historical Remarks

The term “Monte Carlo” datos from the 19408, whon physicisis at Los Alamos de-
vised pames of chance that they could study to help upderstand complex plivsical
phenomena relating to the atom bomb, Coverage of Monte Carlo methods in this
sense can be found in several texthooks (eg., Kalos and Whitlock, 1986; Rubinstein,
1951,

An carly use of Monte Carlo methods to estimate action values in a reinforeement
learning context was by Michie and Chambers (1968), In pole balancing [Example
3.4}, they used averages of episode durations to assess the worth (expected balancing
“ile™ ) of each possible action in each state, and Chen sed these assessments Lo control
action selections. Their method is similar in spirit to Monte Carlo ES with every-
visit. MO estimates, Naremdea and Wheeler (1986) stadied a Monte Carlo method
[or ergodic finite Markov chains that used the rebwrn aceumulated from one visit fo a
abate 1o the next a8 o reward o adjusting a learning automaton’s action probabilities,

Barto and Dol (198 ) discossed policy evaluation in (he coptext of classical Mooie
Carlo algorithms for solving systems of linear equations. They wsed the analysis of
Churtiss (1954 to point oul the computational advaniages of Monote Carlo policy eval-
uation for large problems. Singh and Sutton [1996) distinguished between every-visit
and first-visit MO methods and proved pesulis relading these methods to reinforee-
ment learning algorithms.

The blackjack example is based on an example used by Widrow, Gupta, and Maitea
(1973). The soap bubble example is a classical Dirichlet problem whose Monte Carlo
solution was st proposed by Kakutand {1945; see Hersh and Griego, 1969 Doyle
and Spell, 1984). The racetrack exercise is adapted from Barto, Bradike, and Singh
(199%), and [rom Gardoer (1973).

Mounte Carle ES was introdiced in the 1998 edition of this beok., Thal may
have been the first explicit connection between Monte Carlo estimation and conirol
methusls based on policy Heration,

Efficient ol-policy learning has become recognized as an important challenge that
arizes in several felds, For example, it is closcly related 1o the idea of “inlerventions”
and “counterfactuals” in probabalistic graphical {Bayesian] models {eog., Poarl, 1065;
Balke and Pearl, 1994}, Oif-policy methods using importance sanpling have a long
history and vet still are not well understood. Weighted importance sampling, which
i5 alzo somedimes called normalized imporiance sampling (eg., Boller and Frieslman,
2008), is discussed by Hobinstein (1981), Hesterberg (1988), Shelton (2001), and
Liu (2001 among others. Combining off-policy learning with temporal-difference
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learning and approgimation methods inteodsces subile issees (hal we eonsider in
lster chaplers,

The target policy in off-policy learning s sometimes referred o in the literature
a8 the “estimation”™ policy, as it was in the first edition of this book,

Our treatment of the idea of discounting-aware importance sampling is based on
Lhe analysis and “Torward view™ of Sutton, Mahmeood, Precap, and van Hassell
(2004). Per-roward importance sampling was introdoced by Precwp, Sutton, and
Singh (20007, who called it “per-decigion” importance sampling,
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Chapter 6

Temporal-Difference Learning

Il one hiad to identily one idea as central and novel Lo reinforeement bearning, it wonld
undoubtedly be temporal-difference (T learning. TD learning is & combination
of Monte Carlo ideas amd dypamic programming (D) ideas,  Like Monte Carlo
methowds, T methods can learn divectly rom raw experience withoul a model of
the environment's dyvnamics. Like DP, TD methods update estimates based in part
on clher learmed estimates, withoul waiting lor a linal outcome (they boolstrap),
The relationship betweon TD, DP, and Monte Carlo methods is a recurring theme in
Lhee Lheory of reinforcement Iearning, This chapler s the beginning of eur exploration
of it. Belore we are done, we will see that these ideas and methods blend into each
other amnd can e eombinesd in many ways, In particular, in Chapler T we introdoes
thie TIN A) algorithm, which scamlessly intogrates TD and Monte Carlo methods.

As usual, we start by Tocusing on the policy evalustion or prediclion problem, thad
of estimating the value funetion o, for a given policy 7. For the condrol problom
(inding an oplimal policy ), DP, TD, aond Moote Carlo methods all use scme varialion
of generalized policy erption (GIPI), The differences in the methods are primarily
differences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use expericnce 1o solve the prediction problem.
Given some experience [llowing o policy 7, Twdh methods apdate their estimate o
of v, [or the nontorminal states 5, ocourring in that experience. Boughly speaking,
bMonte Carlo methods wail until the retwrn following the visit is known, then use
Lhat return as a targetl for VS A simple every-visit Mopte Cacle method suitalde
for nonstationary environments is

V(S « V(S) + n[r.-, _ V(s ]]: (6.1)

where &y 18 the actual return following timee 0, amd o 05 o constant step-size parameier
(c.f., Equation 2.4). Lot us call this meothod cwmsiont-o MO Whereas Monte Carlo
methods must wait until the end of the epizode to determine the inerement to V(5

125
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(only then is & konown), TIY methods peed wail ondy wntil the pext time step. Al
Ll £ 4+ 1 they immediately form a tacged and make o uselol apdate wsing the
observed reward By and the estimate V(551). The simplest TD method, known
as TD0), is

VIS « VIS +.:1[R,+| Vi 8) — VIS (6.2)

In effect, the target for the Monte Carlo update is (7, whereas the target for the TD
update 18 By + ¥V (501 )

Because the TTY method bases its update in part on an existing estimate, we say
Lhat 11 s a bootstrepping method, like DEP We know [rom Chapler 3 thial

rels) = E4|Gh | Si=4] (6.3)

= ET!'ET*R'E et 1 S-!=H‘
51=.'s]

=il
O
R+ *Rugein
= Ey Ry + y0e{Sepa) | Se=4]. (6.4}

= Ex

k=il

Roughly speaking, Monte Carlo methods use an estimate of (6.3) a5 a target, whereas
DI methods use an estimate of [(6.4) a8 a target, The Monte Carle targel is an
eatimate becanse the expected value in (6.3) is not known; a sample return is used
in place of the real cxpected return. The DP target is an estimate oot bocasse of
Lhee expected valies, which are assumed o be completely provided by a model of the
envimonment, but becanse v, (Sie ) i8 not known and the current estimate, V(8),
i5 nsewl instead,  The TD targel is an estimate for oth reasons: 06 samples the
cocpected values in (6.4) and it uses the current cstimate Voinstead of the true o
Thus, TIY methods combine the sampling of Monbe Cacle with the bootsteapping of
DP. As we shall see, with care and imagination this can take us a long wav toward
obiaining the advantages of both Monte Carlo and DI methods,

Figure 6.1 specifics TD{0) completely in procedural form.

Input: the policy & o be evaluated
Initialkze V&) arbitearily (eg., Vi) =0, %2 &)
Repeat (for cach epdsode):
Inbtialize 5§
Repeat (for cach step of epkode):
A+ action given by & for 5
Take action A, obaorve I, 5
V(8) + V(8) + af[R + 4V (5") - V(5)]
S5
untll 5 is terminal

Figure 6. 1; Tabtmlar TD{0) for estimating i,
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The disgram 1o the right is the backup diagram for tabular TD{0). The
vislue estimate for the state pode al the top of the backap diagram s wp- ?
dated on the basis of the one sample transition from it to the immediately (I)
following state, We reler to T and Moote Carlo updates as saneple irek-

wpa bevause they involve looking alead to a sample successor state [or TD(0)
slabe-action pair), using the value of the successor and the reward along

Lhe way to compute a backed-up value, and then changing the value of the

original state [or state-action pair) sccordingly. Sergle backups difler rom the faull
backups of DF methods in that they are based on a single sample successor rather
Lhan on a complete distrbabion of all possible sucoessors,

Example 6.1: Driving Home  Fach day as vou drive bome from work, vou tey Lo
prodict bow long it will take to get home. When you leave vour office, vou nole the
Limme, Lhe day of week, and anyihing else that might be relevant., Sav on Chis Friday
you are leaving al exactly 6 o'clock, and vou estimate that it will take 30 minutes
Lo el boane, As you reach yoor car iG s G05, amd vou podice it is starting Go radn,
Trallic is olten slower in the radn, 50 you recstimate that it will take 35 minutes Trom
then, or a total of AD minutes. Filteen minutes later vou have completed the highway
poction of your jowrpey o good Gme, As vou exit onlbe a secondary road vou el
your estimate of total travel time (o 35 minotes, Unfortunately, at this point youn get
sinck ehind a slow trock, and the road 12 loo parrow to pass, You end ap having
Lir follow the truck until you turn onto the side street where vou live at G4l Three
minubes laber vou are home, The sequence of states, fimes, and pradictions is s
as follows:
Elapsed Time  Predicted Predicted

Slate {trdvietes) Tine fo Goo Tolal Time
leaving oilice, [Mday al 6 L S0 3
reach car, raining 3 4 Al
exiting highway 20 15 35
2ndary road, behind truck 0 1 A
enlering home streel A0 3 435
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey,? We
are . discounting (v = 1), and thus the return for each state 15 the actual tme bo
o from that state. Tho value of cach state is the erpected time 1o go. The second
column of pumbers gives the current estimated vadue for each state encounberod.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
Lodad time (Ehe last eolumn) over the sequence, as in Figare 6.2 (lefi]), The arcows
ahow the changes in predictions recommended by the constant-o MO method (6.1),
[or v = 1. These are exactly the errors between Che estimatesd valos {predictes] Gime
b o) in cach state and the actual return (acinal fime to go). For example, when
woul exiled the highweay you thought (0 would take only 15 minoles more bo gel home,

'If this were & control problem with the objective of minimizing travel time, then we wonld of
course make the rewards the regofive of the elapsed time. But sinee we are concerned here only
with prediction {policy evaluation), we can keep things simple by nsing positive nombers.
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Figure 6.2: Changes vecomimended in the deiviog bome example by Moote Carlo methods
(left] and TD methods (vight ).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in Che estimate of (me (o go aller exiting the highway, The error,
€4y — V{5, at this time i cight minutes. Suppose the step-size parameter, o is 1,2,
Then the predicted time to go aller exiting the highway woould Tee revised apward by
fonr minutes as a result of this experience. This is probably too larnge a change in
Lhig eaze; the trock was probably just an unlucky break, In aoy event, the change
can only be made ofl-line, that is, alter you have reached home, Only al this poind
do vou know any of the actual returns.

I5 it pecessary (o waldl unbil the final outcome s known before learning can Tegin!
Suppose on ancther day vou again estimate when leaving your office that it will
Lake 30 minutes to drive home, but then you beeome stuck in s massive tradlic jam,
Twonty-five minubes after leaving the office you are still bumper-to-bumper on the
highway, You pow cstimate that it will take apother 25 minutes o gel home, Tor
a total of 50 minutes. As you wail in traffic, you already know that your initial
estimabe of 30 minabes was too oplimistic, Must yon wait aotil vouw gel home belore
increasing your estimate for the initial state? According to the Monte Carlo approach
wour s, Decase vou don’t ved kopow the toee return,

According Lo a TIF approsch, on the other hand, vou would learn imomesdiately,
shifting vour initial estimate [rom 3 minutes toward 5. In fact, each estimate would
b shilted toward the cstimade that immediately follows i, Beturming (o our s
dav of driving, Figure 6.2 [right] shows the changes in the predictions recommended
by the T pule (6.2) [Lhese are the changes made by the rule il o = 1), Each error
is proportional o the change over time of the prediction, that is, to the lemporal
defferences in prodictions,

Besides giving vou something to do while waiting in trallic, there are several com-
puitational reasons why it iz advantageous o learn based on vour currenl. predictions
rather than waiting until termination when vou know the actual return. We briefly
discuss some of these pexi. |
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6.2  Advantages of TD Prediction Methods

T methods learn their estimates in part on the basis of other estimates. They learn
o puess from a guess—Lhey Wdstbrap, I8 this o poosd thing (o do? What advaniages
do TD methods have over Monte Carlo and DPF methods? Developing and answering
auch gquestions will take the rest of this book and more, In this seetion we breielly
anticipate some of the answers,

Obwiously, TD methods have an advantage over DF methods in that they do
ool respuire a0 model of the environment, of its reward and next-stale probalslity
distributions.

The mext most obwions advantage of T methods over Monie Carlo methods is
that they are paturally implemented in an on-line, fully ineremental fashion. With
Monte Carlo methods one most wail unbil the end of an epizede, Becanse only then
i5 the return known, whereas with TD methods one need wait only one time step.
Surprisingly often this turns owl to be a critical consideration. Some applicstions
have very long episodes, so that delaving all learning until an epizsode’s end i too
slow, Diber applications are continuing tasks and bave po episodes ol all. Finally, as
wie iiles] in the previous chapber, some Monte Carlo methods mest ignoee or discount
epistdes on which oxporimental actions are taken, which can greatly slow learning.
T methods are much less susceplible to these proldems becase they learn Trom
each transition regardless of what subsequent actions are taken.

But are T methodds sound? Certainly it i eonvenient o learn one guess rom (he
next, without waiting for an actual outeome, bul can we siill guaraniee convergenee
Lo the correct answer?  Happily, the answer 8 yes. For any xed policy o, the
TD algorithm deseribod above has been proved to converge to oy, in the mean for
A constanl stepesize parameter i i s sulfliciently small, and with probability 10
the step-size parameter decreases according to the usual stochastic approximation
conditions (2,71, Most convergencee prools apply only 1o the table-based case of the
algorithm presented above [(6.2], Tl some also apply e Uhe case of general linear
function approximation. These results are discussed in a more general seiting in the
nexl two chapiers,

Il both TD and Monte Carle methods converge asvmpiotically o the correct pre-
dictions, then s patural pext guestion is “Which gets there lst?™ In other words,
which method learns faster? Which makes the more efficient. use of limited data? At
Chee current fime this s an open question in the sense (hal o one has been able Lo
prove mathematically that one method converges faster than the other. In fact, it
i5 nob even clear what is the most appropriste Tormal way Lo phease Chis guestion!
In practice, however, TV methods have usaally been found to converge faster than
constant-re MO methods on stochastic tasks, as illustrated in the following example.
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Example 6.2: Random Walk In this example we empicically compare (e
predicticn abilities of TTHO) and constant-g MO applisd to Che small Markoy reward
process shown in the upper part of Figure 6.5, All episodes start in the centor
state, C, amd procesd cither et or vight by one stale on each step, with egual
probability. This behavior can be thought of as due io the combined effect of a
[ieed pedicy and an eoviccnment's state-transition peolabilities, Dol we doopob care
which; we are concerned only with predicting returns howover they are generated.
Episodes terminate either on the extreme left or the extreme right,. When an episode
terminates on the right, a reward of 41 ocours; all other rewards are zero. For
example, a tvpical epsiode might consist of the Dllowing state-and-reward sequoenee;
CO0 B, C 00,0 E, 1. Because this task is undiscounted, the troe value of each
state is the probability of terminating on the right if starting from that state. Thus,
Ll Lo widue of the center stale i8 o0 (00 = 0.5, The true values of all the states, A
through E, are ;1“ ;::, ﬂ, EI and E The left part. of Figure 6.3 shows the values learned
by TDNO) approaching the true values as more episodes are experienced, Averaging
over many epissde sequences, the right part of the lgure shows the average crror
in the predictions found by TINO) and constant-a MO, Tor & vaciely of values af o,
as a lunction of oumber of episodes. In all cases the approximate value funetion
was initialized 1o the intermediate value Vis) = 005, lor all 5. The TD method was
consistently better than the MO method on this task. [ |
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Fipure 6.3 Resulis with the S-state random walk. Above: The amall Markoy reward
process penerating the eplodes. Left: Results from a single mun after various mumbers of
eplsodes. The estimate after W) cplsodes §8 about as close as they ever get to the tree
values; with a constant step-slze parameter (o = L1 In this ccample], the values fluctuate
isdefinktely in response to the euteomes of the most recent eplaodes. Right: Learning cueves
for TN amd comstant-re MO methods, for variows values of e, The performance measuree
shown i5 the reot mean-sguared (EMS) crror hetween the salie Tonction learned and the
tree valie finction, aveeaged over the Bve states. These data are averages over 100 different
seiberers of epkodes.
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Exercize 6.1 This is an exercise bo help develop vour infuition aboul why TD
methosls are often more eflicient than Moote Cacle methods, Consider the deiving
home example and how it is addressed by TD and Monte Carlo methods, Can vou
imagine a scenario in which a TD apdate would be betier on average than an Mooie
Carlo update? Give an example scepario—a deseription of past experience and a
current state—in which vou would expect the TE apdate to e better, Here's o hiot:
Suppose you have Iois of experience driving home rom work, Then vou move Lo
a new building and a pew parking Lot (but vou 20l enter Che bighway sl the same
place). Now vou are starting 1o learn predictions for the new building. Can you see
why TIN updates are likely to be moch better, at least indtially, in this case? Might
the same sort of thing happen in the original task?

Exercize 6.2 From Figure 6.3 (left] i appears thal the fiest episode esalis inoa
change in only V(A). What docs this tell you about what happened on the first
cpisele? Why was only the estimale for this one state changed? By exactly liow
much was it changod?

Excrcize 6.3 The specilic resulis shown in Figare 6.3 (lelt) are dependent on the
value of the step-size parameter, o, Do you think the conclusions about which
algorithm s better would e allected i a wider range of o values were used? Is
there a different, lxed value of & at which either algorithm would bave performed
signilicantly better than shown? Why or why not?

‘Exercise 6.4 In Figure 6.3 (right) the RMS error of the TD method seems to go
down amd then up again, particularly at high o'z, What eould bave cansed (his? Do
you think this always occurs, or might it be a lunction of how the approximate value
Munction was initialized?

Exercise 6.5 Above we stated that the true values for the random walk task are
%. F—:.—:. rd': arul E for states A through E. Describe at least two dillerent ways thad
these could have been computed. Which would you guess we actually used? Why?

6.3  Optimality of TD(0)

Suppose there = available ondy a linite amount of experience, say 10 episodes or 100
Limme 2leps, In this case, a common approach with incremental learning methods i=
Lo present the expericnce repeatedly until the method converges upon an answer.
Given an approximate value lunction, ¥V, the increments specilied by (6.1) or (6.2)
are computed [or evory time step £ at which a nonterminal state is visited, but the
wialue Iunetion & changed only opce, Ty Che sum of all the increments, Then all tle
available experience is processed again with the pew value lunction to produce a
new overall inerement, and so on, until the value inction converges, We call this
balch updating hecanse updates are made only after processing cach complete batch
of iraining data,

Under batch npdating, TD{0) converges deterministically io a single answer in-
dependent. of the step-size parameter, o, as long as o is chosen to be sulliciently
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BATCH TRAIMING
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Figure 6.4; Performance of TT0) and constant-oc MC under batch training on the random
walk task,

small, The constant-a0 MO method alzo converges deterministically under the same
conditions, but to a different answer. Understanding these two answers will help
us widerstand the difference between the two methods, Under pormad updating the
methods do not move all the way to their respective batch answers, but. in some sense
Lhey take steps in these directions. Before tryving to understand the Dwo answers in
general, for all possible tasks, we first look at a few examples.

Example 6.3: Bapdom walk under batch updating  Balch-updating versions
of TD(0) and constant-o MO were applied as follows to the random walk predic-
Lion example (Example 6.2). Aler each pew episode, all episodes seen so Tar were
Lrealed as a Batch, They were repeatedly presented to the algocithom, either TIM0] or
constant-ne MO, with o sufficiently small that the value fonction converged. The re-
sulting value lunction was then comparsd with e, and the average ool mean-souared
error acroas Lhe fve states (and across L0 independeont repetitions of the whole ox-
periment ) was plotted Lo oblain the learning curves shown in Figure 6.4, Note thad
the batch T method was consistently better than the batch Monte Carlo method.
|

Under batch training, constant-o MO converges to values, V), that are sample
averages of the actual returns experienced alter visiting each state s, These are
optimal cstimates in tho senso that they minimize tho mean-soguared error from the
actual returns in the iraining sei. In this sense it s surprising that the batch TD
methos] was able to perform better aceording (o Che ool mean-goguaced ercor measane
shown in Figure 6.4, How is it that batch TD was able to perform better than this
oplimal methoad? The apswer ig thal the Monte Carle method is optimal only in
a limited way, and that TIY is optimal in a way that is more relevant to predicting
returns, Bob first let’s develop our intuitions about different kimds of optimality
throngh another example.
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Example 6.4: You are the Predictor  Place yoursell pow in the role of the
predictor of returns Tor an unkoown Markov reward process, Suppose vou olserve
the Tollowing cight episodes:

LB O 1
.1
1

A0, B,
B, 1
E, 1
B, 1

1

mmmom

1]

1

This means that the st episode started in state A, transitioned te B with o reward
of I, and thon terminated from B with a reward of (1. The other seven opisodes wore
even shorter, starting from B and terminating immesdisdely. Given this batch of data,
what would vou say are the optimal predictions, the best values for the estimates
Vi{A) and V(BT Everyone would probably agree that the optimal value for V(B) is
;—,:. becanse six oul of the cight times in stade B the process terminated immediately
with a return of 1, and the other two times in B the process terminated immediately
with & return of 0.

Bui what is the oplimal value for the estimate V(&)
given this data? Here there are bwo reasonable answers,
One is to obsorve that 100% of the times the process was
in state A QL teaversed mmediately o B {with a reward
of 111; and since we have already decided that B has value
":}. therefore A must have walue f as well, One way of
viewing this answer is that it is based on first modeling

the Markov process, in this case as shown to the right,
and then computing the correet estimabes given the mode], which indesd in Chis case
gives V(A) = ;‘- This is also the answer that batch TDO) gives.

The oiler reasopable apswer §s simply o observe (hal we have seen A opee and
the return that followed it was (; we therefore estimate V{A) as 0. This is the answer
Chat bateh Monte Carlo methods give, Notios that it s also the answer thal gives
minimum sgquared error on the training data. In {act, it gives 2ero error on the data.
But still we cxpect the liest apswer Lo be better, 17 the process s Markoy, we expect
that the first answer will produce lower error on fadure data, even though the Monte
Carlo answer is betier on the existing data, [ ]

The alwwee cxample illustrates a geperal dillerence betweesn the cstimates Toand
by batch TD{) and batch Monte Carlo methods.  Batch Monte Carlo methods
alwavs find the cstimades thal minimize mean-squared ercor on Uhe Cradning sel,
whereas hatch TD(0) always finds the estimates that would be exactly correct for
Lhee maximum-likelihood mewlel of the Markoy process. In general, the meaeme-
likelifvwond estimate of a parameter is tho parametor value whose probability of gen-
erating the dala i3 greatest, In this case, the maximum-likelibood estimate is the
maolel of the Markov process [ormed in the obvious way from the observed episodes:
Lhee estimmaded transition probability Teom ¢ to g s the fraction of observed transitions
from 4 that wont o §, and the associabed expected roward is the average of the re-
wards observed on those transitions. Given this model, we can compute the estimate
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of Lhee value lunction that would e exactly correct 0§ the mode] were exactly eorrect,
This is called the cerfaindy-equivalence esbinade becpuse 00 §s couivalent Lo assming
that the estimate of the underlying process was known with cortainiy rather than
being approximated, In general, batch TINO) converges to the certainiyv-eoguivalenoe
catimatke.

This helps explain why TD methods converge more quickly than Moote Carloe
methods. In batch form, TIH is faster than Monte Carle methods becanse it com-
poabes Lhe rue certainty-equivalence estimate, This explains the advantage of TTD{O)
shown in the batch results on the random walk task (Figure 6.4). The relationship
Lir the certainby-eouivalenee estimate may also explain in part the spesd advaniage
of nonbatch TD{0) {og., Figure 6.3, right). Although the nonbatch methods do not
achieve cither the certainby-couivalence or the minimom sgquared-error cstimates,
Lhvey cmm be understomd as moving conghly in these directions, Noonbstch TD{0} may
b faster than constant-o MO because it s moving toward a betler estimate, oven
Choagh it is pod gedting ol the way there, AL Lhe current Lime pothing more delinite
can be said about the relative efficiency of on-line TD and Monte Carlo methods.

Finally, it is worth poting thad although the certainby-couivalence estimade s in
somme sense an optimal solution, it 5 almost never feasible to compute it directly. If
N s the pumber of states, then just forming the maximom-likelihood estimate of the
process may require N4 memory, and computing the corresponding value funetion
pequires on the order of N7 compuiational steps il dene conventionally, In these
Lerms it is indeed striking that TD methods can approximate the same solution using
memory no more than & and repoated computations over the training set. On tasks
with large stale spaces, TI methods may be the only feasible way of approximating
the certaintyv-equivalence solution.

Excrcize 6.6 Design an ofl-policy version of the TING] update that can Tae uzed
with arbitrary target policy 7 and covering behavior policy u, using at each step !
thee irmportance sampling ratio g 't (5.3).

6.4  Sarsa: On-Policy TD Control

W burn pow Lo Lhe wse of TD prediction methods foe e control problem. As usaal,
we [ollow the pattern of generalized policy iteration (GPI), only this time using TD
methuwls for the evaluation or prediction part. As with Moote Carlo moethods, we
face the nood to trade off exploration and cxploitation, and again approaches fall into
bwi main classes: on-policy and ofl-policy. In thiz section we presenl an on-policy
T control method.

The first sbep is 1o learn an action-vadoe linction rather than a state-value lunetion,
In particular, for an on-policy method we must estimate g-(s,a) for the corrent
behavior policy w and for all states s and actions o, This can be done using essentially
the same TD method deseribed above for learning v, Recall that an episode consists
of an alternating sequence of states and state action pairs:
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In the provious section we considered transitions from state to state and loarned the
vialues of states, Mow we consider transitions [rom state action pair 1o staleaclion
pair, and learn the value of state action pairs. Formally these cases are identical:
Lhey are both Markoy chains with a reward process,  The theorems assuring the
convergenee of state values under TD0) also apply to the corresponding algorithm
[or action values:

U5, Ae) +— Q5 Ae) + o | Bega + v Sep1, Arga) — 'f;"[-‘;:-r‘*d]- (6.5)

This update is done alter every iransition from a nonterminal state 5. IF
Spgr i3 termingd, then Q050 1, Argr ) 18 delined as sero, This rule uses every
element of the quintuple of events, (5, Ai. R, Sipr, A ), that make up
& brapsition from one state action pair o the pext, This guintuple gives
rise Lo the name Sarsa for the algorithm. The backup diagram [or Sarsa is
a8 shown (o the right.,

Saraa

It is straightforward io design an on-policy control algorithm based on the Sarsa
predicticn method, As in all oo-policy methods, we continoally estimate g, for the
behavior policy 7, amd ab the same time change 7 towand grosdiness with respect Lo
gr. The general form of the Sarsa control algorithm is given in Figure 6.5.

The convergence properlties of Che Sarsa algorithm depend on the patare of the
policy's dependence on 8. For example, one could use s-greedy or s-soft policies.
According bo Satinder Singh [personal communication], Sarss converges with prob-
ability 1 to an optimal policy and action-value function as long as all state action
paadrs are vigited an infimile oumber of mes amd the palicy converges in the Timii
to the greedy policy (which can be arranged, for excample, with s-greedy policies by
selling ¢ = 1/1), but this result has not yel been published in the literature,

Imitinlize: {Ma,a),%s © 8,0 © Afs), acbitrarily, and Qferminal-state, 1 = 0
Repeat [for each episode):
Initinlize 5
Chooee A from 5 using policy derived from Q) (e, e-grecdy)
Repeat (for each step of episode]):
Take action A, olserve &, 5
Choose A from 5 wsing poliey derived from (o, e-greedy)
QS A) - Q. A) + o[ R++4Q(S, ) - IS, A)]
e 554« A
until 5 & terminal

Figure 6.5 Sarsa:; An on-policy "T'D control algorithm,
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Example 6.5: Windy Gridworld Shown inset in Figure 6.6 i a standard grid-
world, with start and goal states, ol with cne difference; there (s a crosswind op-
ward through the middle of the grid. The actions are the standand four - wp, down,
right, and left—bul in the middle region the resuliant pext states are hilted op-
ward by a “wind,” the strength of which varies from column to column. The strength
of the wind is given Telow each eolumn, in pumber of cells shifled opward, For ex-
ample, if you are one cell to the right of the goal, then the action left takes vou Lo
Lhee cell just alowe the goal, Let us treat this as an andiscounted episodic task, with
constant rewards of —1 until the goal state is reached.

The graph in Figure 6.6 shows the resilis of applying e-gresdy Sarsa to this task,
with £ = (L1, & = (L5, and the initial values (Nz,a) = 0 for all 2,0, The increasing
slope of the graph shows that the goal i reached more apd more gquickly over e,
By S006 time steps, the greedy policy was long since optimal (s teajectory Dom i
is shown inset); contioed s-groody exploration kept the average episode length ad
about 17 steps, two more than (he minimam of 15, Nobe that Mopte Carle methods
cannol eazily be wsed on this task becanse termination is nol goaranteed for all
policies, IFa policy was ever Tound that cansed the agent 1o stay o the same stade,
thon the next episode would pover end. Step-by-step learning methods such as Sarsa
do ol have this problem becagse they quickly learn during Ihe episode Lhal such
policies are poor, and switch to something else. [ ]

Exercize 6.7: Windy Gridworld with King's MMowves  Hesolve the windy
gridworld task assnming cight possible actions, including the disgonal moves, rathor
Lhan the usual foowr, How much Tetber can vou do with the extra actions? Can you
do even better by including a ninth action that causes no movement at all other than
Lhat cansed Ty the wind?

170 5
150 4

100 4
Episodes

0 1000 2000 3000 4000 5000 6000 000 8000
Time steps
Figure G.6: Results of Sarsa applied to a gridworld [shown inset) o which movement is

altered by a locatbon-dependent, upwaed “wind.” A trajectory amder the optimal policy s
also sl
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Exercize 6.8: Stochaziie Wind  Be-solve (he windy gridworld task with King's
mowves, assuming Lhat the effect of (he wind, i there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the
Limme von move exactly according to these values, as in Uhe provions exercise, bl also
a third of the time vou move one cell above that, and another third of the time vou
e o cell below that, For example, i vou are one cell o the right of Che goal
and you move left, then one-third of the time you move one eell above the goal,
one-Lhird of the time you move two eells above the goal, and one-thicd of the Gime
youl move Lo the goal.

6.5 Q-learning: Off-Policy TD Control

Ome of the most important breakthroughs in reinforeemesnt learning was the devel-
opment of an off-policy TD control algorithm known as (-learning [(Watkins, 1984).
[z simplest form, one-slep Q-learing, §s delined by

(8, A} S Ap) + e [ By yy + m;m{n’{ﬂtl 1) — G5, A:]], { fh.03)

In this case, the learned action-value unction, &, directly approximales g., the op-
timnal action-value funetion, indopendent of the policy being followed. This dramat-
weally simplifies the anadysis of the algorithm and enabled early convergenee prools,
The policy still has an effect in that it determines which state action pairs are visited
and upelated, However, all that s requiced [or coreect convergence 15 thal all paics
continee to be updated. As we observed in Chapier 5§, this s a minimal requircment
i Lhe sense that any method guacantiecd (o lnd oplimal Tehavior in Che general case
must reguire it. Under this assumption and a variant of the wsual stochastic approx-
imation conditions on the sequence of step-siese paramelers, O has been shown Lo
comverge with probability 1 o g,. The Q-learning algorithm is shown in proceduaral
form in Figure 6.7.

What is the backup diagram for Q-learning? The role [6.6) updates a stabe-action
pair, g0 the top node, the root of the backup, must be a small, filled action node.
The: backup is also frome action nodes, maximiziog over all those actions possible in
the next state. Thus the bottom nodes of the backup disgram should be all these

Imitinlize: {Ma,a),%s © 8,0 © Afs), acbitrarily, and Qferminal-state, 1 = 0
Repeat [for each episode):
Initinlize 5
Repeat (for each step of episode]):
Cheoose A from 5 using policy desbved from 6F (eg., o-greedy)
Take action A, observe i, 57
QS5 A) e Q{5 A) + o R+ v max, Q5. a) — 5, A)]
S+ 5
until 5 & terminal

Figure 6.7: CQelearning: An off-policy UL control algorithm,
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action nodes, Finally, remember (hat we indicate taking the masxioum of these “nexi
action” podes with an are across Chem (Figoee 3.7} Can you gucess pow whal the
diagram 57 If so, please do make a guess before turning to the answer in Figure 6.9,

Example 6.6: CLHf Walking This gridworld example comparcs Sarsa and (-
learning, highlighting the differenee between on-palicy (Sarsa) and ofl-policy (-
lesrning ) methods, Consider the gridworld shown in the upper pact of Figure 6.8,
This iz a standard undiscounted, episodic task, with start and goal states, and the
usual actions causing movement up, down, right, and lefi, Beward s —1 oo all
transitions except those into the the region marked “The CLI" Stepping into this
region incurs & reward of — 100 and sends the agent instantly back 1o the stact,

The lower part of Figure 6.8 shows the performance of the Sarsa and O)-learning
methaosls with e-greedy action selection, £ = 001, Aller an initial transicot, Q-learning
learns values for the optimal policy, that which travels right along the edee of the
clill, Unpfortunstely, this resulis in s occasionally falling oflf the eIl becaose of
the e-greedy action selection. Sarsa, on the other hand, takes the action sclection
into aceount and Iearns the longer ot safer path through the upper pact of (he
grid, Although Q-learning actually learns the values of the oplimal policy, 118 on-
ling performance is worse than that of Sarsa, which learns the roundabout policy.
OF couwrse, i & were gradually redueed, then bolth methods would asymplotically
converge to the optimal policy. [ ]

f=-1 zafe paih

opfimal path

Sarsa
s, P | B B o A _,.H_II
Reward _soq fo = v el LAY a0 Y
per Q-leaming
apsiode
-75+1
-10d T T T T 1
i 100 200 300 400 500
Episodes

Figure 6.8; The cliff-walking task, The resulis are from a single ran, bot smoothed,
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Exercize 6.9 Why iz Q-learning considered an off-podicy conteol method?

6.6 Expected Sarsa

Congider the learning algorithm that is just like Q-learning excepl thal instead of
the maximum over next state action pairs it uses the expected value, taking inbo
account bow likely each action is ander Che current policy, That iz, consider the
algorithm with the update rule

CMSe. Ag) +— CSe. Ay) + o [an + TE[Q(Ses1, Ar) | Sesa] — {,}[5_!,.4.«}]
— Q50 A + o [R. o+ Y el ) QS a) — r;;[f;hm]]. (6.7)

bl that oiherwise ollows the schema of Q-learning (as in Figure 6.7), Given the
next state, Sipq, this algorithm moves delerministicelly in the same direction as
Barsa moves an erpeciolion, and accordingly i is called espected Soersa, 1is backup
diagram iz shown in Figure 6.9,

Expected Sarsa is more complex compulationally than Sarsa but, in return, i
eliminates the variance due (o the random selection of 4,5, Given the same amount
of experienoe we might expect it fo perform slightly better than Sarsa, and indeesd b
generally does. Figure G. 10 shows summary results on the cliff-walking task with Ex-
pocted Sarsa compared Lo Sarsa and Cklearning,. As an on-policy method, Expected
Larsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a signilicant improvement over Sarsa over a wide
range of values for the step-sise parameter o, In clill walking the stabe transitions
are all detorministic and all randomness comes from the policy. In such cases, Ex-
prected Sarsa can safely el o = 1 withoul sullfering any degradation of asymplotic
performance, whereas Sarsa can only perform well in the long min at a small value
of o, al which shori-term performance i3 poor, In Chis and other examples there is
a consistont empirical advantage of Expoctod Sarsa over Sarsa.

In these clill walking resulis we have taken Expecied Sarsa to be an on-policy
algorithm, but in general we can use a policy different rom the target policy 7 Lo
generabe bebavior, in which case Expected Sarss ecomes an ofl-policy algerithm,
For example, suppose 7 05 the greedy policy while behavior s more exploratory;
thon Expected Sarsa is exactly O-learning. In this somse Expected Sarsa subswmes

A A

(-learning Expected Sarsa

Figure 6.9 The backop diagrams for Q-learning and expected Sarsa.
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Figure 6.1k Interim and asymptotic performance of T conteal metlods on the clif-walking
task a8 a fonetbon of e ALl algosithmes nsed an s-greedy poliey with = =001, “Asyiptotbe”
performance 18 an average over LG cpisodes. These data are averages of over 500000 and
10 run= for the interim and ssymptotic cases respectively, The solid circles mark the best
interim performance of each method. Adapted from van Seijen ot al, (20065

and generalizes (-learning while reliably improving over Sarsa. Except [or the small
additional computational cost, Expected Sarsa may compledely dominste hoth of the
other more-woll-known TD conirol alporithms.

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
congtruction of their targed policies. For example, in Q-learning the targel policy is
the preedy policy given the current action values, which is defined with a max, and in
Sarsa the policy s often s-greedy, which also invelves & maximization operation. In
those algorithms, a maximum over estimated values s nsed implicitly as an estimate
of the maximum value, which can lead o a sipgoilicant positive biss, To see why,
consider a single state & where there are many actions a whose true values, g{a, a),
are all sero bub whose estimated values, GHs, a), are uncertain and thes disteibated
soane above amd some below sero, The maxioom of e troe values s wero, Dol he
maximum of the estimates iz positive, & positive bias. We call this marimizelion
bins
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Example 6.7: Maximization Bias Example The small MDP zhown insei
in Figure 6,11 provides a simple example of how maximizsation biss can bharm the
performance of TD control algorithms. The MDP has two non-terminal states A and
B. Eplzodes always start in A& with a choice Detween two actions, left and nght, The
right action transitions immediately to the terminal state with & reward and return
of wero. The left action transitions to B, also with a reward of sero, from which there
are many possible actions all of which cause immediate termination with a reward
deawn [rom a pormal distribution with mean =001 and varianee 10, Thus, the
expected return for any trajectory starting with left is —0.1, and thus taking left in
slate A 5 always aomistake, Meveribeless, our conteol methods may Tnvor left Tecanse
of maximization bias making B appear to have a positive value. Figure 6.11 shows
that C-learning with e-grosdy action seloction initially learns to strongly favor the left
action on this example. Even al asymplote, Q-learning takes the left action abouat 5%
more often than is optimal at our parameter settings (e = (L1, a = {11, and v = 1).

! ML L)

7ESf | | a@ |S&r.:r.|

% left ,
actions  so%|*
from A Q-leaming
Doube
25% CHeaming
5‘:[‘; ................................... optimal
1 100 200 300

Episodes

Figure 6.11: Camparison of O-learning and Donble O-learning on a simple episodic MDP
[shown inset). Cklearning initinlly learns to take the beft action much more often then the nght
action, and always takes it significantly more often than the 5% minimom probability enforeed
by s-grecdy action sclection with ¢ 0.1, In contrast, Donble O-learning is cssentially
unaffected by maximization bias, These date are sveraged over 10000 runs,  The initial
action-value estimates were @ero, Any tices in s-grecdy setion selection were broken rendomly,

Are there algorithms that avoid maximization bias? To start, consider a bandit
case in which we have noisy estimates of the sadue of each of many actions, ehbained
as sample averages of the rewards received on all the plays with each action. As we
discussed above, there will be a pogitive maximizabion as if we use the maxioom
of the estimates as an estimate of the madmum of the troe values, One way to view
L problem is that it s doe toousing the same samples (plays) both to determine
the maximizing action and to estimate its valoe. Suppose we divided the plavs in
twir sets and used them to learn two independent estimates, eall them 0y (a) and
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Qale), each an estimate of the true value gla), Tor all 2 £ A, We ecould then ase
ope esbimabe, say O, boodelermine the maximizing action A" = max; Chiel, and
the other, (fa, to provide the estimate of ita value, Gla(A%) = (Qa(max, ¢ (a)). This
estimate will then be unbiased in the sense that E[Qa(A%)] = g(A®). We can also
repeat. the process with the role of the two estimates reversed 1o vield a second
unbissed estimate O (max Cralal]. This iz the idea of dowbled learing, Mote thad
although we learn two estimates, only one estimate s updated on each play; doubled
learning doubles the memory cequirements, bl s no inceesse al all o the amaoant
of computation per step.

The idea of doubled learning extends maturally 1o algorithms for Tull MDPs, For
example, the doubled learning algorithm analogows to Q-learning, called Double -
lesrning, divides the me steps o two, pechaps by dipping & coin on each step, 10
Lhee coin eomes up heads, the apdate s

QuiSi, A + QilSe: A+ R +7Qa(S0s1, argmax G (Sya1.a)) ~Qi(Se: 4 ).
(6.8)

Il the coin comes up tails, then the same update s done with 0 and (s switched,
s thal Qg is updated, The two approsimaie valee [upctions are Created completely
avmmetrically. The behavior policy can use both action value estimates. For ex-
ample, an s-greedy policy for Double Q-learning could Tee based on the average [or
aum) of the two action-value estimates. A complete algorithm for Donble Q-learning
i5 given in Figare 6,12, This b= the algorithm used do prodoce the pesulis in Fig-
wree Gl In this example, doubled learning seems (o climinaie the harm cansed by
maximization bias. OF course thore are aleo doubled versions of Sarsa and Expectod
Sarsa.

Exercise 6.10 What are the update equations for Double Expected Sarsa with an
e-greedy targel policy?

Imitinlize: (s, o) amd Quis, o), ¥s © 8, a © Als), arbitrarily
Imitinlize: Oy { forminal-siate, )« Qe ferminal-siate, ) = 0
Repeat [(for each episode):
Initialize 5
Repeat (for cach step of episode];
Choose A from 5 using policy derived from Oy and €5 (e, e-groedy in € + Qal
Take action A, ohserve £, 87

With 0.5 probabilility;

Qu8,A) ¢ QuiS, A+ o R+ 1Qa( ", nrgmine, Qa(8,a)) — QulS. A))
else

Qul8,A) ¢ QalS, A} + o[ R+ 1Qu (8, nrgmie, Qa8 a)) ~ QalS, A))
S+ 5

until 5 B terminal

Figure 6.12; Double Q-leamming,
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6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are betier treated in a specialized way.
For example, our general approsch invelves learning an action-value Tunction, bl in
Chapter 1 we presented a TD method for learning (o play tie-tac-toe that learned
aonething moch more like o stabe-value DTinetion, 15 we ook closely al Chat example, it
becomes apparent that the lunction learned there is neither an action-value lnetion
nor a slate-value unetion in the usoal sense. A conventional state-value Tunelion
evaluates states in which the agent has the option of selecting an action, but the
atate-vadue Tinction used in tie-tac-toe evaluates board positions after the agent has
made its move. Let us call these affersiales, and value lunctions over these, affersiale
wrlue functions, Alersiates are uselul when we have knowledge of an initial part of
Lhe eovironment’s dypamics bul pol pecessarily of the [ull dyvosanics, For example,
in games we typically know the immediate effects of our moves. We know for each
possible chess mowve what the resulting pogition will De, bul nol ow our oppoonent
will reply. Alterstate value fuinctions are a natural way to take advantage of this
ki of kpowledge and thereby produce s more eflicient Iearning method,

The reaszon it is more efficient. to design alporithms in terms of alterstates is appar-
ent from the te-tac-toe example, A conventional action-value Iupetion would map
from positions aed moves to an estimate of the value, But many position move pairs
prodivee the same resulting pogition, as in (his exaomple:

X i

o 4 x SIERE

N/

o)X

In such cases Che position move pairs are dilferent bat prodoce the same “allerpo-
sition,” and thus most bave the same valee, A conventional actico-valee Tunetion
would have to separately assess both pairs, whereas an alterstate value function
wollld immedintely assess oth eqgually, Aoy learning about the position move padr
on the left would immediately transfer io the pair on the right.

Allerstates arise in many tasks, ool just games, For example, in gueaing (asks
thore are actions such as assigning customers to sorvers, rejecting customers, or
discarding information. In such cases the actions are in Iaet delioed in terms of Cheir
immediate effects, which are completely known, For example, in the access-control
auening example deserilasl o the previows section, a moeee ellicient learning method
could be obtained by breaking the environment’s dynamics into the immediate offoct
of the action, which is deterministic and completely known, and the unkoown random
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processes having (o do with the arrival and departuee of customers, The altersiates
woulld be the mumber of [ree servers alter the action Tt before the random processes
had produced the next conventional stabe. Learning an afterstate value inetion
over the alterstates would enable all actions that prodoced hie same pomber of [ree
servers Lo share experience. This should result in a signilicant reduction in learning
Limme,

It is impossible to describe all the possible kinds of specialized problems and cor-
responding specialized learning algorithms,  However, the principles developed in
this book should apply widelv., For example, altorstate methods are still aptly de-
seribed in terms of geperalized policy ileration, with a policy and (allerstabe) valoe
function interacting in essentially the same way, In many cases one will still face the
choioe etween on-policy and ofl-policy methods for managing the need Tor persistent
explaralion,

Exerciae 6.11 Dvescribe how the task of Jack™ Car Rental {Example 4.2) could be
reformulated in terms of afterstates. Why, in terms of this specific task, would such
a reformulation be likely 1o speed convergenoe!

6.9 Summary

In this chapter we introduced a new kind of learning method, temporal-difference
(T learning, and showed how it can Te applied to the reinfercement learning probs-
lem. As usual, we divided the overall problem into a prediction problem and a conirol
problem. T methods are alternatives 1o Monte Carle methods for solving the pre-
diction problem, In bolh cases, the extension o e conbrol problem is vin the iden
of generalized policy iteration (GPI) that we abstracted from dynamic programming.
This is the wlea thal approximate policy and valee Dinetions should interact in soach
a way that they both move toward their optimal values.

One of the two processes making up GPLD drives the valus [unction to accicatsly
prodict returns for the current policy; this is the prediction problem. The other
process drives Lhe policy Lo improve locally (e.g., Lo e sepreedy ) with respect (o the
current. value linction. When the first proeess is based on experience, a complication
arises concerning maintaining sullicient exploration. We can classily TD conirol
methowds according to whether they deal with thizs complication Ty using an on-
policy or ofl-policy approach. Sarsa is an cn-policy method, and O-learning is an
oll-palicy method, Expected Sacsa s also an oll-policy method as we present it bere,
There is a third way in which TD methods can bo extended to control which we did
ool include in this chapler, called actor-critic methods, These method are covered
in full in Chapter L.

The: methods presented in this chapler are boday the most widely used reinforee-
ment learning methods. This is probably due to their great simplicity: they can be
applied on-line, with a minimal amount of compatation, o experience generala] rom
interaction with an environmont; they can be exprossed nearly completely by single
equations that can be implemented with small computer programs. In the next few
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chapters we exbend these algorithms, making them slightly more complicated and
signilicantly more powerlul, All the pew algorithms will retain the essence of those
introduced hore: they will be able to process experience on-line, with relatively litile
computation, and they will be driven by TD errors, The special eases of TD methods
introduced in the present chapter should righily be called one-siep, labwlar, model-
Jeee T mcthods, In the pext three chapters we extend them oo multistep forms (o
link to Monte Carlo methods), forms that include a model of the environment (a link
L planning and dyvosmic programming), and then in varioons ways 1o forms using
function approcimation rather than tables (a link to artificial neural networks).

Finally, in this chapier we have discuszed T methods eotively within the contexi
of reinforcement. learning problems, but TD methods are actually more general than
this, They are general methods for learning (o make long-term predictions abot
dynamical systems, For example, TDV methods may be relevant to prediciing lnancial
data, life spans, election outcomes, weather patterns, animal behavior, demands on
power sladions, or customer purchaszses, 16 was only when TD methods were analvieed
as pure prediction methods, independent. of their use in reinforeement learning, that
Lheir theoretical properties first came o be well anderstood, Even so, these olher
potential applications of TD learning methods have not yet been extensively cxplored.

Bibliographiecal and Historical Remarks

As we oullined in Chapter 1, the idea of TD learning has ils early mools o oani-
mal learning psvehology and artificial intellipence, most notably the work of Samuel
(1959) and Klopl (1972), Samuel’s work is descrilusl as a case stady in Sectien 14,2,
Also related to TD learning are Holland's (1975, 1976} early ideas about consistency
among value predictions, These inlluenced ome of the authors (Bacto], who was a
graduate student from 1970 to 1975 at the University of Michigan, where Holland
was Leaching, Holland's ideas led to a nomber of TD-related systems, inclsding the
work of Booker (1982) and the bucket brigade of Holland (1986G), which is related to
Sarsa as discussed below.

G.1-2 Mozt of the specilic material from these sections is from Sution [ 1985], includ-
ing the TD{) algorithm, the random walk example, and the term “temporal-
difference learning.”  The characterizalion of the relationship (o dyoamic
programming and Monte Carlo methods was influenced by Watkins (19840),
Werbos [1957), amnd cthers, The wse of ackap disgeams bere and in other
chapters is new Lo this book.

Tabular TD(0] was proved to converge in the mean by Sotton (198%) and
with probability 1 by Davan (1992), based on the work of Waikins and Dayan
(1992}, These results were extended and strengthened by Jaakkola, Jordan,
and Singh (1994} and Tsitsiklis (1994) Ty using extensions of the power(ul
existing thoory of stochastic approximation. Other extensions and gonoral-
izations are coversd in later chapiers.
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The optimality of the TD algorithm under batch training was csiablizhed
by Sutton (1958), Iumivating this result is Barpacd’s (1993) decivation of
the TT) algorithm as & combination of one step of an incremental method
for learning o model of the Markov chain and one siep of o method for
computing predictions from the model. The term ceriainly equivalence is
[rom the adaptive conteel literatare {eg, Goodwin and Sin, 1984),

The Sarsa algorithm was introdoced by Bummery and Niranjan (198). They
explored it in conjunction with pearal petworks and called it “Modified Con-
nectionist (Flearning”. The name “Sarsa” was introduced by Sutton (1996).
The comvergence of one-step tabular Sarsa (Uhe form treated in Cthis chaplor)
has been proved by Satinder Singh {personal communication). The “windy
griclworld™ example was suggested by Tom Kalt,

Hollanad™s { 1986 bucket brigade idea evalved inte an algorithm closely related
Lo Sarsa,  The original idea of the buckel brigade involved chaing of rules
Lrigeering cach other; it focused on passing credit back from the current rle
Lor Lhee pules that triggered i, Ower Lo, (he ucked brigade came Go e more
like TDY learning in passing eredit. back to any temporally preceding rule, not
jusgt to the ones that triggersd the eurrent rule, The modern form of the
bucket brigade, when simplified in various natural ways, is nearly identical
Loy one-step Sarsa, as detadled by Wilson (1994},

)-learning was introdoced by Watkins (1980), whose outline of a conver-
gence prool was made rigorows by Walkins and Dayan (1992), More general
comvergenee resilts were proved by Jaakkola, Jordan, and Singh (1994} and
Tsitsiklis {19494,

Expected Sarsa was first described in an exercise in the first edition of this
book, then fully investigated by van Seijen, van Hasscll, Whiteson, and Weir-
i [2009], They established s convergence properiies and comditions under
which it will outperform regular Sarsa and Q-learning. Our Figure G.10 is
adapted Trom thelr results. Our presentation differs slighitly Teom theirs in
that thoy define “Expeocted Sarsa™ to be an on-policy method exelusively,
whereas we use this name for Che general algorithm in which the targel and
behavior policies are allowed to differ.

BMaximization bins and doubded learning were introduoed and extensively in-
vostigated by Hado van Hasselt (2010, 2011). The example MDP in Fig-
e G011 was adapied Teom that in his Figure 4.1 (van Hasselt, 2001 ).

The notion of an afterstate is the same as that of a “post-decizion state” [Van
Rov el al, 1997; Powell, 2010).



Chapter 7

Eligibility Traces

Eligibility traces are onpe of the basic mechanisms of reinforoement Iearning,  For
example, in the popular TIMA) algorithm, the X refers to the use of an eligibility
Lrace, Almost any bemporal-diiferenee ([TD) method, such as Q-learning or Sarsa,
can be combined with eligibility traces (o obdain & more general method that may
learn more efficiently.

There are two ways Lo view cligibdlity traces, The moee theorebical view, which we
emphasize here, 5 that they are a bridge from TD to Mopte Carlo methods. When
T methiods are augmented with eligibility traces, they produce a Tamily of methiods
spanning & specirum that has Monte Carlo methods at one end and one-step TD
pethwds at the obther. In between are intermediale methods thal ace often belier
than either extreme method. In this sense eligibility traces unifly TD and Monte
Carlo methods in a valualle and revealing way.

The other way to view eligibility traces is more mechanistic. From this perspective,
an elgibility trace 3 a temporary reeord of the ocourrence of an evenl, such as
Lhe visiting of & stale or the taking of an action. The trace marks Lhe memory
parameters associated with the event as eligible for undergoing learning changes.
When a TD error ocours, only the eligilde states or actions are assigoed credin or
blame for the error. Thos, eligibility traces help bridge the gap betwoen evenls and
training information. Like TD methods themselves, eligibility traces are a basic
mechanism for temporal credit assignment.

For ressons thal will Become apparent shoetly, the more theoretical view of eligi-
bility traces is called the forward view, and the more mechanistic view is called the
backerd view, The forward view is most uselul for anderstanding whal s computed
by methods using eligibility traces, whereas the backward view is more appropriate
for developing intuition about the algorithms themselves. In this chapler we present
both views amd then establish senses in which they are cquivalent, that iz, in which
they describe the same algorithms from two points of view. As usual, we first con-
sidder the prodiction proldem and then the contral problem, That is, we st eonsider
how eligibility traces are used to help in predicting returns as a linction of state for
o limed policy (Le, inoestimating o), Only alter exploring the two views of eligildlity

147
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Lraces within this prediction seiting do owe extend the idess 1o action values and
control methods,

7.1 n=-Step TD Prediction

Whiat is the space of methods Iying between Monte Carlo and TT methods? Consider
eatimating v, from sample episodes generated uwsing 7. Monte Carlo methods perform
a backup for each state based on the entire sequence of observed rewards Trom thad
state until the end of the episode, The backup of simple TD methods, on the other
hand, is based on just the one next reward, using the value of the state one step
later as a proxy [or Che remaining rewards, One kind of intermediate method, then,
would perform a backup based on an intermediate number of rewards: more than
ope, but less than all of them uodil fermination, For example, & bwo-step backup
would be based on the first two rewards and the estimated value of the state two
siops later, Similarly, we could have three-step backups, Tour-step backaps, and so
on. Figure 7.1 diagrams the spectrum of w-slep backupe for o, with the one-step,
simple T backup on the lelt and the ap-until-termination Mente Carle backup on
Lhe right.

The methods that use w-step backups are still T methods becanse they still
change an earlier estimats based on bhow 10 differs Trom & later estimate, Now the
later estimate is not ono step lator, but w stops later. Methods in which the temporal
difference extends over v steps are called pestep T mellods, The T methods
introduced in the previous chapter all use one-step backups, and bencelorth we call
Lhemm evie-slep TOV meelhds,

ID{1-step] 2-step S-ateg f-glep Monke Caria

Fipure 7.1: The spectrum ranging fom the one-step backups of simple T methods to
tlie np-until-termination backups of Monte Carlo methods, In betseen are the a-step back-

g, based on s steps of real rewards and the estheated value of the st pext stabe, all
apprapsiately discounted.
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More [ormally, consider the backup appliesd (o stale 5 a8 o resull of the siabe
reward sequence, Se Bepn, Sepny B B 57 (omitting the actions for simplic-
ity]. We know that in Monte Carlo backups the estimate of v, (5;) is updated in the
direction of the eomplete return:

Gy = Ryya +7Bya+ 7 Bya + - +47 'Ry,

where T is the last time step of the episode. Let us call this quantity the fengel of
Lhe Backup, Whereas in Monbe Carlo backups the target iz the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step reburs

G = Ry + Vil S,

where V5 0 & — B here s the estimate ab time § ol o, in which case (L makes sense
that vV} 5 «1) should take the place of the remaining terms vBijo + v Rz + -+
AT /e, as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two stops as it does after one. The target for a
bwi-sbep Largel s the two-siep return:

G = Rt +vRuz + 72 Vil Sepa).

where now 2V 5,4a) corrects for the absence of the terms v2 Ryq + 7 Roag + -+
AT Ul Ry Similarly, the target for an arbitrary n-step backup is the n-step return:

G = R+ Bz +9 + o+ YRegn + 7 Vil Bige), WY=L (T.0)

All the n-step returns can be considered approgimations to the full return, truncated
alter o steps and then corrected for the remaining missing terms by V(S

The time f 4+ n is called the horizen of the n-step return. IF the opisode onds
before the bocizon is reached, then the truncation in an ve-siep return ellectively
oceurs al the episode’s end, resalting in the conventional complete return. In other
words, ifé4+n > T, then ﬂ'E"I = {7;. Thuz, the last n f-step returns of an episode are
alwvs complete returps, and an infinife-step return i3 always acomplete return, This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodiec and continuing
Lasks cquivalently thal we introduced in Section 3.4, There we chose bo Leeal (he
Lerminal state as a state that always transitions {o itsell with sero reward. Under
Lhis trick, all n-step returns that last up o oor past lermination bhave the same valoe
as the complete return.

An re-step bockup is defined o e a ackap toward Che n-step ceturn, In the tals-
ular, state-value case, the n-step backup at time § prodoces the following inerement
S5 ) in the eatimated value V(51

A8 = n |G — V(8. (7.2)
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where o §5 a positive step-size parametler, as usual, The ncrements o Che estimated
vialues of the other states are deflined to be sero (Dels) = 0,5 # 5.

We deline the n-step backup in ferms of an inerement, rather than as a direct
update rule as we did in the previous chapter, in ocder G allow dilferent wavs of
making the updates. In on-fine apdating, the updates are made during the episode,
as goon as Lhe increment is computbed, In this case we write

viile) = Vels) + Ael=), Weed (7.3)

This kind of updating is what wo have implicitly assumed in most of the provious two
chapters, In off-liee wpdading, on the other bapd, the increments are accumilated
“on the side” and are not used Lo change value estimates until the end of the episode.
In this case, the approximate values Vils), ¥s € &, do not change during an episode
and can be denoted simpiy Vi), At the ond of the episode, the new value {(for the
nexl epissde] iz oblained by summing all the increments during the episode, Thad
i5, for an episode starting at time step (0 and terminating at step T, the update at
episede end [or any s £ &, 18

-1

Vi) & Vis)+ % Agfs). (74)

=l

You may recall how in Section 6.3 we carried this idea one step further, deferring
Lhe inerements until they eould e sammed over a whole set of episodes, in fadel
updaling.

For any value Dunction Ve 0 & — B, the expected value of the e-slep relurn is
guaranieed to be a better estimate of v than V) is, in a worsi-state sense. That is,
Ll worst crror widder Che new estimate 3 goarantecd o De less than or eogual o 5"
tirees the worst error under 1

mix E,[f;j"]|.r;f=s] — vels)] = 4" max|Viis) — vals)], (7.5)
for all = 1. This is called the error reduclion property of n-step returns. Becanse
of the error reduction praperty, one can show formally that on-line amnd olf-line TD
prodiction methods using n-step backups converge to the correct prodictions undor
appropriate techoical conditions, The v-step TD methods thos focme s Fanily of valid

methods, with one-step TD methods and Monte Carlo methods as extreme members.

Mevertheless, v-step T methods are rarely used becanse they are inconvenient
Lo implement.  Computing s-step reburns requires waiting n steps to observe the
resuliant rewards and states, For large w, this can beoome problematie, particoalarly
in control applications. The sipnificance of r-step TD mothods is primarily for theory
and for understanding related methods (hat are more conveniently implemented, In
Lhe pext few sections we use the dea of e-step TT methods 1o explain and justily
eligihility trace methods.

Example 7.1 n-step T Methods on the Random Walk  Consider using
ri-slep TD methods on the random walk task described in Example 6.2 and shown
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in Figure 6.5. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V(s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V(E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V(D) and V(E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a —1 outcome on the left,
all values initialized to 0), which we use as a running example in this chapter. Results
are shown for on-line and ofl-line n-step TD methods with a range of values for n and
a. The performance measure for each algorithm and parameter setting, shown on the
vertical axis, is the square-root of the average squared error between its predictions at
the end of the episode for the 19 states and their true values, then averaged over the
first 10 episodes and 100 repetitions of the whole experiment (the same sets of walks
were used for all methods). First note that the on-line methods generally worked best
on this task, both reaching lower levels of absolute error and doing so over a larger
range of the step-size parameter « (in fact, all the off-line methods were unstable for «
much above 0.3). Second, note that methods with an intermediate value of n worked
best. This illustrates how the generalization of TD and Monte Carlo methods to n-
step methods can potentially perform better than either of the two extreme methods.
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Figure 7.2: Performance of n-step 1D methods as a function of e, for various values of n,
on a 19-state random walk task (Example 7.1).

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a different value of n? How about the change in left-side outcome from
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0t —17 Would that bave made any difference in the Test value of o?

Exercize 7.2 Why do vou think oo-line methods worked better Shan of=line methods
on the example task?

Exercize 7.3 In the right part of Figure 7.2, notice that the plot for n = 3 iz
different from the others, dropping to low performance at a much lower value of o
than similar methods, In fact, the same was observed for v =5, n =T, and n =9,
Can vou oxplain why this might have been 507 In fact, we are nol. sure ourselves. See
http: S fvww, s, utexas, edu/ " ikarpov/Classes/AL/RandomWalk/ [or an allempl
at a thorough answer by [zor Karpov.

7.2 The Forward View of TI(A)

Backups can be done not just toward any n-step return, but toward any average of
ve-slep returns, For example, a backup can be dope toward o fargel thad is bhall of &
Pwo-sbep return and hall of & foar-step retorn: %{;11’] + .-lGE'”. Any zed of relurns can
b averaged in this way, oven an infinite sot, az long as the weights on the component
peburns are positive and sum to 1, The composite return possesses an error reduclion
property similar to that of individual w-step returns (7.5) and thes can be used o
congtriect backups with guarantos] eonvergence properties, Averaging produces a
substantial new range of algorithms. For example, one could average one-step and
infinite-step returng o oblain apother way of interrelating TIY and Mopte Carcle
methods. In principle, one could even average experience-hased backups with DIP
backups to gel a simple eombination of experienoe-lased and model-baged methiods
(soo Chapler 8).

A backup that averages simpler component backups 5 called
o comnpler backup, The backup diagram Tor a complex backup
consists of the backup diagrams [or cach of the component backups
with a horisontal line above them and the weighting fractions
bolow. For example, the complox backup for the case mentionod
b the start of this section, mixing hall of a two-siep backup and
halfl of & lour-step backup, has the diagram shown to the right.

The TIMA) algorithm can be undersiom] as one particular way
of averaging n-step backups. This average contains all the n-step
backups, each weighted proportional to A" 1, where A € [0, 1], and
normalized by a factor of 1 — A to ensure that the weights sum o
1 {see Figure 7.3). The resulting backup is toward a return, called
Lheee A-refaen, defined by

b=

™

ol
Gr = (=2 A G,

r=1

Fipure 7.4 further illustrates the weighting on the sequoence of n-step returns in the
A-return. The one-step return is given the largest weight, 1 — A; the two-step return
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TDiL), #=return
I._;I. L ¥ ¥
(1=} &
{1=h) 32 .
Yl ) ;
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Fipure 7.3: The backap digeam for TDA). IF A = 0, then the overall backup reduces to its
first coanponent, the one-step TT backop, wheeeas if 5 = 1, then the overall backop redoees
tas s last component, the Moute Carlo backgs.

i5 given the pext largest weight, (1 — AL the three-glep return 15 given the weighi
(1 — A)A% and so on. The weight [ades by A with each additional step. Afier a
torminal state has boen reachod, all subsequent w-step returns are equal to & IF we
wanl, we can separale Lhese posi-termination terms [rom the main sum, yielding

Ted-1
b= (1-A Y el + aTrG, (7.6)

n=I1

as imdicated in the Gguees.  This equation makes i clearer what happens when
X = 1. In thiz case the main sum goes (o zero, and the remaining term reduees Lo
Lhee copventiona] retarn, Gy Thus, for A = 1, backing up acconding to the A-return
i# the same as the Monte Carlo algorithm that we called constant-a MC (6.1) in the

waight given ko
the 3-siep returm tatal area =1
is (1 At

waighl givan o
actual, linal retum
T .:'..l |

s
e
¢ T

Time ——=

Figure 7.4: Weighting given in the A-return to cach of the a-step returns,
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previous chapter. On the other hand, if A = 0, then the A-return reduces to Ggl), the
one-step return. Thus, for A = 0, backing up according to the A-return is the same
as the one-step TD method that we called TD(0) (6.2) in the previous chapter.

We define the A-return algorithm as the method that performs backups towards
the A-return Gg‘ as target. On each step, (, it computes an increment, A¢(S), to the
value of the state occurring on that step:

A(S) = a[(;g‘ - V},(St)]. (7.7)

(The increments for other states are of course A;(s) =0, for all s # 5;.) As with n-
step TD methods, the updating can be either on-line or off-line. Figure 7.5 shows the
performance of the on-line and ofl-line A-return algorithms on the 19-state random
walk task (Example 7.1). The experiment was just as in the n-step case (Figure 7.2)
except that here we varied A instead of n. Note that overall performance of the
A-return algorithms is comparable to that of the n-step algorithms. In both cases we
get best performance with an intermediate value of the truncation parameter, n for
n-step methods and A for the A-return algorithm.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time
to all the future rewards and decide how best to combine them. We might imagine
ourselves riding the stream of states, looking forward from each state to determine
its update, as suggested by Figure 7.6. After looking forward from and updating
one state, we move on to the next and never have to work with the preceding state
again. Future states, on the other hand, are viewed and processed repeatedly, once
from each vantage point preceding them.

The A-return algorithm is the basis for the forward view of eligibility traces as used

in the TD(A) method. In fact, we show in a later section that, in the off-line case,
the A-return algorithm is the TD(\) algorithm. The A-return and TD()\) methods
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Figure 7.5: Performance of all A-return algorithms on the 19-state random walk (Example
7.1). On-line is better, as are intermediate parameter values.



7.4, THE BACKWARD VIEW OF TD{A) 155

Figure 7.6; The forward or theoretical view, We decide bow to update each state by leoking
forward to future rewards and states,

use the A parameter to shilt from one-step T methods to Monte Carlo methods.
The specilic way this shill is dooe is interestiog, bul pol obviowsly betber or worse
than the wav it is done with simple n-step methods by varving v, Ultimately, the
sl compelling motivation for the X way of mixing r-step backups is that there is
a simple algorithm— TD{AY— for achieving it. This is a mechanism issee rather than
# theoretical one, In the pext few sections we develop the mechanistic, or backward,
view of eligibility traces as used in TD{A).

Exercize T.4 The parameter A characterizes how [ast the exponential weiglhting in
Figure 7.4 [alls off, and thus how far into the foture the A-return alporithm looks in
determining s backup, Bul a rabe [elor such as A §s somelimes an awkward way
of characterizing the speed of the decav. For some purposes it is betler io specily a
Ll constant, or ball-life, What is the equation relatiog A amd the hall=life, 75, the
Lirne by which the weighting sequence will have Fallen to halfl of its initial value?

7.3 The Backward View of TD{A)

In the previous section we presented the forward or theoretical view of the tabular
TN A) algorithm as a way of mixing backups thal parmametrically shilis from a TD
method to a Monte Carlo method. In this section we instead define TD{A) mechanis-
Lically and show thal it can closely approgimate the forward view, The mechanistic,
or backwaerd, view of TD{A) is useful becanse it is simple conceptually and computa-
Licnallv, In partieular, the forward view iisell s ool directly implementable ecanse
it is amusal, using ab each step knowledpge of what will happen many steps later.
The backward view provides a causal, ineremental mechanizm for approximading the
forward view and, in the off-line case, for achieving it exactly.

In the backward view of TIMA), there is an additional memory varable associated
with each state, Qs eligebifity boce. The eligibility trace Tor stale 5 al tioe © s
a random variable denoted Fi{s) € B'. On each step, the eligibility traces of all
non-visited states decay by A

Ey(8) = vAE _1(8), Yaec B, a# 8, (7.8)

where 7 is the discount rate and A is the parameter introduced in the previous section.
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Hencelorth we refer 1o A as Lhe trece-deoy pararneter, What about Che trace for 5,
Ll ome state visited ab time £F The classical eligibility trace for 5 decays just like
for any state, but is thoen ineremented by 1

Ei( 8 =~vAE_1(5) + 1. (7.4
This kind of eligibility trace s called an accwmadaling trace because 10 accimulates

each time the state is visited, then fades away gradually when the state is not visited,
a8 llustrated as illusieated below,

accumulating eligibility trace

times af visits to a stale

Elgibility traces keep a simple rocord of which staies have been visilesd recently,
where “recently™ is defined inoterms of 45 The traces are said (o indicate Uhe degres
Lo which each state is eligible for undergoing learning changes should a reinforcing
evenl occur,  The reinforcing events we are coneernesd with are the mement-Ty-
moment onc-step TD errors. For example, the TD error for state-value prediction
i

fp = Ry + 1Vl S ) — WilS). (7.10)

In the backward view of TD{A), the global TD error signal triggers proportional
updates Lo all recently visitsl stales, in propoction o their eligibility braces;

AVi(s) = ad E(s),  forall s € 8. (7.11)

As always, these incroments could be done on each step to form an on-line algorithm,
or saved] until the end of the episode to prodoce an ofl-line algorithm. In cither case,
equations (7.8 7.11) provide the mechanistic definition of the on-line and off-line
TN A) algorithms. A complete algorithm for on=line TDNA) is given in Figure 7.7,

The backward view of TD(A) is oriented backward in time. At each moment we
look ab the current TD error and assign it backward Lo each prior state acoording Lo
Lhee 2late’s eligibility teace al that time, We might imagine ourselves riding along the
stream of stabes, computing TD errors, and shouting them back to the previously
visited siates, as suggested by Figure 7.8, Where the T error and traces come
torother, wo got the update given by (7.11).

To bertber understamnd the backward view, consider what happens sl varions values
of A IEA =1, then by (7.9] all traces are woro at | oxeep. for the trace corresponding
L Sp. Thus the TIMA) update (7.11) reduces 1o the simple TD rule (6.2). This i=
why that algorithm was called TINO). In terms of Figure 7.8, TID{) is the case in
which only the ame stale preceding the current one 5 changed by the TD error, For
larger values of A, but still A = 1, more of the preceding states are changed, but cach
more temporally distant state is changed less because its eligibility trace s smaller,
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Initinlize V(a) arbitrarily (bot set to 0 5 is terminal )
Repeat {for each episode):
Initinlize: E{s) = 0, forall s © &
Initinlize 5
Lepeat {for each step of episode):
A i action given by 7 for S
Take action A, observe reward, R, and next state, 57
& R+4VIS) - V(S

El5y+ EF+1 [aceumulating traces)
ar K5+ (1 —a)B 5+ 1 [dutch trwces)

ar K5+ 1 [replacing traces)

For all 5 € &:

Via) « Via) + od Eis)
Eia) + v AE(s)
S g
untll 5 is terminal

Figure 7.7 On-line tabolar T A,

as sugrested by the pure. We say that the earlier states are given less eredil for the
T} ervor,

Il & = 1, then the credit given o earlier states [alls only by~ per step. This
Lugrps ol fo be just the right thing e de o achieve Moople Carlo bebavior, For
example, remember that the TDY error, &, includes an undiscounted term of B g.
In passing this back & steps 6 needs 1o be discounbed, like any reward ina ceturn,
by 4%, which is just what the falling eligibility trace achieves. If A = 1 and v = 1,
then the eligibility traces do pod decay al all with timee, In this case the method
behaves like a Monte Carcke method for an andiscounted, episodic task, ITA = 1, the
algorithm is also known as TD{1).

Figure 7.8 The backward or mechankstie view., Each update depends on the corrent TD
error combined with clgibility tracos of past events,
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TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, il a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current, step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well the backward-view TD(\) algorithm does in approximating the ideal of the
forward-view A-return algorithm. The performances of on-line and off-line TD(A)
with accumulating traces are shown in Figure 7.9. In the ofl-line case it has been
proven that TD(A) and the A-return algorithm are equivalent, and here we see em-
pirically that the performances of off-line TD(A) (Figure 7.9, right) and the off-line
A-return algorithm (Figure 7.5, right) are identical. However, recall that the off-line
case is not our main focus, as all of its performance levels are generally lower and ob-
tained over a narrower range of « values than can be obtained with on-line methods,
as we saw ecarlier for n-step methods (Figure 7.2) and A-return methods (Figure 7.5),

and we see now for TD(\) (Figure 7.9).

In the on-line case, the performance of TD(A) with accumulating traces (Figure 7.9,
left) is indeed much better and closer to that of the on-line A-return algorithm (Fig-
ure 7.5, left). If A = 0, then in fact it is the identical algorithm at all @, and if «
is small, then for all A it is a close approximation to the A-return algorithm by the

On-line TD()), accumulating traces  Off-line TD()), accumulating traces
’ = off-line A-return algorithm

055,

0.45
RMS error
over first g4t

10 episodes
035}

03F

0.25 - =8 -

¥ (@3
Figure 7.9: Performances of on-line and off-line TD(A) with accumulating traces on the 19-
state random walk (Example 7.1). On-line is better, as are intermediate parameter values.

03
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e of each episode, However, i oth parsmeters acve lacger, [or example A > 0.9
and oo = 005, then the algorithmes perform substaotially dilferently:  the A-retarn
algorithm performs a little less well whereas TID{A) is likely to be unstable. This is
ool a berrilde proldem, as these parameter vadues are higher Ghan one would want Lo
use anvway, but it is a weakness of the method.

7.4 Replacing and Dutch Traces

Twor alternative types of eligildlity traces have been proposed o addeess the limita-
tions of accumulating traces. All three tyvpes decay the traces of non-visited states
in the spme way, that is, aceordiog to (T.8), Dul they dilfer in how the visites] stale
is incremented. The frst alternative type is the replocing brace. Suppose a staie is
visibed and then revisited before the trace doe o the st visit bas Dolly decayed o
zera. With accumulating traces the revisit causes a lurther increment in the trace
(7.9}, driving it greater than 1, whereas, with replacing traces, the trace is simply
resel Lo 1

B[S =1. (7.12)

In the special case of X = 1, TIMA) with replacing traces is closely related (o [rsi-visii
bMonte Carlo methods.

The second allernstive tvpe of eligibility trace, called the dalel frace, can be
viewed as intermediate between accumulating and replacing traces, depending on
Lhee slep-sise parameter o, Dutch traces are defioned Ty

Ey(81) = (1 — a)yAE 1S + L. (7.13)

MNote thal as o approaches zero, the dulch trace becomes the accumulating Leace,
and as o approaches one, it becomes the replacing trace.

| | [ limes of slate vigits

M_ accumuating fraces

M-__Jw\\-»—__,_ dutch fraces (o = 0.5)
| ' "-—__J'“"——___rh*““--__,_ reqgiazing fracas

Figure 7.1k The theeo different kinds of traces. Acewmulating traces add up each tioe
a state B visited, whereas replacing traces ame meset o one, and duteh trces do something
i-betwesn, depending on o (heee we show them for o = 0.5]. In all cases the traces decay
at a eate of 54 per steps; heee we show <A = (08 such that the teaccs ave a tlime constant
aof approsdmately 5 steps. For aosemse of step length, note that the last four visits are on
SICeesaIve shops,




Lin) CHAPTER 7. ELIGIBILITY TRACES

On-line TD(x), replacing traces On-line TDx), dutch traces

a5 = ; . -
a=1 - -

D&+

RMS error

over firgt  pa
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Fipure 7.11: Performances of TIA) with replacing and duteh traces on the 19-state random
walk [ Exarmple 7.1].

The porformances of TD{A) with the two new types of traces are shown in Fig-
wee 7,01, In bolh cases, performance i more robast o the parameter valives Chan
it is with accumulating traces (Figure 7.9, right). The performance with replacing
Lraces miay be slightly Detter on this problem, Bat it s dotch traces which we would
recommend as the best state of the art. One reason for this is that replacing traces do
ool generalize completely to the inetion approximation methods we consider in the
next part of the ook, Ancther is that replacing traces perform significant]y worse
than dutch traces on other tabular problems (van Seijen et al., 2005). Moreover, the
performance with dutch traces (above, lefl) achieves our goal of an on-line cansal
algorithm that closely approximates the on-line A-return algorithm (Figure 7.5, left).

There ig quite a bit more G sy abool Che dalch trace, the A-return, and algo-
rithmic equivalences, but we postpone it until we bave introduced linear function
approximation in Chapler 3 In this more geperal setting we can cover all eases in
one prosentation with a simpler notation.

7.5 Sarsa(\)

How can eligibility traces be used not just for prodiction, as in TD{A), but for control?
As vsual, the main idea of one popular approeach is simply to learn action values,
s 8, a), rather than state values, Vi(s). In this section we show how eligibility traces
can e combined with Sarsa in o steaightforward way Lo produce an on-policy TD
control method.  The eligibility trace version of Sarsa we call Sarsa{A). and the
original version presented in the previous chapier we heneeforth call ere-step Sars,
or Sarsafil).

The idea in SarsadA) is to apply the TDHA) prediction method (o state action pairs
rather than to states. Obviowsly, then, we need a trace not just for each state, bt
for cach state action pair. Let Eifs,a) denote the trace [or state action pair =, a.
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Sarsalh)

T Sf.calj'

(1=&) &
{1—iy a2

¥ =1 I . I'—ET
T

Figure 7.12: SarsalX)'s backup disgram.

The traces can be any of the three Lypes —accumolsting, replace, or dutch—and
are updated in ossentially the same way as before oxeep. of course beoing triggored
by wisiting the state - action padr (here given using indicator-Tinetion notation Le_y,
which is equal to 1 if 2 =y and ) otherwise):

Ei(s,a) = yAEi1(#.a) + La—5,14— 2, [accumulating)
Ei(s,a) = (1 —a)yAE 1(s,a) + Li-g le-n, {duteh)
Ei(a,a) = (1 — Le=g, 1oy, JrAE;_1{a,a8) + Le—g,1a—4, (replacing )

for all 5 € &, 0 € A, Mherwise SarsalA] is just like TDHA), substituting state-action
variables for state variables (s, a) for Vi(z) and £ (s, a) for £(a):

(e, a) = Qala, a) + ad By (=, a), for all 8,0 (7.14)
where

e = Regr + Qe Sesr, Arpr) — Qul Sry Au ) (7.15)

Figure 712 shows the backup disgram for Sarsald), Motice the similarity to the
diagram of the TD{A) algorithm (Figure T.3). The first backup looks ahead one full
slep, o the pext siale action pair, the second Iooks abead two sieps, 1o the second
state action pair, and s0 on. A final backup is based on the complete return. The
vi-slep ackups are now definesd with respect to Che current actiop-value linction, G
(e, (T.1)):

{?:-:“] = R+ 7Bz 78+ 47 R 7" Siims Apsn), ¥n = 1L (T.16)
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The: welghting of each n-step backup in the A-return s just as in TDA) and the
A-return algorithm (7.6).

One-stop Sarea and Sarsa{A] are on-policy algorithmes, meaning that they appros-
imate g5, @), the action values for the current policy, =, then improve the policy
gradually based on the approximate values for the corrent policy. The policy im-
provernent can be done inmany different wavs, as we hoave seen throonghioont this Book,
For example, the simplest approach is to use the s-groedy policy with respect to the
current actiop-value estimates, Figure 7,13 shows the complete SasalA) algorithm
for this case.

Initinlize L5, a) arbitrarily, for all 5 € 8,0 ¢ Als)
Bepeat [for each episode):
Els.a) =0, for all 5 € 8,0 ¢ Als)
Initialize S, A
Bepeat (for each step of episode):
Take petion A, olserve fF, 587
Chorse A" from 57 wsing policy derived from @ [eg., c-groedy)
F i B4 Q8" A~ Q8 A)

E(85 A)+ B85 A)+1 [aceumulating traces)
ar BIS A) + (1 — a)E[S A)+ 1 [clintedy trmes)
ar B8 Al + 1 [replacing traces)

For all & € & o< A=)
(N, ) £ LMa a) + adBs a)
Elaa) + 5 AE5, a)
S8 A4+ 4
wuntil 5 k& terminal

Figure 7.13: Tabular Sarsal ).

Example 7.2: Traces in Gridworld The use of eligibility traces can substantially
incresse Lhe elliciency of conteo] algorithms, The reason for this is illustrated by ile
gridworld example in Figure 7.14. The first panel shows the path taken by an agent
in a single opisode, ending at a location of high reward, markod by the *. In this
example the values were all initially 0, amd all rewards were sero excepl for a posibive

Action values increased Action valees increased
Faih faken by one-step Sarsa by Sarsalh) with ».=0.9
il Bl M I
' §
- | ! . -t -+ +
F * * o Bl I |
X ! =

Figure T.14: Gridworld example of the speediup of policy learning diue to the use of eligibility
Lrauoes.
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reward al the * location, The arrows in the other two pancls show which action
vislues wore sirengibened as a resull of (his path by ope-siep Sarsa and Sarsal )
methods. The one-step method strengthens only the last action of the sequence of
actions that led to the high reward, whereas the trace method strengihens many
actions of the sequence. The degroe of strengthening (indicated by the sise of the
arrows) Talls off (according (o & or (1 — oy A) with steps oo the reward, In this
example, the fall off is 0.9 per step. [ ]

7.6 Watkins's Q(A)

When Chris Watlking proposed Q-learning, he also proposed a simple way o combdane
it with eligibility traces. Recall that O-learning is an off-policy method, meaning that
Chee podicy leprned absoul peed pob e Che spne as the one used o select actions. Tn
paarticular, Q-learming learns aboul the greesdy policy while i Gy pically follows a policy
involving cxploratory actions — occasional solections of actions that arc suboptimal
according te G}, Because of this, special care i reguiced when inteoducing eligilility
Lraces.

Suppose we are backing ap the state action paic 5, A ab time L Suppose Thad
on the pext bwo time steps the agent selects the greedy action, but on the thicd, at
Limme £+ 3, the agent selects an exploratory, nongreedy action, In learning aboat the
value of the greedy policy at 5, 4 we can use subscquent exporicnce only as long
a8 the greedy policy is being ollowed, Thiss, we can ase the ope-step and two-step
returns, but not, in this case, the three-step return. The s-step returns for all = 3
no longer have any necossary relationship to the groedy policy.

Watking's Qi)
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Figure 7.15: The backup diagram for Watking™s QA). The series of component backups
eids clther with the end of the cpkode or with the fisst nongreedy action, whichover oomes
figat.
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Thus, unlilke TD{A) or Sarsal A), Watking"s QUA) does not look ahead all the wiay Lo
Lhee ened of the episode inits backup, T6only looks ahead as Tar as the next exploratory
action. Aside from this difference, however, Watkins's Q(A) 158 much like TD{A) and
SarsalA). Their lookahead stops al epiaode’s end, whereas QA )= lookahead stops al
the first exploratory action, or at episode's end i there are no exploratory actions
before that, Actually, 1o be more precise, one-step Q-learning and Watkins's QUA)
both look one action post the first exploration, wing their knowledge of the action
values, For example, suppose the st action, A, 2 exploratory, Walkins's QUA)
woutld still do the one-step update of (5, A¢) toward Ry + v max, (5, a).
In general, i gy b8 the lest exploratory action, then the longest backup is toward

A +7Ro+---+ ’rﬂ_LRim + A" nTfo.{S”,hﬂ},

where we assume of-line updating, The backup diagram in Figure 7,15 lustrates
the forward view of Watkins's QU A), showing all the component backups.

The mechanistic or ackward view of Walking's QUA) 5 also very simple. Eligilslity
traces are used just as in SarsalX), except that they are set lo zero whenever an
exploratory (nomgresdy ] action 15 taken.  The trace apdate 15 best thought of as
ocenrring in two stops. First, the traces for all siate action pairs are cither deocavod
by =& or, i an explorabory action was taken, sel Lo (), Second, the Leace corresponding
Lo the current state and action is incremented by 1. The overall result is

TAE s a) + 1o—g, - Loy, DGy (5, Ap) = max, Q1 (5, a);
lomsg, " La=a, ol herwise,

Eils,a) = {

One could also vse analogous duteh or replacing traces here. The rest, of the algorithm
i5 definsd by

Quir(s, ) = Quls,0) + 0y Bi(s.a), Vs € 8,0 € Als).
w e

By = vy +ymax (S, a) — (S, A

Figure 7.16 shows the complete algorithm in pseudocode.

Unforiupately, cutbing ofl traces every Gme an exploratory action is taken loses
much of the advantage of using eligibility traces. If exploratory actions are frequent,
as Lhey often are eacly in bearning, then only rarely will backups of more than one
or two steps be doone, and learning may be little fster Chan one-step O-learning,



7.7, OFF-POLICY TD{A) AND EXPECTED SARSA(A) 135

Initinlize (M5, a) arbitrarily, for all 5 © &, a c Als)
Repreat {for each episode):
Els,a) =0, for all # € 8,0 . Als)
Initinlize S, A
Repeat (for each step of episode];
Take action A, ohserve i, 57
Chossse A" from 5 wsing poliey derived frome & [egg., s-groedy)
A" i argmax, Q05 &) (I A" ties for the max, then A® — A7)
§ o R4 +0Q(8, A*) — Q5. A)

E5 A+ KBS A +1 [acenmulating traoes )
ar FS A+ (1 — ) E(S, A)+ 1 [dutcls tracees)
ar B8 A+ 1 [roplacing traces)

For all 5 € &, 0 < Az):
(M, ) +— LM e al + ad (s, a)
If A = A*, then Efs a) «— A E{s )
el Els,a) + 0
S5 A4+ A
until S = terminal

Figure T.16: Tabular versbon of Watkins's QA) algorithm.

7.7 Off-policy TD(\) and Expected Sarsa()

The cligibility traces in Watkings Q(A) are a crode way Lo deal with ofl-policy
training. First, they treat the off-policy aspect as binary: either the target policy
is followed and traces continue normally, or it s deviated from and traces are oot
ol completely; there is nothing in-between, Bul the targel policy may Lake different
actions with different positive probabilities, as may the behavior policy, in which case
folloming and deviating will be a matter of degree, In Chapler 5 we saw how Lo ose
tho ratio of the two probabilities of taking the action to more procisely assign crodit
Lo gingle action, amd the prodoct of ratios o assign eredil Looa sequence,

Second, Watkins's Q(A) confounds bootstrapping and off-policy deviation. Boot-
strapping refers to the degree Lo which an algorithm builds s estimates [rom other
eatimates, like TD and DP, or does not, like MC mothods. In TD(A) and Sarsa(X),
Lhee A paramcter conbiols the degree of ootstrapping, with the value A = 1 denoling
no bootsirapping, turning these TD methods inte MO methods, Bot the same can-
not be said for QA). As soon as there is a deviation from the target policy Q(A) cuts
Ll Lrace and uses ies value estimate rather than wadting for the actual rewards— it
bootstraps oven if A=1. Ideally we would like to de-couple bootstrapping from the
oll-policy aspect, 1o using A o specily the degree of boolstrapping withoul infer-
acting with the choice of target and behavior policies, with importance sampling
correeting for the degree of off-policy deviation,

Another way of expressing this second point is that we so [ar have no ofl-policy
analog of TIMA) and Sarsald), In the op-policy ease these algorithms glide Trom
pure temporal-difference learning at A = 0 to Monte Carlo at A = 1. Could we
have off-policy versions of TD(A) and Sarsa(A) that slide to off-policy Monte Carlo
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algorithms (Sections 5.5 and 5.7) as X approaches 1V The way traces are dome in
C-leswrning bolds out o bope of this, Tostead we bave @0 retarn o the importbanee:
sampling ideas developed in Chapter § for Monte Carlo methods.

Congider, as we did in Chapter 5, a geperal ofl-policy setting with arlitrary targed
policy m and covering behavior policy u (w(a|s) = 0= plals) = 0). The main idea
i5 Loowse Lhe importanee sampling ratio lor a 2ingle step,

o A 5e)

P= m1 (7.17)

in the eligibility traces. For learning state values, the importance-sampling ratio oy
has to seale the retwrn even for the current state 55, so it must be a factor on the
whole update, as [ollows:

Eils) = m (vAE (5] + 1la=s, ) (accumulating)
Eila) = m ({1 —a)yAE_1(z) + 1,35, {dutch)
Eris) =m (]l — L—g W AE () + 1,5, (replacing)

for all & € & Then the conventional TD{A)} backward-view error (7.10) and npdate
(T.11) can be uged o form a complete algorithm, called off-policy T L

For learning action-value lunetions, the ofl-policy traces simply add a factor of g
Lor 1 Fading part of the Lraces

Eils,a) = pyAE _j(s,a)+1,-51:-a, [ccimulating )
Eis,a) = p(1 — )y AR, ((s,a)+ 1, g1, 4, (dutch)
Ei(s,a) = m(l — 1.—g, 1-1=.-‘h}-|'-':|"EI—I{""" i) + 1n=f|!| | (replacing )

for all & £ &, a € A. Then the backward-view error amd update for Sarea{A) (Equa-
thoms (7.15) and (7.14)) can be used o form a complete algorithm, called off-policy
Sarsafd). Allernatively, one could use the TD error from the Expected Sarsa algo-
ritlim:

by = Rys1 + TE”'[I‘IHH]](JHEHLH] — Q5. Ay). (7.18)

L produce Erpecled Sarsafh ),

At A =1, these algorithms become closoly related io corresponding Monte Carlo
algorithms. Oope might expect that an exact cquivalence would hold for epsisodie
problems and off-line updating, but in fact the relationship is subtler and slightly
wieaker than that, Under these most Twvorable conditions still there is nol an episode
by opisode equivalence of updates, only of their expected value., This should not be
surprising as these method make irrevocable updates az a teajectory unlfolds, whereas
true Monte Carlo methods would make no update lor a trajectory il anv action within
it has zero probability awder the largel policy, In pacticular, all of these owethiods,
even at & = 1, still bootstrap in the sense that their tarsets depend on the cwrront
value cstimates, but the dependence cancels out in expected value, Whether this is



7.8, IMPLEMENTATION ISSUES 167

a good or bad propecty in practice s another guestion, Becently methods have been
proposed that do achicve an exact eguivalence (Sutton, Mahmood, Precup & van
Hassele, 2014). These mothods require an additional table of “provisional values"
that keep track of updates which have been made bul may nesd 1o be reteacted
(or emphasized) depending on the actions taken later. The stale and state aclion
versions of these methods are called PTDA} and POUA) respectively, where the 77
stamds for Provisional.

The practical consequences of all these pew ofl-policy methods bave ol vel been
eatablishiod. Undoubiedly, the issues of high variance introduced in Chapter 5 will
arise, There are also Iurither issoues concerning the interaction with linear Tunetion
approximation. This is an area ripe for further empirical and theoretical research.

Exercize 7.5 Wrile peeadocosde for Expected Sarsald) with dutch traces,

Exercise 7.6 How might Double Expected Sarsa be extended to eligibility traces?

7.8  Implementation Issues

It might at frst appear that methods using eligibility traces are muech more coim-
plex than one-step methods, A padve mplementation would reguire every stale [or
state-action pair) to update both its value estimate and its eligibility trace on every
Limme step, This would oot be a problem for implementations on single-instretion,
multiple-data parallel computers or in plausible neural implementations, but it is
a problem for implementations on conventional serial computers, Fortunately, Tor
typical values of X and ~ the eligibility traces of almost all states are almost always
nearly sero; only Lhose that have recently been visited will have traces significantly
greater than gero, In practice, only these few states nesd to be updated o closely
approximate these algorithms.

In practice, then, implementations on conventional computers may keep teack of
and update only the few states with nonsero traces. Using this trick, the computa-
Lional expense of using traces 5 typleally just a few Gimes thal of a one-step method,
The exact multiple of course depends on A and 4 and on the copense of the othor
computations, Cleloss (1995) has demonsteated s lucther implementation tecloigoe
that further reduces complexity to a constant independent. of A and . Finally, it
should e poted that the tabular case s in some sense s worsh case for the eome-
putational eomplexity of traces. When Iunetion approximation is used (Chapter ),
Lhee computational advanbages of nol using traces generally decrease, For example, if
artificial newral petworks and backpropagation are used, then traces generally caose
only a doubling of the required memory and computation per stop.

Exercise 7.7 Write psoudocode for an implementation of TDNA) that updates only
value estimates for states whose traces are greater than some small positive constant.
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7.9 Variable A

The A-return can be significantly generalized bovond what we have described so far
by allowing A boovary [rom slep lo step, that is, by redelining the trace updabe as

=) A E =) il 27 5
E‘[""'_{ A als)+ 1 il s=5,

where Ay denotes the value of A al time & This 5 an advanesd topic becaose the
added generality has never been used in practical applications, but it is interesting
Lheoretically and may yel prove usclul, For example, onpe bdes is o vary A a5 o
[anction of state: Ay = ALS: ). 1T & stale’s value cstimate s Delievs] (o e known
with high certainty, then it makes sense to wse that estimate Dully, ignoring whatever
slates amd rewards are recedved aller i, This corresponds b entbing off all the traces
once this state has been reached, that i, to choosing the A for the certain state Lo
b wero or very small, Similacly, states whose value cstimates are highly uneertain,
perhaps because even the state estimate is unreliable, can be given As near 1. This
cagges Lheir estimated values (o bave lLe elfect on any updates, They are “skipped
over: until a state that s known better 5 encountered. Some of these idess were
explared formally by Sutton and Singh { 1994),

The eligibility trace equation above is the backward view of variable As. The
corresponding forward view is a more general definition of tho A-return:

oo f4+mn—1
b= Ya s [T x
fi=1 f=id 41
T-1 k-1 T—1
= YT n-a) T A + @ T A
k=141 Ee=i 41 g1

7.10 Conclusions

Elgibility traces in conjunction with TD ercors provide an ellicient, incremental way
of shifting and choosing between Monte Carlo and TD methods. Traces can be used
withoul T} errors 1o achicve a similar effect, bul only awkwardly, A method such
as TIMA) coalles this to be done from partial experieness and with Bitle memory
and little nonmeaningful variation in predictions.

As we mentions] in Chapter 5, Monte Carlo methods may have advaniages o
non-Markov tasks because thoy do not bootstrap. Because cligibility traces make
T methods more like Mopte Cacle methods, they also can have advantages in (hese
cases, I one wants to use TD methods becanse of their other advantages, but the
Lask is al least partially non-Markey, then the use of an eligibility trace method is
indicated. Eligibility traces are the first line of defense against both long-delaved
rewards amnd non-Markov 1asks,

By adjusting A, we can place eligihility trace methods aonvwhere along & continom
[rom Monte Carlo to one-step TT methods. Where shall we place them? We do not
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vl have a good theoretical answer Lo Lhis guestion, bul a clear empicical answer
appears Lo be cmerging, On tasks with many steps per episode, or many sleps
within the hall-life of discounting, it appears significantly botter to use eligibility
Lraces Lhan ool to [eg,, see Figure 502), On the obher band, i the Craces are so Jong
as to produce a pure Monte Carlo method, or nearly so, then performance degrades
sharply, An intermediabe mixtore appears b be the best choice,  Eligibility traces
should be used to bring us toward Monte Carlo methods, but not all the way there,
In the fubwre it may e possible (o vary the trade-ofl between TD and Moote Carclo
methods more finely by using wvariable A, but at present. it s not. clear how this can
b ddone relialdy and wselully,

Bibliographical and Historical Remarks

¥v.1-2 The [orward view of eligibility traoes in terms of s-step returns and the A-
return is due to Watkins (1989), who also first discossed the error reduction
property of n-step returns, Our presentation is based on the 2light]y modified
treatment by Jaakkolas, Jordan, and Singh (1954). The results in the random
walk examples were made for this text ased on work of Sutton [15958]) and
Singh and Sutton (1996). The use of backup diagrams to describe those and
other algorithims in this chapier is pew, as are the terms “Torward view™ and
“backward view.”

TN A was proved to converge in the mean by Dayan (1992), and with prob-
ability 1 by many researchers, including Peng (19935), Dayan and Sejonowski
(19M), and Tsitsiklis (1994). Jaakkola, Jordan, apd Singh {1994, in adadi-
Lhoay, fiest proved convergence of TTHAY under op-line updating, Gurevits, Lin,
and Hanson (19M) proved convergence of a more general class of eligibility
Lravoe methods,

[ TN A) with accummilating traces was introdoced by Sutton (1988, 1954). The
epissde-byv-episode equivalence of forward and backward views, and the rela-
Lionships to Monte Carlo methods, were proved by Sutton {1958%) for undis-
counted episodic tasks, then extendesd 1o the general case i the lest edition of
this book. We soe these as now superosded by the analyses and stop-hy-step
eopuivalences developed in Chapler 9,

Eligibility traces came into reinforcement learning via the fecund ideas of
Klopl (1972}, Our use of eligibility traces was based on Klops work {Satton,
1978a, 1978h, 1978c; Barto and Sotton, 1981a, 19810 Sutton and Barto,
1951a; Barto, Sutton, and Anderson, 1983 Sutton, 1954). We may have
been the fiest fo use the term “eligibility trace™ (Sulton amd Barte, 1981),
The idea that stimuli produce aftereffects in the nervous system that are
important for learning s very old, See Chapter 12,

Some of the carliest uses of cligibility traces were in the actor critic mothods
(Barto, Sution, and Anderson, 1983 Sutton, 1984) discussed in Chapler 100
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Beplacing traces are dise o Singh and Sutton (1996), Dutch traces are doe
L v Sedjen and Sotten (2014, van Seijen ¢t al., in prep) aml van Hasselt
and Switon (in prep).

SarsalA) with accumulating traces was first explored a8 8 conteod method
by Hummery and Niranjan (1%4; Bommery, 1995). Our presentation of
replacing Lraces omils a subilely which s sometimes foumd to be bhepelicial:
clearing (setting to zero) the traces of all the actions not taken in the state
Lhat is visited, as suggested by Singh and Sutton {1996), This can also be
done in Watking (Q(A). Nowadays we would recommend using dutch traces
or triue online SarsalA) (van Seijen and Sutton, 2014; van Seijen of al., In
prop), which generalize better to function approximation.

Whalkins's QCA) 15 doe o Waikins (1989), Peng amnd Williams [Peng, 19935,
Peng and Williams, 194, 1996) developed an alternative way of introdoc-
ing traces (o Q-learning, and Rummery (1995 ) made extensive comparabive
sindies of thess two algorithuns, Peng™s (A was also presented in the st
edition of this text.

Convergenee has still not been proved for any control method for 0 = & < L

Oil-palicy eligibility traces woere introdoced by Precup et al, (2000, 2001 ),
then further developed by Maci (20113 Maei and Sutton, 2000) and by Sutton,
Madumood, Precap, and van Hasselt (2004), The latier reference in particolar
gives a powerful forward view for off-policy TD methods with general state-
depemdent X amd .

The ideas in this section were generally known for many vears, but beyvond
Lhee soniroes cited, the first edition of this text may be Che lrst place they have
boon deseribod.  An inexpensive implementation of traces for Wailking's (-
lesrning in the tabalar case was also described Ty Weiring and Schmidbuber
(1908).

Pechaps the st published discussion of varialde A was by Walkins {1984,
who pointed out that the cuiting off of the backap sequence (Figare 7.15)
in his Q[A) when a nongreedy action was solected could be implemented by
Lemporarily setling A to (0,

A different notion of varialde A has been developed by Yo (2012).



Chapter 8

Planning and Learning with
Tabular Methods

In this chapter we develop a unilied view of methods that requice a mode] of the
environment, such as dynamic programming and heuristic search, and methods that
can be used withoul a model, such as Moote Carlo and temporal-dillerence methiods,
We think of the former as plarring methods and of the latter as learning mothods.
Although there are real dillerences between these bwo kinds of methods, (here ane
alzo great similarities.  In particular, the beart of both kinds of methods is the
computation of value hinctions. Moreover, all the methods are based on looking
abead Lo Doture events, computing a backed-up value, and then using 0 o upadate
an approximate value function. Earlier in this book we presented Monte Carlo and
Lemporal-dilfersnee methads as distinet aliernatives, then showed how Chey can be
soamlessly integratod by using eligibility traces such as in TD{A). Our goal in this
chaptler is a similar integeation of planning and learning methods, Haviog establizhed
these as distinet in earlier chapbers, we now explore the extent to which they can be
intermixesd,

8.1 Models and Planning

By a model of the eovicomment we mean anvibing that an agentl can use Lo predict
how the environment will respond Lo its actions. Given a state and an action, a model
prodisces a prediction of the resultant pext state and pext reward, 15 the medel =
stochastic, then there are several possible next states and next rewards, each with
sone probability of occurring, Some models produce a deseription of all possibilities
and their probabilitios; those we call distribution models. Othor models produce just
one of the possibilities, sampled according to the probabilities; these we call somple
models, For example, consider modeling the sum of a dosen dice. A distribution
ekl weonaled prosduce all possible sums and theie probabilities of ocourring, whereas
asample model would produce an individual sum drawn according to this probability
distribution. The kind of model assumed in dynamic programming —estimates of the

171
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MDI"s dynamics, pls', )%, a) s adistribution model, The kind of model ased in the
blackjack cxample in Chapler 5 is a sample model, Distribution models are stronger
than sample models in that they can always be used to produce samples. However,
in many applications 10 12 much easier (o oblain sample models than distelsabion
madels. The dosen dice are a simple example of this. It would be easy o write a
compuler progeam (o simolade the dice molls and retorn Uhe sum, bul bacder and
more error-prone to figure out all the possible sums and their probabilities.

Models can be used Lo mimic or simulabe experience, Given a starling stale and
action, a sample model produces & possible transition, and a distribotion model
gencrabes all possible transitions welghied by thedr probabilities of ecearring, Given
a starting state and a policy, a sample model could produse an entive episode, and
aodistribution mode] eould geperate all possilde epizodes and their probabilities, In
cither ease, we say the model is used oo somelele the eovironment amd prodoes
gimulaled erpericnoe.

The: word plonning is used o several dillferent ways o dilferent Gelds, We ase (he
torm o rofer to any computational process that takes a model as input and produces
of improves a policy for intberacting with the modeled environment:

maodel planning

pelicy

Within artificial intelligonce, thore are two distinet approaches to planning according
Loe i lefinition, Tn stale-space plapndng, which inclades the approach we take in Uhis
book, planning is viewed primarily as a search through the state space lor an oplimal
policy or path 1o a goal. Actions cause transitions from state to state, and valoe
Munmections are compubed over stales, In what we call plan-space planning, planning
is instead viewed as a search through the space of plans. Operators transform one
plan into apcther, amd value Tunctions, i§ any, are delined over the space of plans,
Plan-space planning includes evolutionary methods and “partial-order planning,” a
common kind of planning in artificial intelligenee in which the ordering of sieps is
not completely determined at all stages of planning. Plan-space methods are difficuli
L apply ellicient]y to the stochastic optimal control proldems that are the foces in
reinforcement. learning, and we do not consider them further.

The vmified view we present in Chis chapter is that all state-zpace planning methods
share & common structure, a structure that is also present in the learning methods
prosented in this book. [t takes the rest of the chapter to develop this view, buot
Lhere are bwoe basic ddeas; (1) all stale-gpace planning methods involve compuating
value functions as a key intermediate step toward improving the policy, and (2) they
campute their value hinctions by backuap operations applisd to simulsted experiesnee,
This common structure can be diagrammed as follows:

simulated backups .
mode]l ———— - —_— " e valugs — hicy
CRPEnenes POlIEy
Dvnamic programming methods elearly fit this structure: they make sweeps through
Lhe space of states, generating for each state the distribution of possible transitions.
Each distribution iz then used 1o compuie a hacked-up value and apdabe the staie’s
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Doy forever:
1. Sclert a state, 5 € 8, and an action, A < Als], &t random
2. Send S, A to a sample model, and obdain
a sample next reward, B, and a sample next state, 57
3. Apply one-step tabular Q-learning to 8, A, i, 8
QIS A) ¢ QS A) + a[ R+ ymax, QS a) — Q5. A)]

Figure 5.1: Random-sample one-step tabular Q-planning

ealimabed valwe, In this chapler we argue thad various olher stale-gpace planning
methods also it this structure, with individual methods differing only in the kinds
of hackups they do, the order in which they do them, and o bow lomg Che backesd-up
information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning
methods that we have deseribed in this book. The heart of both learning and planning
methoads is the estimadion of value linctions by backup operations, The dilferencee
i5 that whereas planning vses simulated experience generated by a model, learning
retbuwls use real expericnce generated by the enviconment, OF course this dilference
leads 1o a pumber of other diflferences, for example, in bow performance is asseszed
and in bow lexibly experience can be generated. But the common strocture means
Lhat many wless and algorithms can be translerred between planning and learning,
In particular, in many cases a learning algorithm can be substituted for the key
backup step of a planning method, Learning methods reguire ooly expericnoe as
input, and in many cases they can be applied to simulated experience just as well as
Lo real expericnee, Figure 8.1 shows a simple example of 8 planning method Tased
on one-step tabular O-learning and on random samples rom a sample model. This
methosd, which we call mndem-sample ope-step Inbadar O-planndng, converges (o the
optimal policy for the model under the same conditions that one-step tabular -
learning converges to the optimal policy for the real environment {each state action
pasir must be selected an iofinite pumber of Gmes o Step 1, and o most decrepse
appropriately over Lime).

I aledition to the wnilied view of plaoniog and learning methods, a seeond (heme
in this chapier is the benefits of planning in small, ineremental steps. This enables
planning to be interrapted or redirected al any time with lictle wasted compatation,
which appears to be a key requirement for efficiently intermixing planning with acting
and with learning of the model. Planning in very small sieps may be the most ellicient
approach even on pure planning problems if the problem is too large o be solved
exactly,

8.2 Dyna: Integrating Planning, Acting, and Learning

When planning s done on-line, while interacting with the eovirenment, a number
of interesting issues arise. New information gained from the interaction may change
the model and thereby interact with planning. [t may be desirable to customize the
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planning process in some way 1o the states or decisions earrently under consideration,
o expected in the pear Dotaee,  IT decisioo-making amd  model-learning are botl
computation-intensive processes, then the available computational resources may
nee] i be divided between them, To begin exploring these issues, in Chis section we
prosent Dvna-0), a simple architecture integrating the major hnctions needed inan
op-line planning agent, Each lunction appears in Dyna-0) ina simple, aloest trivial,
form. In subsequent sections we elaborate some of the alternate wavs of achieving
each [inction and the trule-olls between them, For now, we seek merely (o illestrade
the ideas and stimulate your intuition.

Within & planmng agenl, there are al least two roles for real experience: it can be
used to improve the model (to make it more accurately mateh the real environment )
and B ocan be wsed fo divectly improve Che vadoe Dopetion aod policy using Che Kiods of
reinforeement learning methiods we have discusssd in provious chapters, The former
wir call model-learning, and the latter wo call direcd reinforcement learning (diroct
RL). The possible relationships between expericnes, model, values, and policy ane
summarized in Figure 8.2, Each arrow shows a relationship of influence and presumed
improvement, Nobe how experience can improve valoe and policy Tunetions either
dircctly or indirectly via the model. 1t is the latter, which is sometimes callod sndirect
redrforcernend learndng, thal 8 involved in plannoing,

Both direct and indirect methods have advantages and dissdvantages. Indirect
methosds often make Doller wse of a lmited amount of experience and thus achicve
a better policy with fewer environmental inferactions. On the other band, direct
methisds are much simpler and are not affected by biases in the design of the model.
Some have argued that indicect methods are always sopecior (o diveet ones, while
others have argued that direct methods are responsible for most buman and animal
learning,  Related debates in psyehology and AT concerns (he relative impoctanee
of cognition as opposed to trial-and-error learning, and of deliberative planning as
opposed 1o reactive decigion-making,  Owr view is that the coptrast between (he
alternatives in all these debates has been exaggerated, that more insight can be gained
by recognising the similarities between these two sides than by opposing them, For

value/policy

acting
planning direct
RL

model experience

>~

mocel
Igarnlng

Figure 8.2; Relationships among learning, planning, and acting,
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example, in this book we have cmphasized the deep similarities belween dynamie
programming and temporal-dillference methods, even though one was desigoed Tor
planning and the other for model-free learning.

Drwvia-0) includes all of the processes shown in Figure 8.2 plaoning, acting, model-
learning, and direct BL—all oceurring continually. The planning method is the
randame-sample one-glep tabular Q-planning method given in Figore 8,10 The i-
rect RL method is one-step tabular O-learning. The model-learning method 5 also
Lalde-based and asswmes the world s deterministic, Aller esch transition S, A —
Biv1, &1, the model records in its table entry for S, Ay the prediction that B, S
will determimstically [ollow, Thus, if the model 8 gueried with a stale-action pair
that has been experienced before, it simply returns the last-observed next state and
next reward as s prediction, Ducing planning, the Q-planning algorithm randomly
samples only [rmom stale-action pairs that have previously been experienced (in Step
1}, 8o the model is never queried with a pair about which it has no information.

The overall arclhitecture of Dvoas agends, of which the Dyna-0 algorithm is one
example, is shown in Figure 8.3, The contral column ropresents the basic intoraction
between agenl and eovironment, giving rise ooa teajectory of meal experienoe, The
arrow on the lelt of the lgure represents direct reinforcement. learning operating
on el expericnes Lo improve (he value uoction and the policy. On the gt are
midel-based processes. The model is learnod rom real exporience and gives rise Lo
similated expericnee, We use (the term search condrod (o reler Lo the prooess thad
selects the starting states and actions lor the simulated experiences generated by the
miwlel. Finally, planning is achicved by applving reinforcoment learning methods
L the simulated experienees just as if they had really happened. Typically, as in
Dvna-0), the same reinforcement learning method is used both for learning from real
experienee amd for planning from simolated experienoe, The reinforoement learning
method i5 thus the “final common path” for both learning and planning. Learning

SN

F‘Jc:li:::,rh.-'alua fu r;ctin ns

planning update

direct FL
update

[Envirunmentj

Figure 8.3; The general Dyvns Architectore
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and planning are deeply iotegeated in the sense thal they share almost all Che same
machinery, dillering only in the source of their experienoe,

Conceptually, planning, acting, model-learning, and direct RL ocowr simultane-
ously amd in parallel in Dvos agents, For concreleness aod implementation on s
serial computer, bowever, we fully specify the order in which they ocour within a
Limme step, In Dyma-0), the acting, model-learning, amd direct BL processes requine
little computation, and we assume they consume just a fraction of the time. The
remaining Lime in each step can be devoled to the planning process, which s in-
herently computation-intensive. Let us assume that there s time in each step, alter
acting, model-learning, and direct RL, to complete n iterations (Steps 1-3) of the
CJ-planning algorithm. Figure 8.4 shows the complete algorithm for Dyna-C).

Initballee €38, a) and Modell s, o) for all 2 € & and a € A=)
D forener:
() &+ cwrrent [wooterminal) state
(b} A+ e-groedy( S, 0
(¢} Execite action A; observe resultant reward, B, and state, 5
() 5, A) + 5, A) + nr[ﬂ + 4 s (S i) — IS, .»'1]]
(o) Model( 8, A) « R, 5 {assuming determinkstic covironment )
(1) Repeat 1 thies:
S 4 random previoesly olbserved state
A i random action previously taken in 8
RS Model(5, A)
208, A) + QI8 A) I-rve|:J’1I by miax, (S a) — (S, :‘lJ]

Figure 8.4; Dyna-0) Algorithm, Maodel(s,a) denotes the contents of the model (predicted
next state and reward) for statc-action pair 5, 0. Dbirect reinforoement learning, model-
Iearning, and planning are implemented by steps (d), (2], and (§), espectively, If (2] and ()
were amitted, the remaining algorithm wonkd be one-step tabolar O-learning,
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Example 8.1: Dyvna Maze Consider the simple mase shown insel in Figare 8.5,
In cach of the 47 stales there are fowr actions, up, down, right, and left, which
take the agent deterministically to the corresponding neighboring states, exeept when
rovernent 15 hlocked by an obstacle or the edge of the mase, in which ease the agent
remaings where it 5. Heward iz gero on all transitions, except those into the goal
slate, on which it is +1. Aller reaching the goal state [G), the agenl relburps Lo
the start state (5) to begin a new episode. This is a discounted, episodic task with
= = .95,

The main part of Figure 5.5 shows average learning curves [rom an experiment
in which Dwvna-() agents were applied to the maze task, The initial action values
wore gero, Lhe stop-sise parameter was o = (0.1, and the exploration parameter was
e = 0,1, When selecting greedily among actions, ties were broken randomly, The
agents varied in the oumber of planning steps, n, they performes] per real step, For
each n, the corves show the mumbeor of stops taken by the agent in cach episode,
averaged over 30 repetitions of the experiment, In each repetition, the initial seed
for the random number generator was held constant across algorithms. Becanse of
Lhis, thee [irst episode was exactly the same (about 1700 steps) Tor all values of s, and
its data arc not shown in the fgure. After the lrst episode, performance improved
for all values of o, but much more apidly for larger values, Becall that the o =0
agent is a nonplanning agent, wiilizing only direct reinforcement learning (one-step
Lalmlar Q-learning), This was by Tar the slowest agent on this problem, despite the
fact that the parameter values (o and =) were optimized for it. The nonplanning

| |
300 | ]
5 [ ]
.
SO0 H 1 l actions

Steps 0 planning steps
per 200 [-l!i‘E.'CLFU_ ol
EP'SME J,f & planning sieps
V’\ - S0 planning sieps
2004
14 Jﬂ{}
I 1 I I T 1
z 10 0 ia 40 50
Episodes

Fipure 8.5 A simple maze (inset) and the average barning corves for Dyvna-0) agents varying
in thelr number of planning steps (s) per real stepe The task 8 to teavel foom 5 to G as
quickly as possible.
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WITHOUT PLANNING {n=0) WITH PLANNING (11=50)
[ G ==ttt G

} BaaB AR AR

S 8| sablnafd K

Figure 8.6 Policies found by planning and oonplanning Dyvoa-0) agents halfway through
thie gecond epleode. The arvows iedicate the greedy actbon o each state; B oo arcow 1= shaown

for a state, then all of its action values wore equal, The black square imdicates the locathon
of the agent.,

agent took about 25 episodes (o reach (2-Joptimal performance, whereas the @ =5
ageni took about five opisodes, and the n = 50 agent took only three episodes.

Figure 8,6 shows why the planning agenls Tound the solution so much [ster than
tho nonplanning agont. Shown are the policies found by the » = 0 and n = 50
agents hallway through the second episode. Without planning (v = 1], cach episode
adds only one additional step (o the policy, and =0 only one step (the last) has heen
learned so far. With planning, again only one step is learned doring the first episode,
bt here during the second episode an extensive policy has been developed thal by
the episode’s end will reach almost back o the start state. This policy is buill by
Lhee planning process while the agent s 5001 wandering near the stact stade, By the
end of the third episode a complete opiimal policy will have been found and perfoct
performance atbained, [ |

In Diyvna-C), learning and planning are accomplished by exactly the same algoritbm,
operpling on real experience for learning and on simalabed experienes for planning,
Because planning proceeds incrementaly, it is teiviad (o intermix planning aod act-
ing. Both proceed as [ast as they can. The agent is always reactive and always
deliberative, responding instantly to the latest sensory information and vel always
planning in the backpround. Also ongoing in the backpround is the model-learning
process, As pew information is gained, the mode] s updated o betier maich real-
ity. As the model changes, the ongoing planning process will gradoally compute a
different way of hehaving to match the pew model.

Exercise 8.1 The nonplanning method looks particularly poor in Figure 8.6 becanse
it is & one-step method; & method wsing eligilility traces would do Detter, T you
think an eligibility trace method could do as well as the Dyna method? Explain why
or why nob.
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8.3 When the Model Is Wrong

In the maee example presented in the previows section, the changes o the mode]
wore relatively modest. The model started oot ompty, and was then flled only
with expctly correct information, In general, we canpol expect o be so fortanate,
Models may be incorrect because the environment is stochastic and only a limited
nnleer of samples have been observed, becaose the model was leacmesd osing Tnetion
appraximation that has generalized imperfectly, or simply becanse the onvironment
has changed and s pew bebavior bas ool vel been observed, When the maode] iz
incorrect, the planning process is likely to compute a suboptimal policy.

In some cases, the suboptimal policy computed by planning quickly leads o the
discovery amd correction of the medeling error, This temds o bappen when Che maodde]
is optimistic in the sonse of predicting greater reward or better siate transitions than
are actually possible, The plannesd policy atlemps o exploil these opportunities
and in doing so discovers that they do not exist.

Example 8.2: Blocking Maze A maze example illustrating this relatively minor
kind of modeling error and recovery Trom it 8 shown in Figuee 8.7, Initiallyv, there
i5 a short path from start {o goal, to the right of the barrier, as shown in the
upper left of the Gguee, Aller 1000 Gime steps, the short path iz “blocked,” and
a longer path is opened up along the left-hand side of the barrier, as shown in
upper right of the Ggure. The graph shows average camilative reward Tor Dyvna-0)
and two other Dyvna agents. The first part of the graph shows that all three Dyoa
agents found the short path within 1000 sieps, When the environment changed,

a )
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Figure 8.7 Average performance of Dyvoa agents on a blocking task. The left eoviconment
was wsed for the fist 1000 steps, the slght envimonment for the fest. Dyna-Cp+ 18 Dyna-0)
with an exploration bonus that encourages exploratbon. Dyma-AC 1= a Dyoa agent that uses
an actor—eritie bearning method istead of Q-learning.
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Lhe graphs become [al, indicating a period douring which the agents obiained oo

reward becpuse Cthey were wandering arcumd behind the barrier,  Aller o while,

however, they were able to find the new opening and the pew optimal behavior.
|

Crreater difficulties arise when the environment changes to become belfer than it
was efore, amd yel the formerly correct policy does oot ceveal the improvement, In
thise cases the modeling error may not be detected for a long time, il ever, as wo see
in the pext example,

Example 8.3 Shortcut Maze The proldem cansed by this kind of environmental
change is illustrated by the maze example shown in Figore 8.5, Initially, the optimal
path s o go arownd the lelit side of the barrder (upper lefi), Alier 3000 steps,
however, a shorter path s opened up along the right side, without disturbing the
lomger path (uppeer right ), The graph showes thad two of the theee Dyvoa agenls never
awitched to the shortent. In fact, they never realized that it existed. Their models
aaid that there was no shorteut, so the more they planned, the less likely they were
Lo step Lo the right and discover it. Even with an s-greedy policy, it is very unlikely
Lhat an agent will take so many exploratory actions as o discover Che shorteat,

FHHHHHE S
HL‘H | 51111
400
Curmulative
reward
04 .
M 3000 60040
Time steos

Fipure 8.5: Average performance of Dyna agents on a shorteut task. The left eoviconment
was sl for the Arat SHEK steps, the cight eovironment for the mest.

The general protdem here is another version of the conflict Tetween explecation and
exploitation. In a planning context, exploration means irving actions that improve
Lhee mode], whereas exploitation means behaving in the optimal way given the current
maodel. We want the agent to explore Lo ind changes in the environment, but not so
ek that performance is grestly degraded, As in Che earlicr exploration/exploitation
condlict, there probably is no solution that is both perfect and practical, but simple
heuristics are often effective.
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The Dyvna-0+ agent that did solve the shorteul maze uses one such beuristie, This
agent keeps track for each state-action pair of how many time steps have eclapsed sinee
L pair was last tried in a real interaction with the environment. The more time that
has elapsed, (he greater (we might presume) the chanee thal the dypamics of this
pair has changed and that the model of it is incorrect. To encourage behavior that
Lests long-untriced actions, aspecial “bonos reward” §s given on simolated experiences
involving these actions. In particolar, if the modeled reward for a transition i= r,
and the transition has pol been beied o r time steps, then planning backaps are
done as if that transition produced a reward of r 4+ k7, for some small &. This
encourages Lhe agent (o keep testing all accessilde stabe transitions and even to plan
long sequences of actions in order to carry out such tests.! Of course all this testing
has its cost, but in many cases, as in the shorteut maze, this kind of computational
curiosity ig well worth the extra exploration.

Exercise 8.2 Why did the Dyna agent. with exploration bonos, Dyna-04, perform
botter in the first phase as well as i the second phase of the blocking and shoricut
experiments?

Exercise 8.3 Carclul inspection of Figure 8.8 reveals that the dilference beiween
Dvna-04 and Dvna-0) narrowed slightly over the lirst pact of the experiment., Whad
is Lhe reason for this?

Exercise B.4 {programming] The exploration bonus described above actually
changes the estimated values of states and actions, I8 this necessary? Suppose (he
bomug s/ was used not in backups, but solely in action selection. That is, suppose
i action selected was always that for which @5, o) + kT, was maximal, Carry
out a gridworld experiment that tesis and illusirates the strengihs and weaknesses
of this alterpate approach,

8.4 Prioritized Sweeping

In the Dyvna agents presented in the preceding sections, simulated transitions are
started in stale-action palrs selected uniformly &l random from all previously ox-
pericnced pairs. But a uniform selection is usually not the best; planning can be
ek more ellicient i simulated trppsitions and backups are Tocused on particolar
state-action pairs. For example, consider what happens during the second episode
of the first maze task (Figure 5.6), AL the beginning of the second episode, only the
state-action pair leading directly into the goal has a positive value: the values of all
other paics are 3011 sere, This means that i s pedotless o back up along almest all
Lransitions, becanse they lake the agent [rom ome sero-valued slale o another, and
thus the backups would have no effect. Only a backup along a transition inlo the
atate just prior to Che goal, or [rom (b, will change any values, I simulated transitions

"I'he Dyvna-CH spent wis changed in two other wiys as well, First, actions that hsd never before
been tried before from  state were allowed to be considered in the planning step (F) of Figuare £.4.
Second, the indtinl model for spch actions was that they would lead back to the suoe state with a
rewird of =ero.
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are geperabed uniformly, then many wastelul backups will be made before stumbling
onbe one of these uselul ooes,  As planning progresses, the region of uselul back-
ups grows, but planning is still far less efficient than it would be il focused where it
wolthd do the mest good, Tonthe mech larger proldems Chat are our real objoctive, the
number of states is so large that an unfocused search would be extremely ineflicient.

This example sugeesis that search might be uselully Toeused by working backuard
[rom goal states. Of course, we do not really want to use any methods specific to the
plesy of “goal state,”  We want methods that work for general reward Tunctions, Goal
states are just a special case, convenient for stimulating intuition. In general, we want
Lo work back not just from goal stales Dol froam any stale whose value has changed,
Suppose that the values are initially correct given the model, as they were in the
s example prior b discovering the goal, Suppose pow thal the agent diseovers o
change in the enviconment and changes g estimatbed valiee of one state, either up or
down. Typically, this will imply that the values of many other states should also be
changed, bul the only uselol ope-step backups are those of actions thal lead direcily
into the one state whose value has been changed. If the values of these actions are
updated, then the values of the predecessor states may change in tarn, 10 &0, then
actions leading into them need to be backed up, and then their predecessor states may
hawve changed, In this way one can work backward [rom arbitrary stades Chal have
changed in value, either performing useful backups or terminating the propagation.
This geperal idea might Tee termes] deebund focusing of planning compualations.,

As the frontier of useful backups propagates backward, it often grows rapidly,
producing many state action pairs that could usefully be backed up. Bul not all
of these will be equally wselul, The values of some states may have changed a lol,
whereas others may have changed little. The predecessor pairs of those that have
changed a lot are more likely bo alse change a Iol. In a stochastie eoviconment,
variations in estimated transition probabilities also contribube 1o variations in the
slzes of changes amd in the urgency with which pairs oecd (o be backed ap, Ti
i5 matural to prioritize the backups according to a measure of their urgency, and
perform them in order of priocity, This is the lea Dehind priveitized sweeping, A
quene is maintained of every state action pair whose estimated value would change
ponbrivially il Tacked wp, prioritized by the siee of the change, When the bop padr
i the quene s backes] ap, the cifect on each of s predecessor pairs i3 compuated,
Il the effect is greater than some small threshold, then the pair is inserted in the
guene with the pew priority (i there is a proevious eobey of Che pair in the guoene,
then insertion resulis in only the higher priority entry remaining in the gquens). In
Lhis way the eilfects of changes are ellicient]ly propagates] backward antil quiescenoe,
The full algorithm for the case of deterministic environmenis is given in Figore 5.9,
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Initinlize (s, a), Madel{s,a), for all 5,a, and PQuwewe to cmpty
[y forever:
[a)] 5 ¢ current [wontermingl) state
(b} A+ policy( S, ¢}
(e} Bxeente action A; ohserve resultant reward, 8, and state, 57
(d) Model(S, A) « K8
(el P R4y mac, €05, ) — €05, A
(F)if P =8, then insert S, A donte PCweene with priosity P
(2] Repeat o thoes, while PQucne B nob cmpty:
8, A firat| Plucwe)
B85+ Model( 5, A)
(S, A) + QIS A) + o[ R+ 4 max, Q5 a) — (5, )]
Repeat, for all 5, A predicted o lead to 5:
it + predicted reward for 5§, A4, 8
P |+ 4 max, ((5.a) — (5, 1)
if # =@ then insert 5, A into PCuene with priority P

Figure 8.% The prioritized sweeping algorithm for a deterministic environment,

Example B.4: Prioritized Sweeping on Mazes  Prioritized sweeping has been
found to dramatically increase the speed ab which optimal solutions are found in
maze Lasks, oflen by a lnctor of 5 to 10, A tvpical example s shown in Figane 8,10,
These data are for a sequence of mase tasks of exactly the same structure as the
one shown in Figuee 8.5, exoepd (hat they vary in the geid reselution, Prioiiized
aweeping maintained a decisive advantage over unprioritized Dyna-0). Both systems

made al most = 5 backups per eovirommental inleraction, [ ]
107
|.':|E'
105
BEIEHL_-IFIE
uniil - prioritized
optimal swaeping
solution 1
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0 47 %4 186 376 732 1504 308 6016
Gridworld size (#states)

Figure 8,10 Prioritized sweeping significantly shortens learning time on the Dyne mase
task for a wide range of grid resolutions, Reprinted from Peng and Williams [ 19263,
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Fipure 8.11: A rod-mancovering task amd its solution by prioritized sweoping. Reprintod
Froam Moore amd Atkeson [ 149EF).

Example 8.5: Rod Maneuvering The objective in this task is to manouver &
roel around some awkwardly placed obstacles Lo a goad position in Che fewest pumber
of steps (Figure 5.11). The rod can be translated along its long axis or perpendicular
Lo that axis, or it can be rotated in either direction around its center. The distance of
each movement s approsimately 120 of the work space, and the rolation inerement
is 10} degrees. Translations are deterministic and quantized to one of 2= 20 positions.
The hgure shows the obstackes amd the shortest. solution from stact 10 goal, Toand
by prioritized swoeping. This problem is still deterministic, but has four actions and
14,400 potentiad states {some of Lhese are unreachable becanse of Lhe obstacles), This
problem is probably too large to be solved with unprioritized methods. [ ]

Extensions of priovitised sweeping 1o stochastic envirenmenis are steaightforward,
The model is maintained by keeping counts of the number of times each state action
paadr his been experienced and of what the next states were, 10 s matural then bo
backup each pair nol with a gample backoap, az we have been uging so far, bual with
a [ull backup, taking into account all possible next states and their probabilities of
OCCUrTing,

Prioritized sweeping is just one way of distributing computations (o improve plan-
ning elliciency, and probaldy oot the best way, One of priocitized sweeping's limita-
Lions is that it nses full backups, which in stochastic environments may waste lots of
compuiation on low-probability iransitions, In many cases, sample backups can gel
closer to the true value [unction with less computation despite the variance intro-
dlcesd by sampling (gee Sutton & Barto, 1998, Section 3.5). Sample backups can win
becanse they break the overall backing-up computation into smaller pieces — those
corresponding to individual transitions — which then enables it to be fooused more



8.5. PLANNING AS PART OF ACTION SELECTION 155

narrowly on the pieces thal will bave the largest impact. This bdea was taken Lo
what may bee it logical limit in the “small backaps™ introdoced by van Seijen and
Sution (2013}, These are backups along a single transition, like a sample backap, bt
bpses] oo the probability of the transition withowt sampling, as ina Dull backap, By
selecting the order in which small backups are done it s possible to greatly improve
planning elliciency beyonsd that pessilde with priocitised sweeping,

We bave sugpgested in this chapier that all kinds of state-space planning can be
viewns] as seguences of backups, varving enly in the type of hackop, Tull or sample,
large or small, and in the order in which the backups are done. In this section we have
emphasized Dackwand [ocusing, but this i3 just one sicategy, For example, another
would be to focus on states according to how easily they can be reached [rom the
atates that are visited freguently ander the coreent policy, which might be called
Jorward focusing, Peng and Williams [(1993) and Barto, Bradike ampd Singh { 1995)
have explored versions of forward focusing, and the methods introduced in the next
[ew seclions take iU Lo an extreme [orm.

8.5 Planning as Part of Action Selection

There tends to be bwo ways of thinking abowt planning. The one that we have con-
sidered g0 far in this chapter, typiflied by dynamic programming and Dyna, conceives
of planning as the gradual improvement of a policy or value fuoction that is good
in all states generally rather than foeused on any particular state. The other way
of thinking about planning is as something begun and completed afler encountering
each pew state 5, as a compuiation whose ouipal s pol really a policy, bual rather
a single decision, the action A;; on the next step the planning beging anew with
Sip1 1o produce Ay, and &0 on, These two ways of thinking about planning could
blend togethor in natural and interesting ways, but they have tonded to be studied
separately, and that i a good first way o understand them, Let us pow take a closer
look at the second way, at planning as part of action selection.

Even when planning cecurs only within action selection, we can siill view i, as we
did in Section &.1, as proceeding from simulated experience to backups and values,
and ullimately to a policy, I iz just that now the values and policy are specilic Lo
Lhee current state and s choiees, so mach so thal they are Ly pically discarded alter
being wsed to select the current action. In many applications this is nol a great loss
becanse there are many stabes and we are anlikely 1o return 1o the same state for
a long time. In goneoral, one may want to do a mix of both: focus planning on the
cirrent stale and store the resulls of planning s as Lo be thal moch friher along
should one return to the same state later,

Planning within action selection s most uselul in applications in which [ast e
sponses are nol required. In chess plaving programs, for example, one may be per-
mitied seconds or minubes of compatation Tor each move, and steong programs may
plan dowens of moves ahead within this time. On the othor hand, if low lateney
action selection is the priority, then one is generally betier off doing planning in
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Lhe Background to compute a policy that can then be capidly applied o cach newly
encountered stale,

8.6 Heuristic Search

The elassical state-space planning methods in artilicial intelligence are planning-nas-
part-of-action-selection methods collectively known as kewristic search. In heuristic
search, for cach state encountersd, & large tree of possilde continuations is eonsidersd,
The approcimate value netion is applied to the leal nodes and then backed up
Loward the curcent state st the root, The backing ap within the search tree g jusi
the same as in the max-hackups (those for », and g,) discussed throughout this
book, The backing up stops ab the state-action oodes Tor the current state, Ooee
Lhee Tevckoosd-up values of these nodes are computed, the best of them is chosen as the
current action, and then all backed-up values are discarded.

In conventional hearistic search no elfort is made o save (e backed-up values by
changing the approximate value funetion. In fact, the value unction is generally
designed by people and pever changed a8 a resalt of search, However, i is natoral
Lo consider allowing the value function to be improved over time, using either the
backed-up valies eomputed during heurigstie search or any of the other methiods
prosented throughout this book. In a sense we have taken this approach all along.
Or groedy and g-greedy action-selection methods are pol uolike hearistie search,
albeit, on & smaller seale. For example, to compute the greedy action given a model
and a state-value unction, we must look ahead [rom cach possible action 1o each
possible next state, backup Che rewands and estimated values, and then pick the Tesi
action. Just as in conventional heuristic search, this process compuies backed-up
values of Lhe possible actions, ol dees ool attempt o ssve Chem, Thos, heuristic
soarch can be viewod as an extension of tho idea of & greedy policy beyvond a single
sl

The point of scarching deeper than one step is to obtain bettor action selections, 1f
one has a pecfect model and an imperfect actiop-value Iioetion, then o et deeper
search will usually vield betier policies.® Certainly, if the search is all the way to
Chee ened of the episode, then the elfect of the imperfect value function s eliminsted,
and the action determined in this way must be optimal. If the search is of suffi-
cient depth & such that +* is very small, then the actions will he correspondingly
near aptimal, On the other hand, the deeper the search, the more computation is
required, nsually resulting in & slower response time. A good cxample is provided
by Tesauro's grandmaster-leve] backgammon playver, TD-Gammon (Section 14.1).
This system used TIMA) to learn an alterstate value lunction through many games
of sell-play, wsing a lorm of heuristic search 1o make its moves, As a model, TD-
Crammon ussd a priori knowledge of the probabilities of dice rolls and the assumption
Lhat the opponent always selected the actions that TD-Gammon ralesd as best for
it. Tesauro found that the deeper the heuristic search, the better the moves made

*There are interesting exceptions to this. See, eg., Pearl (1934).
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by TD-Gammon, bl the longer 6 ook o make each move, Backgammon bas a
large branching factor, yeb moves must be made within a few secomds, 10 was only
[easible io search ahead selectivelv a fow steps, bul even so the search resulbed in
signilicantly belter action seleciions,

We should oot overlook the most obwvious way in which heuristic search [ocusos
backups: on the current state, Muoch of the elfectiveness of hearistic search is doe Lo
its search tree being tightly focused on the states and actions that might immediately
[l o the current stade, You may spend more of your life playving chess than checkers,
but when von play checkers, it pays to think about checkers and about your particular
checkers position, vour likely nest moves, and suecessor positions. However yoo select
actions, it s these states and actions that are of highest priority for backups and
where vou most urgently want your approximate value Tunction te be accurate, Naot
only should your computation be preferentially devoted o imminent events, bl
s should vour limited memory resources. In chess, for example, there are [ar too
sy possible positions o store distinet value estimates lor cach of them, Tl chess
programs based on heuristic search can easily store distinet estimates for the millions
of positions they epcounter looking ahead Trom & gingle pesition. This greasd Tocusing
of memory and computational resources on the current decizion is presumably the
repson why hewristic search can be so ellective,

The distribution of backups can be altered in similar ways to foous on the current
state and its likely successors, As o limiting case we might use exactly the methods of
heuristic search to construct a search tree, and then perform the individual, one-step
backups from botbom up, as suggested by Fignre 8,120 If the backups are orderod
inn this way aml a table-lockup representation s used, then exactly the same Dackup
would be achicved as in depth-first heuristic search. Any state-space search can be
viewes] in Chis way as the piecing together of a large noomber of individoal one-step
backups. Thus, the performance improvemont. observed with deeper soarches is not

Figure 8.12: The deep backups of heuristie search can be lmplemented as a sequence of
anc-step backups (shown heve outlined ], The ordering shown s for a selective depth-first
rearch.
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e o the wse of multistep backups as such, Instead, i is doue (o the fecus and
concentration of backups on states and actions immeslintely downstream Teom (he
current state. By devoting a large amount of computation specifically relevant to the
candidate actions, & much betler decision can be made Cthan by relying on anfoeazed
backups.

8.7 Monte Carlo Tree Search

Monte Carlo Tree Search (MOTS) is one of the simplest oxamples of planning as
part of the policy, 10 i alse one of the more recenl and successiul development2
in planning, being largely responsible for the improvement in computer Go from a
weak amateur Ievel in 20005 to o grandmaster level (6 dan or more) in 2005, MOTS
has proved effective in a wide variety of competitive sottings, including general game
plaving (g, see Finnsson & Bjornsson, 2008; Genesereih & Thielscher, 2004). Ti
is most often used when the model of the world is completely known and cheap Lo
compute, as il is in many games,

MOCTS typically involves no approximate value lunctions or policies that are re-
Lained from one thme step to the pext; these are computed on cach step and then
discarded. During a step, many simulated trajectories are generated started from
the current state and running all the way to a terminal state (or until discounting
makes any [urther reward pegligible as o contribution o the return), For the mosi
part, the actions in the trajectories are generated vsing a simple policy, called the de-
Tl podicy—ollen just the squi-probalde random policy, Becanse the policy and the
miowdel are cheap to compute, many simulated trajectories can be generated in s short
peciod of Lime, As i aoy Labalar Moote Carle method, the value of a staleaction
pair is estimated as the average of the (simulated) returns from that pair.

Monte Carle value estimales are madotained only For (he subsel of staleaction
pairs that are most likely to be reached in a few steps, which form a tree rooted at the
current state, as in Figure 8,15, Any simulated trajectory will pass through the Dree
and then exit it ab gome eal pode, Ouigide the teee and at the leal podes the delali
policy is used for action selections, but at the states inside the tree we can potentially
do sonething eetter, For these states we have value estimades [or of al least some of
tho actions, so we can pick among them in an informed way, For oxample, we oould
pick among them in the s-greedy way or the UCT way (Section 2.6]. AL stales on
the ringe of the tree there will be actions with zero previous trajectories; these can
b considered of infinite value so thal one of them is selected, aller which it §s added
to the troo. The initial tree consists of just the curront. (root) state.

MNow T would like (o deseribe, and ideally give pseadocode Tor, a specilic simple
form of MOCTS. Then ideally there would be an example of it working well, Perhaps
Tie-Tae-Toe.
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Tree Paolicy

Tree Policy
Default Policy | Default Policy
Tree Policy l Tree Policy
Default Policy Default Policy

* New node in the tree

Tree Policy
QO Node stored in the tree

<> State visited but not stored
Default Policy D Terminal outcome
—— Current simulation

—— Previous simulation

Figure 8.13: Five steps of Monte Carlo Tree Search on a problem with binary returns. The
first state added to the tree is the current state S;. In this example, the first trajectory ends
in a win (a return of 1). In the scond trajectory, the first action is selected the same as before
(because it led to a win) and added to the tree. Afterwards the default policy generates the
rest of the trajectory, which ends in a loss, and the counts in the two nodes within the tree
are updated accordingly. The third trajectory then selects a different first action and ends
in a win. The fourth and fifth trajectories repeat this action and end with losses and wins
respectively. Each adds a new node to the tree. Gradually, the tree grows and more action
selections are done (near) greedily within the tree rather than according to the default policy.
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8.8 Summary

We have prosented a perspective emphasizing the surprisingly close relationships
between planning oplimal bebavior and learping oplimal ehavior,  Both iovolve
eatimating the same value lunetions, and in both ecases it is natural to update the
ealimates incrementally, in a long series of small backup operations, This makes it
straightforward to integrate learning and planning processes simply by allowing both
Lo update the same estimated value function. In addition, anv of the learning meth-
ods can be copverted into planning methods simply by applying them Go simolated
(model-generated) experience rather than to real experience. In this case learning
and planning become even more similar; they are possibly identical algorithms op-
erating on two different sourees of expericnos.

It 1= stradghtforward Lo inlegrate incremental planning methods with acting and
madlel-learning. Planning, acting, and model-learning interact in a circular fashion
(Figure 8.2], cach producing whal the other needs to improve; oo other inberaction
among them s either required or prohibited. The most natural approach is for all
processes 1o procesd asynchronously and in parallel, 15 the processes most share
computationsl resources, then the division can be bapdbed almest arbitracily— by
whatever organization 5 most convenient and efficient for the task at hand.

In this chapier we have towched upon a pumber of dimensions of varialion among
state-space planning methods, One of the most important of these is the distribution
of backups, that iz, of the feous of search, Another interesting dimension of variation
is the size of backups. The smaller the backups, the more incremental the planning
methods can be, Among the smallest backups are one-step sample backups, as in
Dvna.

Prioritized sweeping beuses backward on the predecessors of states whose values
have recently changed. Alternatively, planning can be focused forward [rom pertinent
states, such as the states actually encountered, The most important focm of this is
when planning is done exclusively as parl of action selection, a8 in classical heuristic
search and Monte Carlo Tree Search.

Bibliographical and Historical Remarks

E.1l The averall view of planning and learning presented here has developed grad-
wadly over a pumber of years, in part by the aathors (Sutton, 1990, 1991,
131y Barto, Bradike, and Singh, 1911, 19%05; Sutton and Pinetie, 1985; Sui-
Lo amd Barta, 19816); it has Deen strongly influenced by Agre and Chapoan
(1900; Agre 1088, Bertsckas and Tsitsiklis (1989), Singh { 1583), and othors.
The authors were alzo strongly influenced by psyvchological studies of latent
learning [Tolman, 1932) and by psyvehiological views of the natare of thought
(o.g., Galanter and Gerstenbaber, 1956; Craik, 1943 Campbell, 1960; Den-
nett, 197E].

H2 The terms direcd and indirecd . which we nse to describe different kinds of re-
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inforcement learning, are from the adaptive control literature {eg,, Goodwin
and Sin, 1984), where they are used toomake the sane Kiod of distinetion,
The term syslem ideniificaiion is used in adaptive control for what we call
meowdel-lenrneng (eg,, Goodwin and Sin, 1984 Ljung and Soderstrom, 1955;
Young, 1984). The Dvna architecture is due to Sutton (19%90), and the results
in this and the pext section are based on results reported there,

There have been several works with moded-based reinforcement learning that
Lake Che bdea of exploration bonoses and optimistic initialization te its logical
extreme, in which all incompletely explored choioes are assumed masimally
rewarding amd optimal paths are computed Lo test them, The E* algorithm of
Kearns and Singh (2002) and the B-max algorithm of Brafman and Tennen-
bt (2008 ) are poarantesd Lo find o pesr-optimal solution in Gme polynomial
in the number of states amd actions. Thizs s usually too slow for practical
algorithms but is probably the best that can be done in the worst case.

Prioritized sweeping was developed simultanessusly and independently by
Moore and Atkeson (1993) and Peng and Williams (1993). The results in
Figure 8,10 are dwe 1o Peng and Williams {19930, The resulis o Figure 8,11
are due to Moore and Atkeson.

The central ideas of Mopte Carle Tree Search were introdeced by Coulom
(20077} and by Kocsis and Ssepesvard (20006). David Silver contributed to
Lhee dedeas and preseptation in fhis section.
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Chapter 9

On-policy Prediction with
Approximation

W have so far assumed thad our estimabes of value lioctions are represenbed as o
table with one entry for each state or for each state-action pair. This is a particularly
clear and instructive case, bul of course §0 i lmited to tasks with small mambers of
states and actions. The problem is not just the memory needed for large tables, bt
Ll i and dada pecded 1o G them aceurately, In other words, the key jssue =
that of gereralization. How can experience with a limited subset of the state space
bo nselully generalized to produee a good approximation over a much larger subsot?

This 15 & severe problem, In many tasks (o which swe would like 1o apply reinforoes
ment. learning, most states encountered will never have been experienoed cxactly
before, This will almost always be Lhe case when the stale or action spaces inelude
continuous variables or complex sensations, such as a visual image. The ooly way
Lo learm anyihing al all on these lasks 5 o generalize [rom provioosly experienced
states to ones that have never been seon.

Fortunately, generalization [rom examples has already been extensively stadied,
and we do not need Lo imvent totally new methods for use in reinforcement. learning.
To a large extent we peed only combine reinforcement learning methods with ex-
isting peocralization methods, The kind of generalization we reqguice 5 often called
Junction approzimaelion because 1 takes examples from s desired unction (eg., a
wialue [unction] and atiemps (o generalize fom them 1o construel an approsimalion
of the entire unetion. Funcltion approximation is an instance of supervized learning,
Lhe: primacy topic stddied in machine learning, artificial nearal petworks, patborn
recognition, and statistical curve fitting. In principle, any of the methods stodied in
Lhese fields can be used in reinforeement learning as deseribesd in this chapier,

9.1  Value-Function Approximation

As usnal, we hegin with the prediction problem of estimating the state-value linetion
iy from experience generated using policy 7. The noveliy in this chapier is that the

195
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approximate value oetion & represenbed ool as a table bal a8 a pacsmederized
Manctional form with parameter vector 8 € B", We will write &(5,0) = vg{s]) Tor the
appraoximated value of state s given parameter vector 8. For example, @ might be the
[anction computed by an artificial pearal network, with @ the vector of eonneclion
weighis, By adjusting the weighis, anv of a wide range of different lunctions © can
b imgpeanented Ty the petwork, O @ might be the Dooetion compoated by adecision
tree, where 8 is all the parametors defining the split points and leal values of the
Lre, Typically, the pumber of parameters o (e nwmber of components of @) i3 much
less than the pumber of states, and changing one parameter changes the estimated
vialue of many states, Consequently, when a single state i3 backed ap, the change
poncralizes from that state to aflect the values of many other states.

All of the preesliction methods covered in this ook have been describes] as backups,
Lhat s, as updates o an estimated value Tinetion that shill it waloe sl particular
states toward a “backed-up value™ for that state. Let us refer to an individual backup
by the nolation s — g, where s 5 Uhe stale backesdd up and g is the backed-up value,
or target, that &'s estimated value is shifted toward. For example, the Monte Carlo
backup Tor value prediction is 5 — G, the TD{D) backup is S~ Bepa 700500 0,80,
and the general TDA) backup is & — ﬂf In the DP policy evaluation backup
v+ Ex[Repn1 + v8( 50 0.8¢) | Se=s5], an arbitrary staie s is backed up, whereas in the
other cases the state encountered in (possibly simulated) experience, 5, 18 backed
L.

It is natural to interpret cach backup as specilving an example of the desired
input output behavior of the estimated value lunetion. In a sense, the backup s« g
means Lhat the estimated value for state s should be more like g0 Up boooow, (he
actual update implementing the backup has been trivial: the table eniry lor &%
eatimabed value has simply been shillbed a Traction of the way toward g Now we
pormit. arbitrarily complex and sophisticated function approcimation mothods to
implement. the backup. The pormal inpats o these methods are examples of the
desired input-output behavior of the lunction they are trving Lo approximate. We
wse these methods Tor value prediction simply Ty passing o them the s — g of each
backup as a training example. We then interpret the approximate function they
prodisce as an estimated value Dinetion,

Viewing each backup as a conventional training example in this way conables us Lo
use any of a wide range of existing lunction approximation methods for value pre-
diction, In principle, we can use any method for supervised learning Trom examples,
including artificial neural networks, decision trees, and various kinds of moltivariate
regression, However, nol all lupetion approximation methods are egually well saiied
for wse in reinforcement learning. The most sophisticated pewral network and statis-
Lical methods all assume a static Craining set over which muldtiple passes are made,
In reinforcement. learning, however, it i important that learning be able to oceur on-
lirve, while interacting with the environment or with a model of the eovironment, To
do this requires methods that are able to learn elliciently from incrementally acqguired
data, In acddition, reinforeement learning generally reguires Tuncticn approsimation
methusls able to haodle nonstationary Larget Tunctions (largel lnetions that change
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over Lime), For example, in GPD control methods we often seck (o learn g, while
# changes, Even il the policy remains the same, the target values of training cx-
amples are nonstationary il they are generated by bootstrapping methods (DF and
T, Methods that cannot easily handle such ponstationarily are less suilable for
reinforcement learning,

What performance measures are appropeiste for evaluating linction approsimation
methods? Most supervised learning methods seek o minimize Lthe mean squared error
(MSE] over some disteibation over the inputs, In o valoe prediction peoldem, the
inputs are staies and the target nction i the troe value Dmction v,. Given a
poarameter veclor, we seck oo minimize the expected squared diiferenes bedwesn (he
value cstimates of the vector and the true values, which we call the mean sguare

walue error [MSVE]:

MSVE() = 3 d(s) l1.t._-|[.-1] it m]”. (9.1)

1=

where of - & — [0, 1], such that 3 _d(s) = 1, is a distribotion over the slates specilfving
the relative importance of errors in different states. This distribution s important
becanse it is usually pol possible e redoee he error Lo sero al all states, Aller all,
thore are penerally far more states than there are components to @, The Hedbility of
Lhee Dunetion approximator 2 (hus a scarce resouree. Beller approximation al some
states can be gained, generally, only ab the expense of worse approximation at other
atates, The distrilwtion specilies how these Grade-ofls should be made,

The distribution d is also usually the distribution from which the states in the
training examples are drawn, and thus the distribution of states at which backups
are done, 1T we wish (o minimise error over a certain distribution of states, then
it makes sense to train the function approximator with examples from that same
distribution, For example, i§ you wantb s uniform level of error over the entire stale
sob, then it makes sense to train with backups distributed uniformly over the entire
stabe sel, such as in the exbaustive sweeps of some DI methods, Hencelorth, Jet ws
assume that the distribution of states at which backups are done and the distribution
Lhal weights errors, o, are the same,

A distribution of particular interest is the one deseribing the frogquency with which
slates are concouniered while the agent i3 ioleracting with the envicomment and se-
lecting actions according te w, the palicy whose valoe lioction we are approximaling,
Wo call this the on-policy distribulion, in part bocanse it is the distribotion of back-
ups in on-policy control methods, Minimizing ercor over the on-policy distrilation
[cuses lunction approximation resources on the states that actually occur while fol-
lowing the policy, ignoring those that pever ocear, The an-policy distribution is also
the one for which it is casicst Lo get training examples using Monte Carlo or TD
methowds, These methods generate backups [rom sample experience using the policy
7. Because a backup is generated for each state encountered in the experience, the
Lraining examples available are naturally disteibuted according to the on-paolicy dis-
tribution. Stronger convergenco resulis are available for the on-policy distribution
than for other distributions, as we discuss later.
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It 5 nob completely clear that we should care aboul minimizing the MSVE, Our
ol in value prediction s poteotially different becaose our altimate purpose @5 o
use the predictions to aid in finding a better policy. The best predictions for that
purpose are ol necessarily e best for minimizing MSVE, However, it = not yel
clear what a more uselul alternative goal for value prediction might be. For now, we
continue 1o fecus on MSVE,

An ideal goal in terms of MSVE would be to find a global oplimum, a parameter
vector 8% for which MSVE(8") < MSVE(#) [or all possible 8, Reaching this goal is
sometimes possible for simple lunction approsimators such as linear ones, but is rarely
possible for complex Iinetion approximators such a2 artificial nearal networks and
decision trees. Short of this, complex lunetion approximators may seek bo converge
insteadd 1o a Toend opdéecn, o parameter vector 8 for which MSVE(8%) < MSVE(#)
[or all @ in some neighborhood of 8%, Alithough this goaranies 15 only slightly ress-
suring, it is typically the best that can be said for nonlinear lunction approximators,
and often it s epough, Sl Tor many cases of interest o reinforcement. learning,
convergenee Lo an optimum, or even to within a bounded distance from an optimum
canmol e agsueed, Some methods may in fct diverge, with their MSVE approaching
infinity in the limit.

In this section we have outlined a ramework Tor combining a wide range of pe-
inforcement learning methods for value prediction with a wide range of function
approximadion methods, using the backups of the Former o geperade training exam-
ples for the latter. We have also outlined a range of MSVE performance measures
by which those methods may aspire. The range of possible methods is far too large
L conver all, amd anyway Loo litile s known aboul most of them o make a celialle
evaluation or recommendation. (0 necessity, we consider only a few possibilities.
In the rest of this chapler we locus on lunction approximadion methods Tesed on
pradient. principles, and on linear gradient-descont mothods in particular. ' We oous
on these methods in part becanse we consider them e be particulacly promising and
becanse they reveal key theoretical ssues, but also because they are simple and our
apace is lmited, IT we bad another chapter devoted to lunction approximation, we
would also cover st least memory-based and decision-tree methods.

0.2  Gradient-Descent Methods

W pow develop in detadl one class of learning methods Tor Tunction approsimation
in valiwe prediction, those based on gradient descent,  Gradient-descent methiods
are among the most widely used of all fonetion approximation methods and are
proarticilarly well suited (o online reinforcement. learning,

In gradiont-descent methods, the parameoter vector is a column vector with a fxed

pnenber of real valued eomponents, 8 = (8,8, ..., 05) T 1and the approximabe valie
function ©{s,#) s a smooth differentiable function of @ for all 2 € 5. We will be

"Ihe " denotes transposs, neesded here to turn the horizootal row yvector ioto s wertical column
wveotor; in this text all vectors are by defaalt column vectors unless transpaosed.
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updating & al each of a series of discrete time steps, L= 1,23, .., 50 we will need
A nodation & for the weight vector ab each step, For now, et us assome that, on
each step, we observe a new example 5 — 0.5 ) consisting of a (possibly randomly
selected ) stabe 5 and s troe value aoder the policy, These stabes might be sueoessive
states from an interaction with the environment, but for now we do ool assume so.
Even though we are given the exact, correct values, o[ 5) Tor each S, there s still o
difficult problem becanse our function approximator has limited resources and thes
limited resolution,. In particular, there is geperally oo 8 that geis all the states, or
even all the examples, exactly correct. In addition, we must generalize to all the
other stades that have oot appears] in examples,

We assume that states appear in examples with the same distribution, d, over
which we are trying (o minimize the MSVE a8 given by (91} A good strategy in
Lhig case s Lo try (o minimize ercor on e observed examples. Stochastic grdiend-
deseent (SGD) methods do this by adjusting the parameter vector after each cxample
by o gmad] sanount o Che divection that would most edece the error en thad exanmple:;

. L i ’
Our = 0~ 50V (S0 - 9(5.00)]

B+ [41.-{.";,] - ﬁ{ﬁ,,ﬂg}]?fa{.ﬂ‘,:ﬂ. ] (9.2)

where o B8 a positive step-size parameter, and Vf(#), for any expression f{#&),
denotes the vector of partial derivatives with respect o the components of the weight
VOCLOET

(ﬁh"l:ﬁ'f} af(8) ﬂf{E’e})T
gy i T M, -

This derivative vector is the gradient of § with respect to 8. This kind of method is
called gradient deseent bocause the overall step in & s proportional to the megalive
pradient. of the example’s squared error. This is the direction in which the crror falls
most rapidly, This method iz called sfochestic gradient descent when the update i=
done for only this one example, which might have been selected stochastically.

L oy pod T fmesddisd ey apparent why only o zmall step s taken in the divection
of the gradient. Could we not move all the way in this direction and completely
eliminste the error on the example? In many cases this could be dooe, Dot asaeally
it is mol desicalde, Bemember Chat we do ool seck or expect Lo lod a value Tunction
that has zero error on all stabes, but only an approximation that balances the errors
in dilferent states, 15 we completely correcta] each example in one step, then we
would not find such a balance. In fact, the convergonce results for 3GD mothods
assime that the stepesize parameter decreases over Gme. IT 0 decreases in such o
way a5 Lo salisly the standard stochastic approximation conditions (2.7), then the
SGD method (9.2) i guaranteed (o converge (o a local oplimum.

We turn now o the case in which the target oubput, here denoted ¥ € K, of
Lhee tthe braining example, S5 — Vi, 18 mob the troe valoe, o (S, bl some, possilly
random, approximation of it. For example, ¥, might be a nolsc-corrupted version of

#y[ &), or it might be one of the backed-up values using & mentioned in the previows
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section, In such eases we cannot perform the exact update (9.2) becanse v (5] is
unkoown, but we can approximate 6 by substituting Vi in place of ox(S:), This
yields the following general gradiont-descent method [or state-value prediction:

Bopy = B+ |V, — E-{H::E:]-‘ Tir( 5,.8,). (9.3)

If V} is an wnbinsed estimate, that is, ifE[V;] = vo(5;). for each {, then 8; is guaranteed
L copverge o a lecal optimum wider the uwsual stochastic approsimation conditions
(2.7} [or decreasing the step-gize parameter .

For example, suppose the states in the examples are the states generated by inter-
action (or simulated inferaction) with the eovicomment using policy 7. Let Oy denoie
the return following each state, 5. Because the true value of a state is the expected
wialue of the return following i, the Monte Carlo target Ve = G 38 by delinition an
unhiased estimate of v (5;). With this choice, the general gradient-descent mothod
(0.3} converges oo locally optimal approximation o eg( S ), Thos, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
oplimal solulion,

Similarly, we can use n-step T returns and their averages for V. For example,
Lhe gradient-descent form of TIMA) uses the A-return, V, = l‘.':--'j"1 as ils approsimalion
o v 5 ), vielding the forward-view apdate:

By = B+ |G — -ﬂ{.‘:‘hﬂl]] Vi 5,8, ). (9.4)

Unfortunately, for A < 1, 3} is nol an unbiased estimate of o.(S:), and thus ihis
method does pot converge to a local optimum.  The situation is the same when
DT targels are used such as Vi = EgR +0(500.8) | 5], Neveriheless, such
homstrapping methods can be quite effective, and other performance guarantees are
available for imporiant special cases, as we discuss Inter in Chig chapier, For now
wi emphasize the relationship of these mothods to the general gradient-descont. form
(.3}, Although increments as in (9.4) are not themselves gradients, it is useful Lo
view Lthis method as a gradieni-descent methosd (9.3] with a Bootstrapping approsi-
mation in place of the desired output, v (5.

As (94) provides the Torward view ol gradient-descent TTHA), so the backward
view is providod by

Bep1 = By + ey, (%.5)
where & §s the usoal TTY error, now using o,
iy = Ry + 700 Spp8) — 005,60, (6]

and ey = (eg),€02,- .. €1 nl! is a column veetor of eligibility traces, one for each
component of 8, updated by

e = e 1 + Vil S§,.8), (9.7)



9.8, LINEAR METHODS 201

Initinlize & as appropriete for the problem, eg, @ © 0
Repeat (for esch episode):
el
& 4 initial state of cpisode
[Repeat (for each step of episode]:
A i aetion given by 7 for S
Take acthon A, observe veward, i, and next state, S°
8§ R+ 455 .8) — 0{5.8)
e a4 ViS58
84+ 0+ wde
S8
unthl & s terminal

Figure 9.1; Oo-line gradient-descent TTMA) for estimating ..

with eg = 0, A complete algorithm for on-line gradient-descent. TD{A) is given in
Figure .1,

Two methods for gradient-based function approximation bave been used widely
in reinforeement learning,  One iz muliilayer artificial neoaral nedworks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process s Ghe way of computbing the
gradients. The second popular form is the linear form, which we discuss extensively
in Che pext section,

Exercise 9.1 Show that table-lookup TD{A) is a special case of general TDA) as
given by eqguations (9.5 9.7).

Exorcise 9.2 Slale aggregation is a simple form of generalizing lunction approxi-
mation in which stales are grouped ogether, with one table entry (value estimate)
used for each group. Whenever a state in a group is encountered, the group’s entry is
used to determine the state’s value, and when the state s npdated, the group’s entry
is npdated. Show that this kind of state ageregation is a spocial case of & gradiont
methosd such as [(9.4).

Exercise 9.3 The equations given in this section are for the on-line version of
gradient-descent TIMA). What are the egquations for the off-line version? Give a
complote description specilving the new weight vector at the end of an episode, 87,
in terms of the weight vector used during the episode, 8. Start by modifying a
forward-view cquation for TIMA), such as (5.4),

9.3 Linear Methods

One of the most important special cases of gradieni-descent lunction approximation
i5 that in which the approsimate Dinction, &, & a lioear Tuoction of the parameter
vector, @, Corresponding bo every state s, there 5 a vector of featuros @(z) =
[y {s). dala), .--,%{H]]T: with the same number of components as 8. The features
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ey be copstructed [rom the stales in many different ways; we cover a fow possibilities
below, However the features are constracted, the approsimate state-sadue Tinction
is miven by

Pls8) =8 d(s) =3 fidils), (9.8)
=1

In this case the approximate value lunction is said to be linear in the poramelers, or
simply finear,

Ii is matural to use gradienti-descont updates with linear funetion approximation.
The gradient of the approsimate value function with respect 1o 8 in this case =

Vir(s,8) = @)

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case, In addition, in the linesr case there i3 only one optimom & (or,
in degenerate cases, one set of equally good optima). Thos, any method guaranteed
Lo converge Lo or near a local oplimum is automatically gpuarantesd to converge Lo
or pear the global oplimum, Because L s simple in these ways, Uhe lioear, gradient-
desoent. case is one of the most favorable for mathematical analysis.  Almost all
useinl convergenss resulls for learming gyslems of all kinds are for linear {or simpher)
function approcimation methods,

In parcticular, the gradient-desceat TINA) algorithm discussed in the previous sec-
tion (Figure %.1) has been proved to converge in the linear case if the step-sise
parameter s reduced over Gime according o the usual conditions [2.7], Convergeno:
i5 mot to the minimum-error parameter vector, 8%, but to a nearby parameter vectaor,
f_.. whose error is ounded according (o

1 — A
MSVE(f) < - MSVE(#") (9.9)
That is, the asympiotic error is no more than 1. "ﬂr"‘ times the smallest possible error.

As A approacties 1, the bound approasches the minimoom error, An analogons Teand
applice to other op-policy bootstrapping methods,  For example, linear gradient-
descent DI backups (9.3), with the on-policy disteilation, will copverge (o (he same
resull as TDHOT, Techoically, this bownd applies only e discounied eontinning taszks,
but a relatod result presumably holds for episodic tasks, There are also a fow technical
conditions on the rewards, features, and decrease in the slepesize parameter, which
we are omitting here. The full details can be found in the original paper {Tsitsiklis
and Van Roy, 1997).

Critical to the above result is that stabes are backed up according io the on-policy
distribution, For other backup distributions, bosisirapping methods using Tnetion
approximation may actually diverge to infinity. Examples of this and a discussion of
possible solution methods are given in Chapter 10,

Boyvond these theoretical resulis, linear loarning methods are also of interest he-
cause in practice they can be very efficient in terms of both data and computation.
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Whether or not this is so depends eritically on bow Uhe stabes are represented in
Lermms of the features, Choosing features appropeiale o Che task s an important way
of adding prior domain knowledge to reinforcement learning systems.  Intuitively,
Lhee Teatures should corvespond (o the nataeal festures of the task, these along which
generalization is most appropriate. If we are valuing peometric objects, for example,
wee might want 1o have features Tor each possible shape, color, giee, or lunction, 10
we are valuing states of a mobile robot, then we might want to have leatures for
loeations, degrees of remaining ballery power, recent sonar readings, amd so o0,

In general, we also need leatures for combinations of these natural qualities. This is
becanse the linear form prohildts the repeesentation of interaetions belbween feabures,
auch as the prosence of feature § being good only in the absence of feature j. For
example, in the pole-lalancing task (Example 3.4), & high angular velocity may be
either good or bad depending on the angular position. I the angle i high, then high
angular velocity means an imminent danger of falling, a bad state, whereas i the
angle is low, then high aogular velocity means Uhe poele is righting itsell, o good stade,
In cases with such interactions one needs to introduce features for conjunctions of
Featuee values whien using linesr inction approximation methods, We next eonsider
somne general ways of doing this.

Exercise 9.4 How could we reproduce the tabular case within the linear framework?

Excrcize 9.5 How could we reprodece the stale ageregalion case (gee Exercise 8,4)
within the lincar framework?

Coarse Coding

Consgider a task in which the stabe sel s continuows and two-dimensional, A siale in
thiz case is a point in 2-space, & vector with tao real components. One kind of feature
[or this case s those correspomnding o cireles in stale space, as shown in Figuree 9.2,
Il the state is inside a circle, then the corresponding feature has the value 1 and is
said Lo be presend; olherwise (he feature 15 0 and is sad (o be absend, This Kiod of
1 -Dvalued [eature is called a binary feature. Given a state, which binary features
e present indicate within which circles the stade lies, and thos coarsely eode Tor iis
location. Representing a state with features that overlap in this way (although they
ne] mol be cireles or binary ) 12 known a8 oonese ooding,

Assuming lincar gradient-descent inction approximation, consider the effeet of
thi size and donsity of the eircles. Corresponding to each cirele is a single paramotor
(o component of 8] thal i3 alfected by learning, 15 we train ol ope poinl (state) X,
then the parametors of all circles intereecting X will be affected. Thus, by (B8],
Lhee approximate value inetion will be allected at all points within the anion of
tho circles, with a groater effect the more circles a point has “in common™ with
X, a5 shown in Figure 9.2, I ihe circles are small, then the generalization will be
over a short distanee, as in Figure 9.3a, whereas if they are large, it will be over a
large distance, as in Figure 930, Moreover, the shape of the featares will determine
the nature of the generalization. For example, if they are not strictly ciccular, bt
are elongated in one direction, then generalization will be similarly affected, as in
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Figure 3.2; Coarse coding, Ceneralisation from state X to state Y depends on the nomber
of their features whose recoptive fields (in this case, circles] overlap, These states have one
feature in common, = there will be slight generalization between them,

- .
L i -

&) Mamow generalization by Broad generabization ch Agymmelric generalization

Figure 9.3: Generalization in linear function approximation methods is determined by the
siges and shapes of the features” rocoptive fields. All throe of these cases have roughly the
samwe number and density of features.

Figure 53,

Features with large receplive ficlds give broad generalization, but might also seem
Lo limit the learned funetion bo a coarse approximation, unable o make discrimina-
tions much finer than the widih of the receptive fields. Happily, this is not the case,
Initial generalization rom one poinb e another is indecd controlled by the size and
ahapee of the receptive lields, bub acuity, the lnest diserimination ultimately possilde,
is controlled more by the total number of leatures.

Example 9.1: Coarsenesz of Coarse Coding  This example illustrabes the
elfect on learning of the size of the recepitive fields in coarse coding. Linear function
approximation based on coarse coding and (9.3) was used 1o learn a one-dimensional
squarc-wave nction (shown at the top of Figure 9.4). The values of this linetion
wiere used as the targels, Ve Wilh just one dimension, the receptive lelds wene
intervals rather than circles. Learning was repeated with three different siees of the
intervals: parrow, mediom, and Troad, as shown st the bottom of the lgare, Al
three cases had the same density of features, about 50 over the extent of the lnetion
being learned.  Training examples were generated uniformly atb random over this



0.3, LINEAR METHODS 205

ecxtent, The step-sise parameler was o = ﬂrf. where s 35 the number of features

Lhat were present sl one tme, Figure 94 shows the Tunctions learmed o all (hees
cases over the course of learning. Note that the width of the featwres had a strong
effect early in learning., With broad features, the geperalization tended to be brosd;
with marrow features, only the close neighbors of each trained point were changed,
causging the Iunetion learped te be more bumpy, However, the final Dooetion learned
was allected only slightly by the widih of the leatures. Receptive field shape tends to
hawe a strong ellfect on geperalization bot lile eilect on asymplotic solution gquality,
10 — LA

.f“ } .
0 M N
_’fr?‘v“-ﬁ fﬁ ﬂ F\\

|
16D _Jll._qll'u_ —Lim e ,r” “'r_h\'ul "

#Examples —— fides ——

B4 -\..-Il:I-_,-._,-..-\.-\.-. L _.ﬁ_.-"' ll\.\_/-\. _-"'- III.—"\-hl "\""\_
| IFV_\ |
2560 . - - . _ -
[
10240 __I T _,_:_ L_H_ o i
Wil
Marmow Medium Broad
featuras feglures leaturas

Figure 1.4 Example of feature wideth's strong offect on initial generalization (fist row) and
wieak effect on asymptotic acarcy {(last row].

Tile Coding

Tile coding 5 a lorm of coarse coding thad §s particularly well suited Tor use on
sequential digital computers and for efficient op-line learning.  In tile coding the
receplive lelds of the features are grouped inlo exbaostive pactitiong of the inpi
space. Each such partition s called s Bfing, and each element of the partition is
called a ble, Each tile is the receptive ficld for one binary feature.

An immediate advantage of Lile coding is that the overall noumber of Teatures thad
are present ab one time is strictly controlled and independent of the input state.
Exactly one [eature is present in cach tiling, so the total number of [eatures present
is alwayvs the same as the number of tilings. This allows the step-size paramotor,
o, Lo b sel in an easy, intuilive way, For example, choosing o = i—. whiere w18
the number of tilings, resulis in exact one-trial learning. If the example & — v is
received, Lhen whatever the prior valoe, o{58), the new walue will be o(s,8) = o,
Usnally one wishes to change more slowly than this, to allow for geneoralization and

stochastic variation in target ouipuis. For example, one might choose o = ]-ﬂh—“ in
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which case one would move one-tenth of the way 1o the targel in one apdate,

Becanse tile coding uses exclusively binary (1 l-valued ) features, the weightod sum
making up the approximate value lunetion (98] is almost trivial 1o compute. Bather
Lhan performing oo multiplications and additions, ooe simply compotes the indices
of the m < » present. features and then adds up the m corresponding components
of the parameter vector, The eligibility Crace compatation (9.7) 5 also simpliled
becanse the components of the gradient, V(s 8), are also wsually 0, and otherwise

1.

The computation of the indices of the present features is
particularly easy i gridlike (ilings are wsed, The bleps and
technigques here are best illustrated by examples.  Suppose
wir address o task with two continuous state varialdes, Then
Lhe simplest way Lo Gile the space is with a unilorm fwo-
dimensional grid such as that shown to the right. Given the &
and g eoordinates of a poinl in Che space, iU is compoatationally
easy to dotermine the index of the tile it is in. When multiple
Lilimgs are used, cach is oflzel by a different amownt, 20 Chat
each cuts the space in a different way. In the example shown in Figure 3.5, an extra
rovw and an extra column of tles have been added 1o the geid so that no poinis
are loft uneovered. The two tiles highlighted are those that are present in the state
idicated by the X, The diilferent tilings may be oflset by random aanounts, or by
cleverly designed deterministic strategies (simply offseiting cach dimension by the
same increment 5 known not to be a good idea). The cifecis on generalization and
asympolie aceuraey illustrabed in Figures 9.3 and 9.4 apply bere as well, The widih
and shape of the tiles should be chosen o match the widih of peneralization that
one expects Lo e appropeiate, The oomber of Gilings should be chosen to infloenes:
the density of tiles. The denser the tiling, the finer and more accurately the desired
Munction can e approgimatbed, Dol the greater the compabational cosis,

Tilimg &1 -

filing #2 ——

20 stale T i Shape of tiles — Generalization

ERAGE g

#Tilings == Aesolution of final approximation

Figure 9.5; Multiple, overlapping gridtilings.
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a) Irregular b Log stripes ¢) Diagonal stripes

Figure 9.6: Tilings.

It is important to note that the Glings can be arbitrary and peed not be uniform
grids, Mot ooly can the Giles be sirangely shapaed, as in Figuee 3,68, bol they can be
shaped and distributed to give particular kinds of generalization. For example, the
siripe Liling n Figure 960 will promoie generalizalion along the vertical dimension
and discrimination along the borisontal dimensgion, particalacly on the lefl. The
diagonal stripe tiling in Figure e will promote geperalization along one diagonal. In
higher dimensions, axis-aligned stripes correspomd Lo ignoring some of the dimensions
in some of the tilings, that is, to hyperplanar slices.

Ancther important trick lor reducing memory reguirements

is heshing a consistent psoudo-random collapsing of a large
Lilimg into o much smaller et of (iles, Hashing prodoces (iles -

Ty

consisting of poneontiguows, disjoint regions randomly spread \\ L_rl

Lhroughout the stale space, bul that stll form an exhaonstive ,
D-d_}

tiling. For example, one tile might consist of the four subiiles ﬁg‘-‘
shown to the right. Through hashing, memory requirements

e often redueed by large [nctors withe little Toss of perfoe- O

mance. This is possible because high resolution s needed in
only s small feaction of the stade space, Hashing [rees us [rom
the curse of dimensionality in the sense that memory requirements need not be ex-
ponential in the pumber of dimensions, ol pesd merely mateh the real demands of
the task. Crood public-domain implementations of tile coding, including hashing, are
widely available,

Exercise 9.6 Suppose we believe that one of iwo state dimensions is more likely Lo
hawve an effect on Che value ioction than s e other, that generalisation should be
primarily across this dimension rather than along it. What kind of tilings could be
used Lo take advantage of this prior konowledge?

Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to
contineousvalued features,  Rather than each feature being either © or 1, b can
be anything in the interval [0, 1], reflecting various degrees to which the feature
is presont. A typical ROF feature, i, has a Gaussian (bell-shaped) response ()
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iy ‘ Cis 1
Figure 9.7: One-dimensional radial basis functions,

depemlent only on the distance botween (he state, s, and the festure’s protolypical
or cenber stabe, o, and relative to the feature’s width, o

—
el ) = oxp (—%) .

The norm or distance melric of course can be chosen in whalever way sooms mosi
appropriate to the states and task at hand. Figure 0.7 shows a one-dimensional
example with a Ewclidesn distapce metric,

An BEBF network is a linear lunction approximator using RBFs for its features.
Learning is delined by equations (9.3) amnd (9.8), exactly as in other linear lunction
approximators. The primary advantage of RBFs over binary features is that they
produce approximate lunctions that vary smoothly and are difforentiable. In addi-
Lhoay, some learning methods for RBF petworks change the cepters and widihs of the
features as well, Such nonlinear methods may be able to it the target lenction much
e preciscly, The downside (o RBF networks, amd (o ponlinear RBF networks es-
pocially, is groater computational complexity and, ofton, more manual tuning before
lesrning is robust and eflicient,

Kanerva Coding

On tasks with very high dimensionality, say hundreds of dimensions, tile coding
and RBF networks Become impractical, T we take either method st face valos, s
computational complexity increases exponentially with the number of dimensions.
There are a pumber of tricks that can redisce this growth (such as hashing), bl even
Lheese become impractical alter a few tens of dimensions,

On the other hand, some of the general ideas underlying these methods can be
practical for high-dimensional tagks, In particular, the idea of representing states
by a list of the features present and then mapping those features linearly to an
approximation may seale well o Jarge tasks, The key is o keep the oumber of
[eatures from scaling explosively. Is there any reason to think this might be possible?

First we nesd 1o establish some realistic expectations, Roughly speaking, a lune-
tion approximator of a given complexity can only accurately approximate target
Munctions of comparable complexity, But as dimensionality increases, the giee of the
state space inherently increases cxponentially. Ib is reasonable to assnme that in
the worst case the complexity of the target lunction scales like the sige of the state
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apace, Thus, I we [oeus the worsl case, Lthen Lthere s no solubion, oo way Lo gel

o] approximations for high-dimensional tasks withool using resources exponential
in the dimension.

A more uselul way (o think about the problem is (o foeus on the complexity of
the target function as separate and distinet rom the siee and dimensionality of the
state space, The sise of the stale space may give an upper boumnd on eomplexity,
but short of that high bound, complexity and dimension can be unrelated. For
example, one might have a 000-dimensional task where only one of the dimensions
happens to matter. Given a certain level of complexity, we then seck 1o be able to
accurately approximate any targel lunction of that complexity or less, As the targed
lewvel of complexity increases, we would like to get by with a proportionate inerease
in computabional resmroes,

From this point of view, the real souree of the problem s the complexity of the
target function, or of a reasonable approximation of it, not the dimensionality of the
state space, Thus, adding dimensions, such a8 new sensors of new features, o a Lask
should be almost without consequence i the complexity of the needed approxima-
Lions remadns the same, The pew dimensions may even make things easier i the
target function can be simply expressed in terms of them. Unfortunately, methods
like tile coding and RBF eoding do mol work this way, Their complexily inereases
exponentially with dimensionality oven if the complexity of the target Donction doos
not, For these methods, dimensionality itsell = sl a problem,. We peed methods
whose complexity is unalfected by dimensionality per se, methods that are limited
only by, and scale well with, the complexity of what they approcimate.

O simple approach that mects these criteria, which we eall Kanerma coding, 15 Lo
choose binary features that correspond to particular prololype slofes. For definibe-
ness, lel us say Lhal Lhe protolypes are candomly selected Trom the entioe stabe space,
The receptive ficld of such a feature is all states sufliciently close to the protoiype.
Kanerva coding uses a different kind of distanes meteic than in s used in tile coding
and BBFs. For definiteness, consider a dinary state space and the homming distonce,
Lhe: nwmber of bits al which two stales differ, States are considered similac if they
agree on enough dimensions, even if they are totally different on others.

The strengih of Kaperva coding is that the complexity of the lupcticns thal can
be learned depends entirely on the number of features, which bears no necessary
relationship to the dimemsionality of the task. The pomber of features can be more
or less than Che number of dimensions, Only o the worst ease most i0 be exponential
in the number of dimensions. Dimensionality itsell i thus no longer a problem.
Complex Iunctions are s6ll a problem, as they bave (o be, To haodle more complesx
tasks, a Kancrva coding approach simply needs more features. There is not a great
deal of experience with such syvatems, bul whad there is suggesis that their abilities
increase in proportion to their computational resources. This is an area of current
research, and signilicant improvements in existing methods can 5001 easily be Tound,
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0.4 Control with Function Approximation

We now extend value prediction methods nsing function approcimation to conirol
methodds, ollowing the patiern of GPL First we extend the state-value prediction
methods o action-value prediction methods, then we combine them with policy
improvement and action selection techoigues, As usual, the proldem of eosaring
exploration is solved by pursning cither an on-policy or an off-policy approach.

The extension to action-value prediction s straightforward. In this case it is the
approximate action-value linction, § = g, thal s represepied as a pacsmederized
functional form with parameter vector #. Whereas before we considered random
Lraining examples of the [orm 5 — Vi, now we consider examples of the [orm
S, A — 0 (0 here 5 a scalar target, not the action-value arrav as in Part [
of this book), The target oulpal can T any approsimation of g5, Ae, ineluding
the usual backed-up values such as the full Monte Carlo return, O, or the one-step
Sarsa-sivle return, oy + 900500 Aee ) The general gradient-descent. apadade
for action-value prediction is

Bopr = By + o |Qp — G5, A B} | Va5, Ae ).
For example, the backward view of the action-value method analogous to TIA) is
Bep1 = B + oy,
where
by = Hegr + @081 Arpaabh) — GiS, Aty
anid
ey = yhepy + Vil S, A 8),

with ey = 0, We call this method grodieni-descend Sarsafd), particularly when
it. is claborated to form a full control method. For a constant. policy, this method
converges in the same way that TDEA) does, with the same kind of error bouod (5909,

To form control methods, we need (o couple such action-value prediction methods
with technigues for policy improvement and action selection,  Suitable techmiogues
applicable (o contineus actions, or 1o actions [rom large diserete sels, are o Lopie of
ongoing research with as vel no clear resolution. On the other hand, if the action set
i5 discrede and ool boo large, then we can use the techoigues aleeady developed in pee-
vious chapters. That is, for each possible action, a, available in the current state, 5,
wie can compute G5, a8 ) and then find the greedy action &f = argmax, o5, a8 ).
Policy improvement is done by changing the estimation policy to the greedy policy
Cin ofl-podicy methods] or oA soll approximation of the greody policy such as the
e-procdy policy (in on-policy mothods). Actions are solecbed according to this same
policy in on-policy methods, or by an arbiteary policy in ofl-policy methods,

Fipgures 9.8 and 1.9 show examples of o-policy (SarsalA)) and off-policy [ Watking’s
QA}) control methods wsing function approximation. Both mothods wse linear,
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Let @ and & be vectors with one component for esch possible feature
Lt iF,, for every possible action o, be & st of feature indices, initially cmpty
Initialize & as appropriate for the problem, cg, @ 0
Repeat (for cach episode):
e
S, A - initial state and metion of cpisode (g, s-grecdy)
T4+ set of features peesent o S, A
Repeat (for cach step of eplsode):
For all + € T4z
T | {accumidlating traces)
L | (Feplacing traces)
Take acthon A, olserve seward, [, amd next state, 5°
§e R Y, 0
If 5 is terminal, then @ « & | afe; go bo next episode
For all a € A(S):
Iy 4 sot of features present in 87, 0
Qﬂ' i Eie;l'., 'I'-"J
A" i new action in 5 (e.g., e-groedy)
LS ':u'{;"_.p
& @ ovde
i phAe
5= 5
A= A

Figure 9.8 Lioear, gradient-descent SarsafA] with binary features amd s-grecdy policy.
Updates for both aceumualating and replacing traces ave speckfied.

gradicnl-descent lupetion approximation with binary leatures, such as in tile coding
and Kanerva coding. Both methods use an s-greedy policy for action selection, and
Lhee Sarsa method uses 10 for GPI as well, Both compute the seis of present featores,
T, corresponding to tho current. state and all possible actions, @. I the value linetion
for each action is a separate linear Tinction of the same features (a eommon case),
then the indices of the T, lor each action are essentially the same, simplifying the
caomputation significantly,

All the methods we have discussed above have used secumalating cligibility {races.
Although replacing traces are known (o bhave advanbages i tabalar methods, replac-
ing traces do ol directly extend to the use of lunction approgimation, Beeall thad
the idea of replacing fraces is Lo resel a stale's brace o 1 each time it is visited instead
of incrementing it by Lo Bab with linction approgimation there s oo single Grace
corresponding to a state, just a trace for each component. of &, which corresponds
Lo many stabes, One approach thad seems o work well for linesr, gradient-desoent
function approximation methods with binary features is to treab the features as if
Lhey were stales for the purposes of replacing traces, Thal i3, each Lime a state i=
encountered that has feature i, the trace for feature § s set o 1 rather than being
incrementesd by 1, a8 00 would be with accumualating traces,

When working with state action traces, it may also be useful to clear (set to zero)
the traces of all nonsolectod actions in the states encountered (so0 Section 7.8). This
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Let @ and & be vectors with one component for esch possible feature
Lt iF,, for every possible action o, be & st of feature indices, initially cmpty
Initialize & as appropriate for the problem, cg, @ 0
Repeat (for cach episode):
e
& - indtial state of episode
Repeat (for cach step of eplsode):
For all a € A[S):
Ty 4= set of features present in S, a
Q.... i Eie;l'., 'I'-"J
A* - argmax, ).
A i A* with prob, 1 -~ £, else 8 random action © ALS)
If A# A thene = 0
Take petion A, observe reward, /i, and pext state, 57

& R Q.-i

For all i € Ty
g+l (accumulating traces)
L | (Feplacing traces)

If 5 is terminal, then 8 +— 8 + ofe; go to next episode
For all a £ A[5%):
Ty 4= set of features preseat in 5", n
(s Eie;l'., &,
& by maeags) Ga
& @ ovde
e i Ae
g+ 5

Figure 9.9 A linear, gradicnt-descent version of Watking's Q[A) with bioary features and
s-precdy poliey. Updates for both sccomulating and replacing treaces are specified.

idea can also be extended to the case of linear function approgimation with hinary
[eatures, For each state epcountered, we rst clear the traces of all features for ihe
atate and the actions not selected, then we set 1o 1 the traces of the features for the
slate aod the action thal was selected, As we poled for the tabalar case, this may
or may ol be the best way to procesd when using replacing traces. A procedural
specilication of both kinds of traces, inclding the optional clearng [or nonselected
actions, is given for the Sarsa algorithm in Figure 908,

Example 9.2: Mountain Car Task Consider the task of driving an anderpow-
eredd car up a steep mouniain road, as suggested by the disgram in the wpper Leli
of Figure 9.10). The difliculiy is that gravity is stronger than the car's engine, and
even al Tull theottle the car cannot aceelerate ap the steep slope, The only solation
is Lo first move away from the goal and up the opposite slope on the left. Then, by
applying Il throtile the ear ean build up epough inertia to carey i up the sleep
slope even though it is slowing down the whole way, This s a simple example of a
contineous conbrol task where things have (o get worse ina sense (Facther Trom (he
goal) before thoy can get better. Many control methodologies have great difficulties
with tasks of this kind unless explicitly aided by a human designer.
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MounTan CaR Goal

o
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Figure 9.1k The mountain-car task (upper left papel] amd the cost-to-ge functhon
[ — s, s, @) learnod during ooe run.

The reward in this problem is —1 on all time steps until the car moves past ils goal
position sl the top of the mountain, which ends Che episode, There are Chiee possilde
actions: [ull throttle forward (+1), full throttle reverse (—1), and zero throttle (i),
The car moves aceording to a simplilied physics, Tis position, oy, and velocity, gy,
are updatod by

i1 = bourd [F': + f"n!+1]

fugr = bomreed [ + 0.001A; — 0.0025 cos( 3 )],

where the bewnd operation enforces —1.2 < gy < 005 and —0L07 < gy = LO7.
When ey reached the lelt bound, g was resel foowero, When 0 reached ihe
right bound, the goal was reached and the episode was terminated. Each episode
started from a random pasition and velocily unilormly chosen from these ranges. To
convert the two conptinuous stale varables Lo binary features, we used gridiilings as
in Figure 1.5, We used ten 9 = 9 tilings, each offset by a random fraction of a tile
widl L,

The Sarsa algorithm in Figure 8.8 (using replace traces and the optional clearing)
readily solved this task, learning a near optimal policy within 10 episodes, Fig-
ure 910 shows the negative of the value function (the cosi-to-ge function) learned
on ane fun, using the parameters A = 0.9, & = 0, and o = 0.05 {eg., %:? J. The initial
action values were all zero, which was oplimistic (all true values are negative in this
Lask ], causing extensive exploration to ocenr even Chough the exploration parameter,
£, was ). This ean be soen in the middle-top panel of the igure, labeled “Stop 428"
At this time nob even one episode had been completed, but the car has oscillated
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Figure 3,11 The effect of o, A, and the kind of traces on early performance on the mountain-
car task, This study used five 9 = 9 gilings,

back and forth in the valley, ollowing circular irajectories in state space. All the
slabes vigibed freguently ace valoed worse than upexplored stales, becanse e actual
rewards have been worse than what was (unrealistically} expected. This continually
drives the agent away Tooam wherever i0 bas been, (o explore new stabes, until & so-
lution iz found. Figure 9.11 shows the resulizs of & detailed study of the effect of the
parameters o and A, and of the kind of iraces, on the rate of learning on this task.
|

9.5 Should We Bootstrap?

At this point vou may be wondering why we bother with bootstrapping methods at
all. Konbootstrapping methiods can be wsed with lunction approcimation moee reli-
ahly and ovor a broador range of conditions than bootstrapping methods. Nonboot-
strapping methods achieve a lower asymplotic error than Toolstrapping metlods,
even when backups are done according to the on-policy distribution. By using eligi-
bility traces and A = 1, 1t s even possible to implement nonbootsteapping methods
op-line, ina step-bv-siep incremental manner, Despite all this, in practice oolsieap-
ping methods are usually the methods of choice.

In empirical eomparisons, bootsteapping methods vsually pecform moch Tetier
than nonbootsirapping methods, A convenient way to make such comparisons is Lo
use o TH method with eligibility traces and vacy A Trom O [poree boolstrapping] o
1 {pure nonbosstrapping). Figure 9,12 summarizes a collection of such resulis. In
all cazes, performance became moch worse as A approached 1, the ponboolstrapping
case. The example in the upper right of the lgure s particularly significant in this
regard. This i= a policy evaluation (prediction) task and the performance measure
used 18 MSVE (at the end of cach episode, averaged over the first 200 episodes).
Asvmpiotically, the X = 1 case must be best according to this measure, bul here,
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Figure 9.12; The effect of A on meinforcement learning performance, In all cases, the bei-
ter the performance, the bever the curve. The two left pancls are applications to simple
contimens-state conteol taska using the SarsalA) algoritho and tile coding, with cither e
placing or accumulating traces (Sutton, VRG] The upper-sight panel = for policy evaluathon
an a random walk task using TINA) (Singh amd Satton, 1996G). The lower elght panel is
unpaebdlshed data for the pole-balancing task (Example 3.4) from an earlior sty (Sotton,
1154,

short of the asvmpboie, we see iU performing much worse,

AL this time 1t 15 unclear why methodds that invelve some boolstrapping perform so
much better than pure nonbootstrapping methods. Tt could be that bootstrapping
methowds learn [aster, or it could be that they actually learn something better than
nonbootsirapping methods. The available results indicate that nonbooistrapping
methiwls are etter than bosistrapping methods o redecing MSVE [rom the troe
value funetion, but reducing MSVE is not neomssarily the most important goal. For
example, 0 vou add 1000 o the troe action-value Tunction st all stale-action paies,
then it will have very poor MEVE, but vou will still get the optimal policy. Mothing
quite that simple 2 going on with hoolstrapping methods, bat they do seem (o do
something right. We expect the understanding of these issues Lo improve as rescarch
conkines.



216 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

9.6 Summary

Reinforcement learning svstems must be capable of generafization il they are to be
applicable (o artilicial intelligence or 1o large engineering applications. To achicve
this, any of a broad range of existing methods for supervised-learning funclion ap-
proecimeedion can be used simply by treating each backup ag o teaining example,
Crradieni-descent methods, in particular, allow a natural extension to lunction ap-
prosimation of all the technigues deseloped o previons chaplers, ineluding cligildlity
traces., Linear gradient-descent methods are particularly appealing theoretically and
work well in practice when provided with appropriate leatures, Choosing the features
i5 o ol the most important ways of adding prior domain knowledge Lo ceinforoe-
ment. learning svstems. Linear methods include radial basis lunctions, tile coding,
and Kaperva coding, Backpropagation methods for maltilayer pearal oetworks ame
methods for mendinear gradieni-descent linction approximation.

For the most pact, the extension of reinforcement learning prediction and conteol
methods to gradient-descent forms is straighiforward [or the on-policy case.  On-
policy boslsirapping methods converge reliably with linear gradient-descent Tune-
Lion approximation to a solution with mean-squared error bounded by ]l—ﬂ:_':' Limes
Che: minimum possilde error, Bootstrapping methods are of persistent interest in
reinforcoment. learning, despite their limited theoretical guarantees, bocanse in prac-
tice they wsnally work significant]ly better than nonboosistrapping methods. The
ofl-policy cage involves copsideraldy greater suldlety amd is posiponed (o oo later
(future) chapter.

Bibliographical and Historical Remarks

Drespite owr treatment of generalization and lunction approximation late in the book,
they have alwavs been an integral part of reinforcement learning. 1t is only in the last
decade or less that the feld has focused on the tabular case, as we have bere for the
lirst eight chaplers, Berlsckas and Tzilsiklis (1996), Berisckas (2012), and Sugivama
el al. (2013) present the state of the art in lunction approximation in reinforeement
learning,  Some of the early work with function approgimation in reinforcement
learning is discussed at the ond of this section.

9.2 Gradient-descent methods for the minimizing mean-sguared error in super-
vised learning are well koown,  Widrow and Hodl (1960 iodrodoeed ile
least-mean-square (LMS) algorithm, which is the prototypical incremental
gradient-descent algorithm. Details of (his and related algorithms are pro-
vided b maany texts (eg, Wideow and Stearns, 1985, Bishop, 1995, Duda
and Hart, 1973].

Gradieni-descent analyses of T learning date back at least Go Sattom { 1985),
bMothods more sophisticated than the simple gradiont-descent methods oowv-
ercd in this seclion have also been studied in the context of reinforeement
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learning, such as gquasi-Mewbon methods {Werlsos, 1990) and recursive-leas-
agquares methods {Bradoke, 1993, 1994; Bradike and Barto, 1996, Bradike,
Yistie, and DBarto, 19941). Berisckas and Tsitsiklis (1996G) provide a good
discussion of these methods,

The earlicst use of stabe aggregation in reinforcement learning may have beeg
BMichie and Chambers's BOXES syvstem (1968). The theory of state aggre-
gation in reinforeement learning has been developed by Singh, Jaaskkola, and
Jordan {1995) and Tritsiklis and Van Rov (1096).

TIMA) with linear gradient-descent Dincticn approgimation was lirst explored
by Sutton (1984, 1988), who proved convergence of TD{0) in the mean
L the minimal MSVE solution for the case in which the [eature vectors,
{oia]) : 5 € &}, are lincarly independent. Convergence with probahility 1 for
general A was proved by several researchers ab about the saanoe time (Peng,
1903 Davan and Sejnowski, 1984; Tritsiklis, 19%4; Gurvits, Lin, and Hanson,
193], In addition, Jaakkels, Jordan, and Singh (1994 proves] convergenee
under op-line updating. All of these results assumed lincarly independent
feature vectors, which implies at. least. as many components Lo 8 as there are
states. Convergence of linear TDA) [or the more interesting case of general
(dependent) feature vectors was first shown by Dayan (1592). A significant
generalization and strengibening of Dayan's resull was proves] by Teitsiklis
and Yan Rov (17, They proved the main result presented in Section 9.2,
Lhee Teomaned o the asymplaotic eoror of TDEA)} and other boolsirapping meth-
ods. Recently they extended their analvsiz to the undiscounted continuing

case [ Tailsiklis and Van Roy, 19949),

Or presentation of the range of possibilities lor linear lunction approsimalion
is based on that by Barto (10990). The torm eogrse coding is doe to Hinton
(1984), and our Figure 3.2 is based on one of his lgoees, Wallz aml Fu
(19653} provide an early example of this tvpe of lunction approximation in a
reinforooment. learning system.

Tile eoding, including hashing, was introduced by Albus (1971, 1981). He de-
seribed it in terms of his Scerebellar mode] articolator controller,” or CAC,
as tile coding 5 known in the literature. The term “tile coding” 5 new Lo
Lhis book, though the idea of describing CAMAC in these terms is taken from
Watkins (1980). Tile coding has boen used in many reinforcoment. learning
avalems (o, Shewchuk and Dean, 1990 Lin and Kim, 1991; Miller, Scalera,
and Kim, 19 Sofge and White, 1992 Tham, 1994; Sutton, 1996, Watkins,
1959 as well as in other types of learning control systems [(eg., Krall and
Campagna, 1990); Kraft, Miller, and Dietz, 1982},

Function approximation using radial basis lunctions (RBFs) has received wide
allention ever sinee being relabed 1o pearal networks by Broombeaod and Lowe
(198%). Powell (1987) reviewed ecarlier wses of HBFs, and Poggio and Ginosi

(1989, 1990) extensively developed and applied this approach.
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What we call “Kanerva coding” was introduced by Kaperva (1988) as part
of his more general idea of sparese disteiladed memory, A pood review of this
and related memory models 5 provided by Kanerva (1993}, This approach
has been purswed by Gallaot (1993) and by Sution and Whitelead {1993),
among others.

B4 A with Tunction approximation was [rst explored by Wadking {19834,
SarsalX) with [unction approximation was first explored by Bummery and
Niranjan (19%). The mountain car example is based on a similar task stud-
iex] Ty Moore (1990), The resulis on i presented bere ace [rom Sution { 195G)
and Singh and Sutton | 1996).

Comvergenor of the Sarsa control method presented in this section has not
been proved, The Q-learning control method i3 pow known oot Go T sonnd
and will diverge for some problems. Convergenee resulis for control methods
wilh state aggrogation and other special kinds of fopetion approcimalion are
proved by Tritsiklis and Van Roy (1996), Singh, Jaakkola, and Jordan (1995),
and Gordon [ 19#5],

The use of nction approximation in reinforcement. learning goes back 1o the
early neural networks of Farley and Clack (1954; Clark and Farley, 1955), wlhio used
reinforcement learning to adjust the parameters of linear threshold inetions repre-
senting policies. The earliest example we konow of in which Tunetion approsimation
methosds were used for learning value functions was Samuel’s checkers plaver {1954,
19:7).  Samuel followed Shannon's (1950} suggestion that a value lunction did not
hawve Lo be exact (o be g oselol guide o selecting moves inoa game and that B0 might
be approximated by linear eombination of features. In addition to linear function
appraximation, Samoel experimentesd with lookop tables aml hierarchical lookiap ta-
bles called signature tables [(Griffith, 1966, 1974; Pape, 1977; Bicrmann, Fairfeld,
] Beres, 196827,

At about the same time as Samuel's work, Bellman and Dreyvius (1959 proposed
using lunction approximation methods with DI, (10 35 templing Lo think that Bell-
man and Samuel had some influence on one ancther, but we know of no reference
Lo the olher in the work of cither.) There s now a [icly exiensive lileratoee on
[anction approximation methods and D, such as multigeid methods and methods
using splines and orthogonal polynomials (e.g., Bellman and Dreyius, 195%; Dellman,
Kalaba, and Koikin, 1973; Danicl, 1976 Whitt, 1975; Reete, 1977; Schweitzer and
Seidmann, 1985; Chow and Tsitsiklis, 1991; Kushper and Dupuis, 1982 Rust, 19096).

Hollamd s [ 19586) classilier system used a selective featurc-madeh techinigue 1o gen-
eralize evaluation information across state action pairs. Each classifier matched a
subaet of stales having specilied values Tor a subsed of features, with the remaining
[eatures having arbitrary values [(“wild cards®). These subsets were then used in a
conventional stale-pgeregation approach Lo linction approximation, Holland's idea
was to use a genetic algorithm Eo ovolve & setl of classifiers that collectively would im-
plement. a wselul action-value function. Holland’s ideas influenced the early rescarch
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of the authors on reinforecment learning, but we oowsed on dilferent approsches Lo
Manction approximation. As lunction approximators, classiliers ave lmited in several
waye. First, they are state-agrregation meothods, with concomitant limitations in
sealing amnd in representing smooih Dunetions elliciently, In addition, the matching
ruiles of classifiers can implement only ageregation boundaries that are parallel o
Chee fesdure axes, Perbaps the most important limitation of conventional classifier
avatems is that the classifiers are learned via the genetic algorithm, an cvolutionary
methosdl, As we diseussed in Chapler 1, there b2 available during learning moch more
detailed information about how 1o learn than can be used by evolutionary methods.
This perspective led us bo instead adapt supervised learning methods Tor use in rein-
forcement learning, specifically gradieni-descent and neural network methods. These
differences between Holland's approach and ours are not surprising because Holland's
pleas were developed during a peried when pewral petworks were generally regarded
as being too weak in computational power to be useful, whereas our work was at
Lhee Teeginning of the perod that saw widespresd questioning of that conventional
wisdom. There remain many opportunities for combining aspects of these different
approaches,

A pumber of reinforcement learning studies using lunction approximation meth-
ocds thal we have pol coverosd proviously should be mentioned, Bario, Subbon, and
Brouwer (1981} and Darto and Sutton (1981h) extended the idea of an associative
memory network (e, Kohopen, 1977 Anderson, Silverstein, Ritz, and Jones, 1977)
to reinforeement learning. Hampeon (1983, 19809) was an early proponent of multi-
layer neural networks for learning value functions. Anderson (1986, 1987) coupled
a TD algorithm with the error backpropagation algorithm to learn a value Tune-
tion. Barto and Anandan (1985) introduced a stochastic version of Widrow, Gupta,
and Madtra’s (1973) selective boolsbrap algorithm, which they called the associ-
five reward-penally (A p) elgorithm. Williams (1986, 1987, 1988, 112) cxtended
Lhis type of algorithm 1o a general class of REINFORCE algorithms, showing thad
thov perform stochastic gradient ascent on the expected reinforcement. Gullapalli
(1990} apd Willisms devises] algorithms for learning generalizing policies for the
case of continuous actions. Phansalkar and Thathachar [(1585) proved both local
and global convergence theorems [or modilied versions of REINFORCE algorithms,
Christensen amd Kool (19586) experimented with regression methods for modilving
cocllicients of linear value fupction approximations in the game of chess, Chapman
and Kaclbling (1991) and Tan (1991) adapted decision-tree methods for Jearning
value functions. Explanation-based learning methods have also been adapted for
learning value Iunetions, vielding compaet representations Yee, Sasena, Utgoll, and
Barto, 19 Dietterich and Flanm, 195].
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Chapter 11

Policy Gradient Methods

All af the methods we have considers] so far in this ook have learmped Che values of
states or stabe action pairs. To use them for control, we learned the values of state
action pairs, and then used those action values directly to implement the policy (e g,
c-greedy ) and select actions, All methods of this orm can be called aelion-value
e thads.

In this chapier we explore methods that are nol actioo-value methods, They may
still compute action (or state) values, bul they do not wse them directly to select
actions. Instead, the policy & repeesented directly, with its own welghts independent
of any value himetion.

This chapler is just a place holder [or now,

11.1 ActorCritic Methods

Actor-eritic methods are TD methods that have & sepacale memory stroetiare o
explicitly represent the policy independent of the value lunction. The policy structure
i5 kiwwwn as the actor, bocanse i6 is used 1o select actions, and the estimated value
function is known as the erific, becanse it criticizes the actions made by the actor.
Learning is always on-policy: the critic must learn aboul and eritique whatever policy
is currently being followed by the actor. The eritique takes the form of a T crror.
This sealar signal is the sole output of the eritic and deives all leprning in both actor
and critic, as suggested by Figure 11.1.

Actor-critic methods are the patural extension of the ides of gradient-bandit meth-
ods (Section 2.7) to TD learning and o the full reinforcement learning problem.
Typically, the critic is a state-value hinction. Alter each action selection, the critic
eviluabes Lhe pew state Lo determine whether things have gone betber or worse than
expected. That evaluation is the TD error:

g = Rygr + Vil Ser1) — VIS,

223
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Figure 11.1; The setor-critic architecture,

where Ve is the value lunction implemented by the critie ab time & This T error can
be used to evaluate the action just selected, the action 4; taken in state 5. If the TD
error 3 posibive, b sogeests that the tendeney o select Ap should e strengthened
for the future, whereas if the TD error is negative, it suggesis the tendency should
b weakened, Suppose actions are geperabed by the Gibba sollmax medhod:

o Hys0)
Yy eieln

where the Hils, a) are (he values al time & ol the modiliable policy parameters of
the actor, indicating the tendency to select (preference for] each action o when in
each stade 5 al time £ Then the strengihening or weakening described above ean be
implemented by inereasing or decreasing FL (S, A, for instanceo, by

Hyj1( 5, Ar) = Hy( S, Ag) + 86y,

TI'|I|:I'.|.|#::| = I'-'r{ﬁl,-:a |.";|'||=.ﬂ.|- =

where 3 is another positive step-size paramotor.

This iz just one example of an actor-oritic method, Chher varations select the
actions in different wavs, or uwso cligibility traces like those described in the nesxt
chapter. Another common dimension of variation, as in reinforcement comparison
methosds, 5 bo inchsde additional Tactors varying the amount of credit assigned bo
the action taken, 4;. For example, one of the most commaon such factors is inversely
related 1o the probability of selecting Ay, resulting in the apdate roles

Hi( S, Ar) = Hi(Se, Ar) +fm.[1 — mel Ae| S| -

These issues were explored early on, primarily for the immediate reward case (Sutton,
1954; Williams, 1992} and have oot been brought fully up to date.
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Many of the earliest reinforcement learning syvsiems thal wsed TD methods were
actor-critic methods (Witten, 1977 Barto, Sutton, and Anderson, 19583), Sinee
then, more attention has been devoled to methods that learn action-value inctions
and determine a policy exclusively [om the estimated values (zuch as Sarss and Q-
learning ). This divergence may be just historical accident. For example, one could
imagine intermediate architectares in which both an action-value function and an
independent. policy would be learned. In anv event, actor critic methods are likely
L remmain of current interest becanse of bwo signilicant apparent advantages:

o They reguire minimal computation in onder o select actions.  Consider a
case where there are an infinite pumber of possible actions— for example, &
comtinuous-valued action. Any method learning just action values must search
through this infinite set in order 1o pick an action, I the policy 13 explicitly
storod, then this cxtonsive computation mav not be needed for each action
aedection,

# Thoy can learn an explicitly stochastic policy; that is, they can learn the opti-
mial probabilities of selecting various actions. This ability taros ool (o be uselul
in competitive and pon-Markow cases (e.g., see Singh, Jaakkola, and Jordan,

1994,

In addition, the separate actor in actor-critic methods makes them more appealing
in some respects a8 pavehological and biologieal models, In some cases iU may also
make it casier Lo impose domain-specific constraints on the sot of allowed policies.

11.2  Eligibility Traces for Actor Critic Methods

In this section we describe how (o extend the actor critic methods introdoced in
Section 11.1 to use eligibility iraces. This is [airly straighiforward. The critic part
of an actor-critic method ig simply op-policy learning of vy, The TINA) algoritlom
can be used for that, with one eligibility trace for each state. The actor part needs
Lo vse an eligihility irace [or each stale action pair. Thus, an actor-critic med hod
newds two sots of Eraces, one for cach state and one for each state action pair.

Recall that the one-siep actor-critic method upedates the actor by
) Hya,a)+ 84, ifa=4A, and 2=5,
H S L
t+1(s.a) { Hyla, a) otherwise,
where 8, is the TD{A) error (7.10), and Hy{s. a) is the preference for taking action
a ol Lime £ in stabe s, The preferences determine the policy via, [or example, a

asltmax method [Section 2,.3), We geperalize the above equation o ase eligilslity
Lraces as [ollows:

Hip1ls,0) = Hels,a) + 28 Eyls,a), (11,1}

where Ey (&, a) denobes the trace at time I for stato action pair &, a. For the simplest
case mentioned above, the trace can be updated as in SarsafX).
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In Section 111 we also discussed a more sophisticated actor-critic method thad
uses L wpdate

Hys,a) + A&l — m{als)] fa=A; and s=5;
Hi(s,a) otherwise.

Hyr(5.a) = {

To generalize this egquation to eligibility traces we can use Lhe same apdate (11,1)
with a slightly different trace. Rather than incrementing the trace by 1 each time a
slate-action pair ocowrs, it is updated by 1 — 705, Ae)s

. L vAE (sa) + 1 —m(5,4,) il a=58 and a = Ay i
Ei(s,a} = { vAE; _1(&8,a) otherwise, (11.2)
for all =, a.

11.3 R-Learning and the Average-Reward Setting

When the policy s approximated, we generally bave 1o abandon the discounied-
roward sobiing that wo have relied on up to now. We replaco it with tho average-
reipvrd selting, which we discuss in this section,

R-learning is an off-policy control method for the advanesd version of tho rein-
[orocment learning problem in which one peither discounts por divides experienoe
into distinct episodes with finite returns. In this sverage-reward selling, one secks Lo
maximize the average reward per Limee step,. The value Tunctions Tor a policy, =, are
defined relative to the average expected reward per step under the policy, #[=)

() = lim S EAR] = 3 dels) 3 wlals) 3o pls s ar
=1 & i &

where dy(#) is the limiting state distribution under policy 7. This average reward is
well defined if we assnme that the proeess is ergodic (nonzero probahility of reaching
any stade rom any other uoder any poliey), and thus that dp exisis and does oot
depend on the starting state. From any state, in the long run the average reward
i5 Lhe same, bl there 8 a transient, From some stales Tebter-than-average rewards
are roceivid for a while, and from others worse-than-average rewards aro recoived. Tt
i5 Lhis transient thal delines the value of & stabe;

ir(s) =% E[Ryyy —ri{x) | S=4],
k=1

and the value of a state action pair is similacly he transient diflference o rewsard
when starting in that state and taking that action:

oo
I'-l'ﬂ'[ﬁ‘:'ﬂ] - ZEI|Rf+I_- - I‘[‘i'il':l | 5'-.!=H, Af:ﬂ]_
k=1
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Initialize it and (s, a), for all =, a, arhitrarily
Lepeat forover:
5 ¢ current state
Choose action A in 8 using behavior policy (e.g., e-groedy)
‘Take action A, ohserve &, 8
§ 4 K B4 max, QS a) -~ Q8 A)
QU5 A) + (5. A) + b
IF 5, A) = max, (25, a), then:
e B+ 38

Figure 11.2: B-learning: An off-policy TD control algorithm for andiscounted, continuing
tasks, The scalars o amd # are stepeslee paramotess.

We call these relative vnlues becanse they are relative (o the aversge reward under
the current. policy.

There are suldle distinetions thal peosd o be deapwn between dilferent kinds of
optimality in the undiscounted continuing case. Meveriheless, for most practical
purposes iLomay e adeguate simply o ocder policies according (o their average
rovward per time step, in other words, according to their (7). For now let us consider
all policies that attain the maximal vadoe of #=) (o e oplimal,

Oiher than its use of relative vadues, B-learning is a standard TD control method
based on ofl-policy GPL much like O-learning. [E maintains two policies, a behavior
policy and an estimation policy, plus an actiop-value function and an estimasded
average reward. The behavior policy is used to generate experience; it might. be the
e-grevdy policy with respest Lo the action-value Tunction, The estimation policy is
the one involved in GPL It s typically the greedy policy with respect to the action-
vislue function, I« is the estimation policy, then the acticn-value function, G}, is an
approximation of g, and the average reward, R, is an approximation of r{7). The
caomplete algorithim is given in Figure 11,2,

Example 11.1: An Accezs-Control Quening Task  This is o decision Lask
involving access conbrol to a sel of 1 servers, Customers of four different. priorities
arrive al a single gqueos, I given acoess 0a seever, the customesrs pay a ceward
of 1, 2, 4, or 8, depending on their priority, with higher priority customors paving
e, In each time step, the customer al the head of the guene iz either aocepied
(assigned booone of the servers) or rejected (removed from the gueae), To elther case,
on the next time step the next customer in the quene is considered. The gqueue never
emplies, and the proportion of (randomly disteibated) high priority eostomers in the
quene is b O course a customer can be served only il there is a [ree server. Each
by server Tecomes free with probalidlity g on each time step, Although we have just
described them for definiteness, ket us assume the statistics of arrivals and departures
are unkoown, The task i2 o decide on each step whether b acoept or reject (he nexi
customer, on the basis of his priority and the nnmber of [ree servers, 20 as Lo maximize
lomg-term reward withowt discounting, Figure 113 shows the solution found by R-
learning for this task with = = 10, k& = (1.5, and p = (LG, The B-learning parameters
weore ¢ = (L01, # = (L0, and ¢ = 0.1. The initial action values and B were zero.
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Figure 11.3: The paolicy and value function foumd by R-learning on the acoess-control que-
ing task after 2 million steps, The drop on the right of the graph is probably doe to insofficient
data; many of these states were never experienced. The value learned for £ was about 2,721,
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Exercise 11.1 Design an on-policy conirol method for the average-reward seiting.
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In this last part of the ook we ook beyond Che standard reinforeement Jearning
leas presented in the first two parts of the ook (o brielly survey their relaticnships
with neuroscicnee and psychology, a sampling of reinforcement learning applications,
and some of the active ronties for Tuture reinforecment learning research,






Chapter 13

Psychology

Among the connections of reinforcement learning Lo other disciplines, s conmec-
tions to the study of animal learning by pavehologists are among the most extensive.
By aof the basic reinforesment learning algorithms were ingpired Ty paychalogical
Lheories of animal learning, and reinforeement learning algorithims and Cheory ane,
in turn, contributing back to psychology. There are detailed meodels of animal learn-
ing that use algorithmic ideas from reinforocment. learning, and the theoretieal and
computational perspectives of reinforcement. learning are influencing peychologisis in
designing new experiments and animal learning models,

In this chapter we disenuss how concepis and algorithms from reinforcement learning
correspond, in certain ways, Lo Lheories of animal learning rom psychology, These
correspondences should not be surprising. (OF all the paradigms of machine learning,
wie regard reinforcement learning a8 the closest to the kind of learning that homans
and other animals do.  All machine learning paradigms are absiractions of situa-
Lions in which lnamans and other animals learn, Tl some ave more fdthlol to these
situations than others, The supervised apd upsupervised learning pacadigms are al-
stractions of important components of animal learning, but in sSolation they do not
do justice be the fcl that animals learn goal-directed behavior while interacting with
dynamic environments. It 5 essential to keep in mind, however, that reinforcement
learning as developed here explores idealized situations from the perspective of an
artificial intelligenee rescarcher or engineer— nol. from the perspective of an animal
learning researchier,

Or position outside of psychology makes it possible for us to sidestep the many
enduring eontroversies that bave influenced (s history, We ean be selective in con-
necting with psychology because our goal is not to replicate animal behavior. For the
same reason not every feature of computational reinforcement learning corresponds
Lo o pevchological loding or theory,  Some lndings Teom psycehology have proven
valuable given our focus on computational effectivencss, while others have not. The
correspondences we describe mainly iovolve learping theories derived [rom Iabora-
Lory experiments with animals. Despite the fact that its inflecnce in contemporary
pEvchalogy has Tesen overshadowed by emphasis on more cognitive aspects of inbel-
ligenee, the study of animal learning has established principles that are compelling
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[rom a computational perspective due o their combination of precision and gener-
ality, We think it would be unwise (o npeglect these principles in designing systems
that use learning methods in solving enginecring probloms.

This chapter is far too shoet 1o include all of the points of correspondence between
the theory presented in this book and even this subarea of psvcholosy. For the most
poart, the correspondences we describe are those of particular significance becaose
they connect ideas or mechanizms that arose independently in their respective ficlds.
W Beliewve these points of correspondence improve our aoderstanding of Tedh compo-
tational and psychological learning principles. While we provide numerous references
in the final section of this chapler, many of the connections between reinforcement
learning and psychology remain bevond our treatment, including extensive research
that has Torrowed from computaticnal reinforeement learning with the psyeholog-
el goal of accounting [or subile experimental lodings aboutl animal learning and
decision making. We hope this chapter provides a uselul context for the reader who
wishes Lo probe Che subject more deeply,

13.1 Prediction and Control

The algorithms we describe in this book fall iote two broad calegories: algorithms
[or prediction and algorithms for condrol. These categories arise naturally in solution
methosls for the reinforcement learning proldem presented in Chapler 3, Tonomany
waye these categories respectively correspond o categories of learning extensively
sbudied by paychologists: classical, or Pavlovian, conditioning and instrumental con-
ditiening. Alihough pob completely accidental becpuse of paychology™s influence on
reinforcement. learning, these correspondences are nevertheless siriking because they
are Uhe resull of independent objectives,

The prediction algorithms presented in this book estimate guantities that depend
on how features of an agent’s eovironment are expecied boounlold over the Tutane,
We specifically focused on estimating the amount of reward an agent can expect Lo
receive over Uhe future while 1L inleracts with its eovironment, In this role, these
are policy evaluation algorithms, which are integral components of algorithms for
improving policies, Chapter 4 presents policy evaluation in the context of dynmmic
programming, and Chaplers 5 amd 6 respectively present Monte Carle and Tempo-
ral Dillerence (TD) policy evaluation methods, But prediction algorithms are not
lirnited 1o predicting Tutare rewand; they can predict any oumencal-valued featore
of the environment, and they can b studied without comsidering their role in policy
improvement, The correspondence between prediction algorithims and classical con-
ditioning rests on the property they have in common of predicting upeoming stimuli,
where the stimuli are not necessacily rewards or penalties earned by previous actions,

Classical, or Pavlovian, conditioning experiments address how learning canses re-
[lewes o e triggered Do stimuoli that relinbly predict the natocal triggering stimali
of those rofloxes. Roughly speaking, a stimulus, call it A, is a reliable predictor of
another stimulus, call it B, the predicted stimulus, if B regularly oceurs shortly al-
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Ler A and rarely occurs otherwizse, A classical conditioning experiment expaoses an
animal to stimoli in s peedictive relationship, where the predicted stimlas refles-
ively iriggers a response. The animal learns to respond o the predicting stimulus
in & manner similar o bow L responds 1o Che predicted stimales, thereby acting
in anticipation of the predicted stimulus. We discuss classical conditioning in more
detadl below and here just point oul two eritical features, First, detecting predictive
relationships among evenis is at the core of this form of learning. Second, classical
conditioning experiments are ael up o make this relationship independent. of (he
animal’s behavior. This means that the predicted stimulus [ollows the predicting
abimlus no matier what the animal does in response e the predicter, Although an
animal’s response may alfect the impact on the animal of the predicted stimnlos, the
animal does not control whether or not the predicted stimulus oocurs.

The situation in an instramental comditioning experiment s dilferent, Heee, the
experimental apparatus iz set up so that an animal is given something it likes (&
reward) or something it dislikes (o pepaliy ] depepding on what the animal doces,
The animal learns to increase its tendency to produce rewarded behavior, and Lo
decrease ils tendency Lo prodoce pepalized bebavior., The reinforcing stimalus is
said to be contingend on the animal's behavior, whereas in classical conditioning it is
nof, Instrwmental conditioning experiments are like those that inspired Thormedike’s
Law of Effect that we briefly diseuss in Chapter 1. Contral is at the core of this form
of learning, which corresponds 1o the operation of einforeement learning's policy-
improvement. algorithms.

Al this point, we should [mllow pavchologisis in pointing out that the distinetion
between classical and ipstrumental conditioning is one between Lhe esperimenlal
setups (whether or not the experimental apparatus makes the reinforcing stimuls
contingent on the animal’s behavior], IE i not necessarily o distinction betwesn
difforent learming mechamizma, In practice, it is very difficult to remove all responss
contingeneies [rom an experiment, and (he extent (o which these by pes of experiments
engage different learning mechanisms s a complicated issue about which animal
lesarning theorists have dilfering views,  Oor epgineering and artificial iotelligenoe
porspective may shed some light on this issee. Algorithms for prediction clearly
differ from those for control, bul many of the reinforeement learning methods e
present invelve closely linked combinations of both,  Animal learning mechanisms
likely follow this patiern as well.

We pow take a closer look ab classical conditioning and details of a particulary
close correspondence between animal behavior in these experiments and temporal-
differenee prediction,

13.2 Classical Conditioning

The celebrated Russian plvsiologist and Nobel laurcate Ivan Pavlov stadied how
reflexes ean eome (o e triggered by stimuli other than their innate iriggers:

It is pretiy evident that under natural conditions the normal animal must
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pespond ol ooly Lo stimuli which themselves bring immediate enelit or
hiarm, but also 1o other physical or chemical agencies—waves of sownd,
light, amnd the like— which in themselves only signal the approach of those
atimudi; though it = pol the gight and seand of the beast of prev which is
in itsell harmful to the smaller animal, but its teeth and claws. (Paviov,
1927, p. 14)

Pavliov {or more exactly, his translators] ealled inborn reflexes “upconditioned e
lexes™ and new reflexes triggered by predictive stimali “conditioned reflexes.” This
terminology persists in describing classical comdilioning experiments, where condi-
tiomed stimuli (C5g), which are initially neatral in the sense that they do not normally
elicit a strong response, are sel up Lo prediet biologically signilicant evenis (zuch as
a taste of food, a shock, ete.), called unconditioned stimuli (78s), that reflexively
produce unconditioned responses ([URs), such as salivation or an eye blink.

URs are often protective in some way, like an eve blionk o response (o something
irritating to the ove, or “reezing” in response to seeing a predator. Experiencing
Lhe OS-175 predictive relationship over a series of trials cagses the animal Lo learn
Lo respond to the 8 with & conditioned response (CR) that beiter protects the
animal from, or better prepaces ib foe, the U8, The CR tends to e similar to the UR
but beging carlier and sometimes dilfers in ways that increase its elfectiveness. For
example in one intensively studied type of experiment, a tone C5 reliably predicts
a pudl of air io a rabbit’s eyve (the 18], triggering closure of & protective membrane
(the TR), With one or more trials, the tope comes o trigger a OR o consisting of
membrane closure that beging before the aic pull and eveninally becomes timed
g0 that peak closure ooeurs just when the air pull iz likely to occeur. This CR,
being initisded in anticipation of the air podl and appeopeiately Gmed, offers Tebier
protection than simply initiating closure in reaction to the irritating 115, The ability
Lo act im anticipation of important evenls by learning about predictive relationships
among stimuli is so beneficial that i is widely present across the animal kingdom.

Figure 13,1 shows the arrangement of stimuali in two Cypes of classical eonditioning
experiments:  in delay conditioning, the US ocours while the C8 is still present,
wheress in brace conditioning, the US begins alier the OS ends, Tn trace conditioning,
the time interval betwoen O5 offset and 1S onset is called the irace interval. The
interstimulos interval, or 151 s the time ioterval between OS5 onsed and US onsel,

The understanding that CRs anticipste USs evenlually led too the development
of an influcntial model based on TD learning. This model, called the TO model
af elepssiend eondiliondng, or just the T model, exitends what i3 arguably the mosi
widely-known and most influential model of classical conditioning: the Rescorla-
Wagner model [Bescorle and Wagner, 1972). Rescorla and Wagner created their
moddel in order to provide an account of what happons in classical conditioning with
compound C5s, that is, C5s that consist of severa] component stimuali, such as a
tone and a lashing light ocourring together, where the animal's history of experience
wilh esch stimulus compoenent can be manipulated in vackous ways, Experiments like
these demonstrate, for example, that if an animal has already loarped to produce a
CR in response bo a stimulus component that predicis a US, then learning to produee
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Delay Conditioring
_cs | L
L5 I |

Trace Conditioning

-
us [ ]

Figure 151 Arcangement of stimuli in twoe tyvpes of classical conditioning experi-
ments. In delay conditioning, the US cocurs while the U5 s present. In trace condi-
Lioning, there is a time interval between OF ollset and U5 onpsed, The interstimles
interval (151 is the interval between ©F onsct and TS onsed.

a UR in response to a nowlv-added second stimulus is much redueced. This is called
Movking, Results like this challenge the bdea thal eonditioning depends only oo simple
temporal contiguity, that is, that the only requirement for conditioning is that a 1S
[requently llows a C5 closely in time, In conteast, the oore dea of the Rescorla-
Wagnor model is that an organism only learns when ovents violato ils oxportations,
in oclher words, only when the organism s surprised (although without implying any
conscious expectation or emotion ).

Here is how Rescorla and Wagner desceibed their mosdel, The mode] adjusis tlhe
Yassociative strength” of each stimulus, which is a number representing the ampli-
Liwde af the CR eliciied by the stimalus, or how reliably the stimolos elicits the COR.,
Asgocialive strengihs can be positive or negative, with negative values meaning Uhad
the stimulus inhibits the CR. When a compound C5 consisting of several component
abimmli i presepted on a triad of & classical comditioning experiment, the associabive
strengih of each component stimulus changes in a way that depends on an associative
sirenglh associated with the entive stimulus eompound, called the “ageregale asso-
ciative strength,” and not just on the current associate strength of each component
it=ell,

Rescorla and Wagner considered a stimulus compound AX, where the animal may
have already experienced stimolus A, and stimulos X might be pew to the animal,
Let V. Wy, and Viy respectively denote the associative strengths of stimnli A, X,
and the compound AX. Suppose that on a trial the compound CS AX = followed
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by a US, which we label stimulus Y, Then the associative strengihs of the stimlss
components change acconding Lo these expressions

AVy = opfy(Ay — Vax)
AV = axfyv(dy — Vix),

where e By amd o Sy dedermine the learning rate, which depends on both the OF
and US, and Ay is the asympiotic level of associative strengih that the TS Y can
aupport, [This A is Rescorla and Wagoner's potation aod does sed correspeond Go (he
A of the TD{A) family.] The model makes the further important assumption that
Vax = Va + Wy

To complete the model one needs to define & way of mapping values of V' to CRs.
Einoe such a mapping would depend on details of the experimental situation, Bescorla
and Wagner did o specily a mappiog but simply assumesd Chat (0 would be order
preserving and that negative Vs would generally correspond 1o the absence of a CR.

To conneet this mode] o T algorithms, think of the copditioning process as
one of learning to predict the “magnitude of the 175" on a trial on the basis of the
stimulus componnd present on Chat trial, where Che magnitede of 3 T3 Y iz the Ay
of the Bescorla-Wapgner model as given above, Suppose the stimulus compound on a
Lrial ¢ consists of up (o v component stimali and is representoed by a veclor x; with
hinary coordinates x,(i), i = 1,... . n, where there is a one in coordinate 4 if stimulues
compament ¢ 15 present on trial § and a zero i that stimuelug component is not present,
Denote the respective associative strengths of these stimulus components by weights

wilil, i = 1,...,n. Then the aggregate associative strength on trial  is
ik
Vi=3 mli)rli). (13.1)
=1

This corresponds to a valwe eslimate of reinforcement learning and is thought of it
a8 the US prediction,

As a result of & conditioning irial £, the weight vector, v, is updated as follows:
Vipl = Ve + i X, (13.2)

where o 5 Lhe step-size parameter. For the Bescorla-Wagner model & s the predic-
Liny error

iy = A — Vi (13.3)

Hore, A is the ‘target’ of the prediction on trial £, that is, the magnitude of the
U5, or in Rescorla and Wagner's terms, the associative strengih that the US oo the
trial can support {where, again, this does not correspond to the A of TID{A) family).
MNote that the term x5 in Egquation 132 implies that only the associabive strengihs of
stimuli prosent on a trial are adjusted as a result of that trial. The prediction crror
i5 considered io be a measure of surprise, with the aggregate associative strength
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representing the animal’s expectation that s vielsted when 6 does pob match the
Larget TS magnitude,

In this form, the Rescorla-Wagner model is recognizable as an error-correcting
aupervisesd learning rule identical to the Widrow-Holl Least. Mean Sqguare (LAMS)
learning rule (Widrow amd Hoff, 19607, with the exceptions that for LMS the input
vieelors X can bave any real numbers as coordinates and Che scalar sbep-size parame-
ter ¢ does not depend on both the input vector and target value. The latier is a minor
deviation that more elaborate forms of the LMS rule can incorporate, Error correc-
tion prowides a ready explanation for many of the phenomena observed in classical
conditioning with compouwnd stimuli, For example, in a blocking experiment when s
new component. 5 added to a stimolus compound to which the animal has already
been conditionesd], Turther comnditioning with the sugmentesd] eompound prodoces Ti-
Lo or mo increase in Che associative strength of the added stimolus. Prior learniong
blocks learning to the added stimulus component because the error has already been
pealwced Lo gere, or Lo a low value, Becaose the ocourrenoe of the U5 15 already
predicted, no new surprise is introduced by adding the new stimulus component.

Although the Rescorla-Wagner mode] provides o simple and compelling accoant
of blocking and other features of behavior in classical conditioning experiments, it
i5 far [om being a perfect or complete maodel, Dilferent ideas aceount for a variely
of other obzerved effects, and progress is still being made toward understanding the
sy counterintuitive sublletics of classical conditioning, Onpe direction of exlen-
sion concerns the timing of stimuli. A single time step in the above formulation
of Rescorla and Wapner's maodel represents an entire conditioning irial. The model
does pod apply Lo details abowt whal bappens ducing Che Gme a trial is aking place,
Within each irial an animal might experience various stimuli whose onsels ocour
al particular times aml that have particular duradions. These timing relationships
strongly influonce learning. For cxampleo, one of Pavlov's most reliable ohservations
was thatl the OF st begin before the US begins [or learning (o oceur; when it is the
other way around, he observed no learning at all {(although later researchers reported
aalight amount of learning for pegative ISIs o certain cases),

The model of classical conditioning based on TD learning 5 a generalization of
Lhe Bescorla-Wagner maxdel, 16 accounts for all of the bhebavior accounted for by
that mode] bul goes Deyond 0 o sccount for how within-treial and betwesn-trial
Liming relationships among stimuli influence learning. The TD model of classical

conditioning 8 called a real-lime model, as opposed (o o frdal-level model Tike the
Rescorla-Wagner model.

To deserilse the TEY mode] we can begin with the formuolation of the Reseorla-
Warner model above, but we now interpret the time step § as representing a small
interval of real time, say, W01 secomds, and we have Lo be a bil more precise abogi
the aggregaie associative strength. Let ¢ and i be two poasibly different time steps.
Then

i

Vilxp) = 3 wlidee (i) (13.4)

=1
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i5 the aggregale associate sirength ab thme step £ due to the stimulus compound
present al time step ¢, Then learning oceurs according to this apdates

Vipl = Vi + edpey, (134.5)

where a is the step-size parameter, & is the TD error defined below, and e, s a
vector of eligibility traces at time { that accumulate according to the presence of
stimulus components and decay according Lo A

Byl = VA 4+ X X

Here < 18 Uhe diseount factor (between 0 and 1) and A s the eligibility trace-decay
paramctor— ol the Rescorla-Wagnor A in Equation 135

Instead of the Reseorla-Wagner & of Equation 1353, the T maoadel wses the TD
prodiction orror to update the 1S prediction:

it = e + yVelxe) — Valxe 1), (13.7)

where 7 is the discount [actor, and + indicates the US strength at time § instead of
Lhe trial-level Ay of the Rescorla-Wagner maoxdel, Note that if 5 =0, the TD maode]
prediction error is identical to the prediction error of the Rescorla-Wagner model
(exeepd Tor the single time-step delay of the stimalus compoaned),

Like the Rescorla-Wagner model, the TDY model does not specily a particular
response generation mechanism that converts the TS prediction into s belayvioral
response that can be compared to an animal’s CR. One can simply let the time course
of the US prediction V' directly represent the time course of the CH, as has been done
i pmber of modeling stadics, With (his assampbion, one can see by comparcing the
description above with our account, of TDY learning with linear linction approximation
in Chapler 9 that the TV model of classical eonditioning is the backward view of
thie gradient-descont TDA) algorithm for the case of linear function approximation.
The: only dilference is thal in modeling classical conditioning, v represents the T35
strength at time step ¢ instead of the reward signal at time step ¢ as it does when the
algorithm is wsed as o component of & policv-improvement algorithm. The TTY mode]
with more complicated response generation mechanisms have also been studiced. One
example i5 a thresholded leaky infegeator used by Losdvig, Sutton, and Keboe (2012),

Missing [rom this deseription of the TD masdel is o deseripiion of how the varions
atimuli should be represented to best account for animal data, The T model is a
repl-time moxdel, so the representation used o the Rescorla-Wagner model—a one if
a stimuls component. is prosont on a trisl and a sero otherwise —is not adeguate,
One bas Lo specily bow stimuli appear a8 extended over Lme within trials, Moreover,
since the convergence of TD learning relies on the idea of states, in fact, on Marko-
vian stales, one has o make assumplions aboul the sequence of states an animal’s
nervous system passes through during the multiple trials of a classical conditioning
experimment,

It would be ideal to base these assumptions on what is known about the activity
of neural circuits during conditioning, but since knowledge of this activity is not
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sulliciently detailed, the usual practice is (o investigale the behavior predicied by
Pl mecede] wnder a vaciely of assumplions, This allows researchers bolh (o explone
the nature of the model’s operation and to provide varying levels of support for
different hvpotheses aboul what the pewral activity might actually Be like, Ludvig
el al. (2012} describe three representations (Figure 13.2) that make different pre-
dictions when combdined with the TD mode] togetber with their thresholded leaky
integrator response generator: the presence represcntation, the complete serial com-
o (C50C) representation, and the microstimalns (MS) representadion.  These
differ along a temporal peneralization gradient, referring to the degree to which they
allow geperalization among pearby Gme poiots during which a stimulus is present,
The presence representation allows complete generalization, the complete serial com-
pound representation allows no goneralization, and the generalization allowed by the
microstimilus representation [lls etween the other twoe, In modeling an experiment
involving more than one stimulus, a light and a tone for example, each stimulus is
given s own represenlation (each of which iz wsually of the same Cypse),

The presence representation is like the one used in the Rescorla-Wagner model but
whers the representation has valoe one thronghout the time period during which a
stimulus is present. and value zoro when it is absent {the thivd column of Figoee 13.2).
Despite s simplicity, simolations show that the TD mode] with this stimulus rep-

Complete Serial

Compound Microstimuli Presamce
Stimulus _J_l_ _l_l_. I L
Reward I | ]
]! ..---..
| [J—
§ ~Tr ;
H —
o Il
S
——=_
Temporal Generalization
Gradient

Figure 13.2; Three stimalus representations used with the TD model. Each pow
represents a component of the stimulus vector, From Ludvig et al. (2012), permission
pemding,
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resenbation can produce gualitatively good [acsimiles of & wide range of phenomens
observed in classical conditioning experiments,  These inclede all of the phenem-
ena produced by the Rescorla-Wagner model, such as blocking, which we deseribed
abowve, and overshadowing, which i= when simulianeous eomnditioning with teo stimuli
resulis in the more salient stimulus producing the stronger response.

In addition to the featares of classical conditioning prodoced Ty the Bescorla-
Wagner model, the TD model with the presence representation (and other represen-
Lations as well) produees facsimiles of phenomena that involve the relative timing of
stimuli. Foremost among these is a conspicuous feature of classical conditioning that
Lhe U5 generally must begin after the onsel of a pewtral stimolus Tor eonditioning
Lo ooeur. In other words, conditioning generally requires a positive IS1 This follows
from the fact that the model’s behavior parallels animal behavior in how Che asy mp-
Lolie Jevel of comditioning (e.g., the pereentage of CRs elicited by a OC5) depends on
the IS1. The overall shape of this dependency varies substantially across species and
response sysbems, bul it s peacly alwavs sero [or sero or pegative I81s, increases (oo
maximum at & positive [SI where conditioning is most effective (often some fraction
of a second ), and then decreases 1o sero aller an intberval that varies widely with pe-
sponse syvstems, The precise shape of this dependency for the model depends on its
porameter vadues and the details of ji2 inpul represeotation, bol these basic features
are core properties of the TD model.

Anciher Tesdure of the TD model’s bebavior involviog stimulus Gming deserves
attention becanse the model correctly predicted a feature of animal learning that
had not been observed at the Gime of the model's introduction. The TD maodel with
a presence represcnbation (as well as with more complex representations) predicts
that blocking is reversed if in a third stage of a blocking experiment. the blocked
stimulus is moved carlier in time so that s onsel oocurs before e onset of (he
blocking stimulus. The simulated three-stage procedure involving two O stimuli, A
and B, and a US is shown in Figure 13,3, For the first 10 irials C5 A iz presented
alone followed by the TS, and its associative strength, V), increases as shown in
Lhee graph, Trials 1120 correspond to the second stage of a blocking experiment; A
has already been conditioned and now B is introdoced with the same time course
a A, Tollowesd by ihe 75, The mode] shows complete blocking, with Vg remaining
ol its initial walue of zero during these trials, For the thind stage, trials 21-35, B is
extended so that its onset precedes A's onset. I is now an earlier predicior of the 175
than A, Nob only does s associalive strengih increase over these Lrials, A actually
loses associate strengith. The model's prediction led Kehoe, Scheurs, and Graham
(1987} to conduet the experiment using the well-studied rabbit eve-blink conditioning
paradigm {actually the rabbit learns to retract its eveball in anticipation of an air puff
or small shoek near iis eye &o thal o protective membrane, the pictitating membeane,
moves over the eve.] They observed the kev leatures of the model’s prediction and
node] that other theories have consideralde difficulty explaining their data.

The TD model with a presence represontation (and other representations as well)
can also generade a lesimile of secomd-oeder condiliondng - something that the Rescorla-
Whagmer model cannol do, This is the phenomensn in which a previoos]y-conditoned
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Figure 1533 Temporal primacy overrides blocking, From Sutton amd Barto {1990,
permission pending.

8 can act as il it were a U8 in conditioning ancther initially neuiral stimuolus. Pavloy
deseribed an experiment in which his assistant. conditioned a dog to salivate to the
soingd of a metromnene that predicted @ food 775, Then & pombere of triads were con-
ducted in which a black square, to which the dog was initially indifferent, was placed
i ihe dog's line of vision fllowed by the sowod of (he meteopome—and this was ool
[ollowed by food. In just ten trials, the dog began to salivate just upon seeing the
bawck sequiare, despite Che Tact that it bad never been pairesd with Tood, The sound
of the metronome itsell acted as reinforcement for the salivation response to the
black square, Learning ansdogous lo second-order conditioning occurs in instrumen-
tal tasks, where a stimulus that consistently predicts reward (or penalty) becomes
rewarding (or penalizing) isell, producing what s called secondary, or conditioned,
reinforeement, This happens whether the predicted ceinforcing stimulus is a primary
reinforcing stimulus or another secondary reinforcing stimulus,

The presence of Viisg) — Vilxe 1) in the T ereer (Equation 13.7) means tha
the error can be nop-zero as a result of previous learning that made Vi(x:) differ
[rom Velxe 1) (o temporal dilference), This dillerence has the same status as the
roward signal in the T error, implving that as far as learning is coneerned thore
i5 no difference between a Lemporal difference and a ceward signal, o fact, this
[eature of the TD algorithm is one of the major reasons for its development, which
wie nowy inderstand Chrough its connection o dynamic programming as deseriled in
Chapter 6. Backing-up values is intimately related to seoond-order, and higher-ordor,
conditioning,
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Where the presence represeniation has a single element for each stimilus, the C5C
representation has a separste element for cach moment of time during which a stim-
ulus is present. (the frst column of Figuore 13.2). This means that a single stimuoles
i5 represenled—in the discrete-time case— Dy a veclor having as many clements a2
there are time steps in the duration of the stimulus, where each element is ‘on’ for ex-
actly one of those Gime steps, ID moltiphe stimoli aee involvesd s sioalation, each is
representod by a separate vector. The OS50 representation completely differentiates
every moment of a stimules’s dueation 2o thal there s po lemporal generalization,
This representation was devised to allow different versions of the TD model to *show
o™ their bebavior while being as uneonstrained as possible Ty the stimolus represen-
tation. It is as il a sequence of distinet states is passed through during a conditioning
trial, with the resulting US predictions (comprising a value funetion) being stored in
what is cesentially a lookup table whose conlents are Lhe associptive strengihs of the
various stimulus elements.

The pamee seviad copgpound comes [rom classical conditioning experiments in which
an animal is exposed to multiple external stimoli strung out over time like the el-
ements of a OS50 representation. Here, though, we think of the elements of a OS50
vootor as being a collection of nternal microsbimuli generated by the nervous syvstem
in response o the preseptation of a single external stimuelas, such as the stimules
shown in the top row of Figure 13,2, Although not particularly plassible from a neo-
ral perspective, the OS50 representation has been widely used in studying TD models
of both classical conditioning and the activity of dopamine producing newrons, the
latter discussed in Chapter 14, Ludvig et al. [2002) call the CSC representation a
‘uselul fetion’,

The second column of Figure 13.2 illustrates the MS representation which, like the
CHC representation, consists of a vector whose elements are also thought of as inier-
nal microstimuli, but in this case they are nod of such limited and non-overlapping
[orm. Several examples of M5 representations have Been studiesd in the lierature,
and their details need not coneern us bere. The important point is that this kind of
representation, by being situated bhetween the presence representation—which per-
mits complete generalization among the different moments of a C8's prosonce — and
Lhe CSC representadion —which permits po such generalizntion — prodoces a lmited
form of temporal generalization that allows the Behavior of the TD model 1o be re-
lated to a broader collection of phenomena observed in animal experiments. Notable
ecxamples of these phenomena involve the Gming and shape of CRs and how (hese
change throughout the course of learning,

The T muwle] of elazsical conditioning, when eombinesd wiltli a particular response
generation mechanism and stimulus representation, is able 1o account for a surpris-
ingly wide range of phenomens observes] in classical comditioning experiments, bl
it is far from being a perfect. model. To penerate other details of classical condition-
ing the model needs o be extended by, for example, adding moedel-Tased elements
and mechanisms lor adaptively altering some of its parameters. Other approaches Lo
msleling classical conditioning deparct gignificant]y from the Rescorla-Wagner siyle
error-cormeclion process. Bayesian maodels, [or example, work within a probabilistic
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[ramework in which cxpericnee revises probabilily estimates, Al of these models
uschully contrilvte (o owr understanding of classical conditioning,

Perhaps the most notable feature of the TD model is that it is based on a theory
Lhe theory we have describexd in this book —that suggests an account of whal an
animal’s nervous system is frying bo de while undergoing conditioning: it is trving
Lir form accurale predictions of the long-feprn pelurn over the animal’s Tuturee, oon-
sistent with the limitations imposed by the way stimuli are represented and how the
nervous system works, In other words, 00 suggests o norrdios aoceand of classical
conditioning in which long-term, instead of immediate, prediction s a key feature.

The: development of the TD model of classical conditioning i one instanee in which
the explicit goal was to model details of animal learning behavior. In addition to its
stamding as an olgorithee, then, TD learning is also the basis of this maodel of aspects
of bidogical learning, As we discuss in Chapier 14, T learning has also burped ol
Lo underlie an influential model of the activity of dopamine producing peurons in the
brain, These are ingstances in which reinforeement learning Ctheory makes detailed
contact with animal behavioral or neurophysiological data.

We now Lurn o considering correspondences between reinforcement learming and
animal behavior in instrumental conditioning experiments, the other major type of
Iaboratory learning expeciment stadied by psychologisis,

13.3  Instrumental Conditioning

Instrumental conditioning experiments differ from classical conditioning exporimonts
in that the delivery of a reinforcing stimulus depends oo the animal’s Dehavior,
whereas in a classical conditioning experiment the reinforcing stimulus— the 7S is
delivered inndependently of what the animal does, The mools of nstromental con-
ditioning go back to experimenis porformed by the American psvehologist Edward
Thorpdike ome hundeed vears before publication of the st edition of this book.

Thorndike observied the behavior of eats whon they wore placed in “pozele hoxes™
from which they could cscape by appropriate actions (Figure 13.4). For example,
aocad could open the doeor of one box Ty pecforming a sequence of three sepacate
actions: depressing a platform at the back of the box, pulling & string by clawing at
it, amnd pushing s ar upoor down, When lest placed io such a bos, with food vigilde
outside, all but a few of Thorndike's cats displayed “evident signs of discomfort™ and
extraordinarily vigorous activity “to strive instinctively Lo escape lrom confincment”
[ Thorndike, 1808].

In experiments with dilferent cats and boxes with different eseape mechanismes,
Thorndike recorded the amounts of time cach cal took to cscape over multiple ox-

pericnees in cach box, He observesd Chat the time almost invardably decreased with
sucorssive experiences, for example, [rom 30 seconds 1o G or 7 seconds. He described

cats’ behavior in a box (with a simpler escape mechanism} like this:

The cat that is clawing all over the box in her impulsive struggle will
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probaldy claw the siring or loop or utbon o as o open the door, Amd
gracdually all the other pon-suecesslul impulzes will Tee stamped ot amd
the particular impulse leading to the successiul act will be stamped in
by the resulting pleasare, until, aller many (rials, the cat will, when
put in the box, immediately claw the button or loop in a delinite way.

{ Thormdike 1898, p. 13)

These and other experiments (some with dogs, chicks, monkeys, and even fish) led
Thorndike to formulate a number of “laws” of learning, the most influential being
Lhee Lawr of Effect that we quoted in Chapler 1. This law deseribes what s generally
known as learning by irial and error. As mentioned in Chapler 1, many aspecis of
Lhve Lavwe of Effesct Bave generabed controversy and 05 details have been modified over
tho voars. Still the law —in one form or anotheor — oxpresses an enduring principle of
learning,

Essential features of reinforcomont learning algorithms correspond to foatures of
animal learning desceibed by the Law of Effect, First, reinforeement learning al-
gorithms are geleclionel, meaning that these algorithms fry allernatives and select
among thom by comparing their consequences, Second, reinforcement learning algo-
rithuns are associafiee, meaning that the alicrnatives fownd by selection are associ-
ated with particular situations, or states, to form the agent’s policy. Like learning
described by the Law of Effect, reinforeement learning s oot just the process for
Jinding actions that produce a lot of reward, but also for connecting them to situ-
pliong or stabes, Thorndike wsed the phrase learning by “selecting amd connecting”
(Hilgard, 1956). Natural selection in evolution is a prime example of a selectional
process, bl it is nel associative (s least as it 35 commondy anderstood | supervized
learning is associative, but it is not selectional becanse it relies on instroctions that
directly tell the agent how (o change i3 behavior,

Figure 134: One of Thorndike's puzele boxes. Copyright 2000 Psychology Press
Lid, permissicn pending,



3.4 INSTRUMENTAL CONDITIONING 249

In computational terms, the Law of Effect describes an elementary way of eom-
bining search amnd memorys search in the form of trying and selecting among many
actions in each situation, and memory in the form of associations linking sitnations
with the actions found (o work best in those situations. Search and memory are o5
sential componenis of all reinforcement learning algorithms, whether memory takes
Lhee form of an agent’s policy, value lunetion, or eoviromment model,

A reinforcement learning algorithm’s peed o search means that it has Lo explore
in somme way, Animal’s clearly explore as well, and carly animal learning researchers
disagreed about the degree of guidance an animal uses in selecting its actions in sit-
uptions like Thorndike's puzzle boxes, Are actions the resull of “absclutely random,
blind groping” (Woodwaorth, 1938, p. 777}, or is there some degree of guidance, cither
[rom price learning, reasoning, or other means? Althowgh some thinkers, including
Thorndike, secm to have taken the [ormer position, otbers dissgeesd,  In Gaet, in
somne problem-solving cxperiments animals were said to demonstrate insighd becase
Lhe animals found a solution rather suddenly, sometimes alter periods pod iovolving
physical exploratory activity during which the animal seemed to “figure out” the so-
Lutien, Reinforcement learming algorithums allow wide latitude for howe much guidanes
an agent can employ in selecting actions. The forms of exploration we have used in
Lhe algorithms presenied in this ook, such az e-greedy and apper-condidepee-Twound
action selection, are merely among the simplest. More sophisticated methods are pos-
sible, with the only stipulation being that there has o be some Torm of exploration
for the algorithms to work effectively.

The feature of our treatment of reinforcement learning allowing the set of ac-
Lions available al any time o depend on the enviromment s current state also echoes
something Thorndike observed in his cats” puzsle-box bebavior. They selected ac-
Lions [rom those that they instinctively pecform in their current situation, which
Thorndike called their “instinciual impulses.” First placed in s possle box, & cat in-
atinetively scratehes, elaws, and bites with greal encrgy: a cal’s instinctual responses
Lo finding itsell in a confined space. Successful actions are selected from these and
ool from every possible action or activity, This correspomds 1o the feature of oar for-
malism whore the action selocied from a state s bolongs to a set. of available actions,
Ais), Bpecilying these aeis is an imporiant aspect of reinforcement learning becaise
it can radically simplily learning, They are like an animal’s instinctual impalses,

Among the most prominent animal learning researchers influenced by the Law of
Eilect were Cark Hull (e, Hull, 193] and B, F, Skinoer {e.g., Skinner, 19%68), At
the conter of their rescarch was the idea of selecting behavior on the basis of its
congequences,  Reinforeement learning has features in common with Hull's theory,
which included eligibility-like mechanisms and secondary reinforcement Lo account
for the ability Lo learn when there s a significant Gime interval Detween an aclion
and the consequent reinforcing stimnlus (see Section 13.4). Randompess also plaved
a robe in Hull’s theory through whal he called “bebavioral oscillation™ o i rodoes:
exploratory behavior.

Skinner did npot Iully subsecribe (o the memory aspect of the Law of Elleet, e
ing averse bo the kdea of associative Iinkage and emphasizing instead selection from
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aponbaneouslyv-cmitied Tehavior, He inteodsced the term “operant™ Lo cmphasize (he
kew role of an action's eflects on an animal’s eovicenment, Unlike the experiments
of Thorndike and others, which consisted of sequences of separate trials, Skinner’s
operand condifioning cxperiments allowed animal subjecis Lo behave [or extended
pericds of time without interruption. He invented the operant conditioning cham-
ber, mow callesd a “Skinner Tox,” the most basic version of which contains a lever
or key that an animal can press (o obtain a reward, such as food or water, which
wotthd Tee deliversd aceording 1o a well-defined rule, called a relnforccment schedale,
By recording the cumulative number of lever presses as a lunction of time, Skinner
and his Followers could investigate the effect of different reinforeement scheslules on
the animal’s rate of lever-pressing. Operant conditioning is often regarded as being
the same as instrumental conditioning, but Skinner's original intent was to study the
ellects of reinforeement on behavior in envicomments more like animals” natural envi-
ronments. [t is fair to say that an animal in an instrumental conditioning experiment
[aces whal we call an epizodic task, whereas i oan opecant conditioning experiment,
it. [aces what we call a continuing task.

Arncdher of Skinner's notalle contrilalions was his recognition of the edfectivenesss
and importance of training an animal by reinforcing suceessive approximations of the
desired bebavior, a process he called shaping, Although this technigue had been used
by others, including Skinner himself, its significance was impressed upon him when
he and colleagiws were atbempiing (o train a pigeon to bowl by swiping a wooden
ball with its beak. After waiting for a long Gime withoul seeing any swipe that they
could reinforce, they

v decided to reinforce any response that had the slightest rescmblance
Lo i swipe —perhaps, al fiest, merely the behavior of looking sl the Tall
and then to select responses which more closely approximated the final
form. The result amazed us, Inoa few minotes, the ball was caroming off
the walls of the box as if the pigeon had been a champion squash player.
(Skinner, 1958, p 94)

Mot only did the pigeon learn a behavior that iz uousual for pigeons, 10 learned
quickly through an interactive process in which its behavior and the reinforeement
contingencies changed in response e each other, Skinner compared the prooess of
altering reinforeement contingencies to the work of a sculplor shaping clay inio a de-
sired form. Shaping i5 a powerlul technique for computational reinforeement learning
svalems as well, When 1t iz difficult for an agent to receive any non-sero reward sig-
nal sat all, either due to sparsencss of rewarding situations or their inaccessibility
given initial bebavior, starting with an easier problem and incrementally increasing
its difliculty as the agent learns can be an effective, and sometimes indispensable,
stralegy,

Being able to shape behavior to be uncharacteristic of an animal’s natural behavior
appears o be atl odds with Thorndike's observation Chat his cals” paszle box activily
was solocted from their “instincinal impulses.” This discrepancy is more apparont
than real because the process of shaping successively changes the situations the ani-
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il experiences, Activity that i3 instinciual in situations eecureing early in learning
Iz 1o new situations in which dillerent eollections of activities are instinetual. In
s situations, the set of actions upon which selection can work may shrink fo a
single reflexive response, as bas been observed in animal treaining where even with
carcful shaping some behaviors seemed impossible 1o obtain. [Breland and Breland,
1961, provide a famous account of some of Cheir Tadled animal training experiences, )

A concept emphasized by psychologisis that is especially relevant in the context
of instroumental comnditioning is sediention, which refers to provesses that infloenes
the direction and strength, or vigor, of behavior. Thorndike's cats, for example,
were melivaled Lo eseape [rom poezzle boses beeanse they wantesd the food that was
sitting just outside. Obtaining this goal was rewarding to them and reinforeed their
eacapes, We do ool use the term motivation in presenting reinforcement. learning,
bt it elearly eormesponds to elements of the theory, For most of the reinforcement
agents we have discussed, value functions are the main driving force determining the
agent’s direction of behavior; one might say thal an ageold s motivated Lo ascend the
gradiend of the its velue funclion.

Peychologisis spy thal the eflect of reward depends on an animal’s sodivalionsl
state. For example, an animal will be more rewarded by eating (as measured by its
rale ol learning ) when it s hungry than when it has just [inished a satislving meal,
In reinforcement. learning, the generation of reward signals depends on the state
of a reinforcement learning agent’s environment in addition (o the ageol’s actions,
and this environment is everything outside of the reinforcement agent, which can
include information analosous to an animal’s motivational state. The concept of
atate dependence is broad enough (o allow for many Lypes of modulabing inluenees
on the generation of reward signals.

We Lirn pow Lo the subject of learning when reinforcing stimuli oceur well alter the
events they reinforce. The mechanisms wsed by reinforcement learning algorithms
Lo emable Iearning with delayesd reinforeement —eligibility traces and TD learning
closely correspond to pevehologists’ hypothoses about the means animals use to learn
wnder these conditions.

13.4 Delayed Reinforcement

The Law of Effect requires a backward effoct on connections, and some early eritics
of the law could ool coneeive of how (he present could alleet something thal was
past. This concern is amplified by the fact that learning can even coccur when there
i5 a eonsiderable delay between an action and the consequent reward or penally,
Similarly, in classical conditioning, learning can ocour when US onset. follows C5 offsot
by o pon-negligilde me interval, We call this the problem of delayed reinloreement,
which s related to what Minsky (1961) called the “credit-assignment problem for
learning systems.” The reinforcement learming algorithms presented in this book
include iwo basic mechanisms for addressing this problem. The first is the uso of
eligibility traces, and the second is the use of T} methods (o learn value functions
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[rom which pearly immesdiste evaluations of actions can e extracted, Both of (hese
methosls correspond 1o similar mechanisms proposed o theocies of animal learning,

Pavlov pointed out that every stimulus must leave a trace in the nervous system
Lhat persists for some me aller the stimales eods, He regarded learning when (here
is & temporal gap between the 8 ollset and the US onset as dependent on stimules
Lraces, and Lo this day conditioning under these eonditions is ealled braee conditionig
(Figure 13.1). Assuming a trace of the U5 remains when the U5 arrives, learning
oceurs through the simaltancous presence of the trace and the U5, We discoss some
proposals for trace mechanizms in the nervons system in Chapter 14.

Stimmulus traces were also proposed as & means for bridging the time interval Tae-
tween actions and consequent rewards or penalties in instrumental conditioning. In
Hull’s influential learning theory, for example, “molar stimulas teaces”™ accounied
for what he called an animal’'s goal groadiend, a description of how the maximom
strength of an instrumentally conditioned response decreases with increasing delay
of reimforeement (Huall, 1932, 1943}, Hull hvpothesized that an animal’s actions el
internal stimuli whose traces decayed exponentially as funetions of time since an
action was taken, Looking al the animal learping dats availalde ab the Gome, he
hypothesized that the traces effectively reach sero after S0 to A0 seconds.

The eligibility fraces wsed in the algorithms desceibed in this book are like Hull's
traces: they are decaying traces of past state visitations, or of past state-action pairs.
Elgibility traces were Introduced by Klopl (1972) in hiz pewronal theory in which
thov are temporally-cxtended traces of past activity al svnapses, the connections
between neurons. Klopl's traces are more complex than the exponentially-decaving
Lraces our algorithms use, amd we discuss this more when we take up his mewronal
thoory in Chapter 14.

To aceount for goal gradients (hat extend over longer lomnger Gime periods than
apanned by stimulus traces, Hull (1943) proposed that longer gradients result from
secondary reinforeement passing backwards [rom the goal, & process acling in con-
Junction with his molar stimulus traces, Animal experiments showed that il condi-
Lions favor the preseonce of seeomdacy reinforoement during a delay peciod, learning
does not. decrease with inereased delay as much as it doss under conditions that ob-
atruct secondary reinforeement. The more Ivoralde the conditions are for secondary
reinforcement, Lhe slower this decrease will be and the longer it will take the gradient
by fall to zero. He therefore envisioned that there is a primary gradiont based on
Lhee delay of the primary reinforcement mediated By stimalus traces, and Chat this i=
progressively modified, and lengihened, by secondary reinforcement.

Algorithums presented in this book that use both eligibility traces and value Tuoe-
tions to enable learning with delaved reinforcoment correspond 1o Hull's hvpothesis
about how animals are able (o learn under these conditions. The actor-critic archi-
tecture discussed in Section 11.1 illusirates this correspondence most clearly. The
critic uses a TD algorithm to Jearn a walue Dopetion associabed with the sysiem’s
current. bebavior, that s, to predict the current. policy’s return. The actor updates
Lhe current policy based on the critic’s predictions, or more exactly, in changes in
Lhe eritic’s prodictions. The TD ermor produced Ty Che eritic acts as a secondary
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ceward signal for Lhe actor, providing an immediate evaluation of perlormance cven
when the primary rewand sigoal iscll iz considerably delayed, Algorithms that esti-
mate action-value functions, such as O-learning and Sarsa, similarly use T learning
principles 1o enable learning with delaved reinforeement by means of seoomdary re-
inforcement. The close parallel between T learning and the activity of dopamine
producing newrons that we discuss in Chapter 14 lemds additional strength to the
consistency between reinforcement. learning algorithms and this aspect of Hull's in-
[uentind learning Cheory,

13.5 Cognitive Maps

hodel-based reinforcement learning algorithms wse environmeont models that have
elementis in common with what psychologisis call cognilive maps. Becall from our
discussion of planning and learning in Chapler 8 that by an enviconment model we
mean anything that an agent can use to predict how its environment will respond
Lir ks petions in terms of siale ransitions and rewards, and by planning we mean
any process that computes a policy [rom such a model. Environment models consist
of bwo parts the state-transition part eocodes knowledge about the eilect of actions
on state changes, and the reward model part encodes knowledge about the reward
signals expected for each state (or, more generally, Tor each stale-action-nest stale
triple). To decide on an action a model-based algorithm uses the model to predict
Lhe consequences of actions in terms of Tutare states and the rewards expected Trom
them. The simplest kind of planning s to compare the predicted consequences of a
collection of “imagined” sequences of decisions.

Chuestions about whether or nol animals use coviconment models, amd 0§ so, how
these models are learned, have played influential roles in the history of animal learning
pesearch, Some rescarchers challepgesd the thep-prevadling stimulus-response [(5-R)
view of learning and behavior, which corresponds to the simplest model-free way
Lo learn paodicies, Ty demonsteating falend learming, In the carliest Intentl learning
experiment, two groups of rats were run in & maze. For tho experimeontal group,
Lhere was no reward during the est stage of the experiment, Dot foced was suddenly
introduced into the goal-box of the maze at the start of the second stage. For the
contral group food was in the goal-box througlont both stages. The inlerest was
in whether oF ool rals in the experimental group bad learned anyvibing duriog the
first stage in the absence of food reward. Although these rats did not appear Lo
lesrn much during Che lest, unrewarded, stage, a8 soon as food was introdaced in
tho second stage, they rapidly caught up with the rats in the control group. [E was
conclisded that “during the non-reward period, the rals [in the experimental group]
were developing a latent learning of the masze which they were able 1o utilize as scon
s reward was mtrodaced™ {Blodgett, 1929],

Latent learning is most closely associabed with the psyehologist Edward Tolman,
wha interpreted this and resulis like it as showing thal animals eould learn a cognibive
map in tho ahsenee of rowards or penaltios, and that they used the map later whon
they were motivated to reach a goal (Tolman, 1TMH). A cognitive map could also



2 CHAPTER 13. PSYCHOLOGY

allow a ral 1o plan a roube bo the goal that was different from (he one i6 i had
used in its initial exploration. Explanations of results like these Ted to the endoring
controversy lying at the heart the behaviorist fcognitive dichotomy in psvchology. In
mlern Lerms, cognitive maps are ool restricled o models of spatial layouts Bl
are more generally environment models, or models of an animal’s “task space” (e.g.,
Wilson, Takahashi, Schoenbawm, and Miv, 2004}, The cognitive map explanstion of
latent learning exporiments is analogous bo the claim that animals use model-Tased
algorithms and that enviconment models can e learned without explicit rewands or
penalties. Models are then used for planning when the animal is molivated by the
appearance of rewards or penaltics,

Tolman's account of how animals learn cognitive maps was that they learn stimulus-
abimulus, or 55, asseciations by expericncing successions of stimuli as they explone
an environment in the absenee of reward, In psyehiology this is calle] erpectaney he-
ot given 3-8 associations, the ocourrence of a stimulus generates an expectation
bt the stimoalus o come pext, This s muach like what control engineers call spslem
identification, in which a model of a svstem with unknown dynamics is learned from
labeled iradning examples, In the simplest diserebe-time versions, training examples
are 5 %' pairs, where 8 is a state and 8, the subsequent. state, is the label. When 8 is
obgerved, the mode] creates the “expectation” that 8 will be observed next, Models
more useful for planning involve actions as well, so that examples look like SA 8,
where 8 s expected when action A is executed in state S, It is also uselul 1o learn
how the environment generates rewards, In this case, examples are of the lorm 5 r
or BA v, where v is a rewarnd signal associated with 5 or the SA pair. These are all
[orms of supervisesd learming by which an agent can acouire cognitive-like maps in the
ahsenee of reward signals. Besearchers have also proposed that environment. modols
can be learned via Bayesian methods that exteact eovironment steoctare from the
statistics of varied experiences through what is more like an unsupervised learning
[Arss.

13.6 Habitual and Goal-Directed Behavior

The distinction between model-lfree and model-based  reinforcoment learning algo-
rithuns corresponds Lo Lhe distinction psychologisis make etween babalaed and gooel-
derected control of behavior, Habits are behavior patterns triggees] by appropriade
siimuli and then performed morc-or-less antomatically, whoreas goal-directed be-
hawior i purposelol in the seose that it 3 conbeolled by koowledge of the value of
goals and the relationship between actions and their consequences. Habils are said
Lo T eontbeodled Ty antecedent stimuli, whereas goal-directed hehavior is said o be
controlled by its consoquences. Goal-direeted control has the advantage that it can
capidly change an animal’s ehavior when the environment changes how it responds
Lo the animal's actions. While habitual behavior can produce rapid responses, it is
wnalde to quickly adjust when the eovironmental eontingencies change, The develop-
ment. of goal-direeted hehavioral control was likely a major advance in the evalution
of animal intelligence.
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Figure 13,5 illustrates the dillference between model-Teee and model-based decision
abrategies in a hypothetical task requiring a ral bo pavigate a maee with distinctive
goal boxes, each having an associated reward of the magnitude shown (Panel a).
Starting al 5y, the ral has (o first seleet left (L) or right {R) amd then bhas to choose
between Loand B again al 55 or 83 to reach one of the goal boxes, The goal boxes are
Lhe Lerminal states of the rat’s episodic task, A mosdel-Tree strategy (Panel b)) oelices
on stored {ecached] values for state-action pairs. These action values [(-values) are
eatimabes of the return expected for each action taken [rom each (nonterminal ) stale,
They are obtained over many trials of running the mase rom start to finish. To make
decisions the rad just has to select ab each state the action with the Jargest action
value for that state. In this case, when the action-value estimates hecome accurate
enough, the rat selects L from 5 and K from 55 1o obtain the maximom return of 4.
Alterpatively, a model-lree strategy might simply rely on a cached policy instead of
action values, making direct links from 5; to L and from 5; to K. In peither case do
decisions rely on an eovironment model, Theee 1 oo necd toconsull astate-1rans Lion
modlel, and no connection is required between the features of the goal boxes and the
rewards they deliver,

Figure 13.5 Panel () illustrates a model-based strategy. It uses an environment
mle] consisting of a state-transition model and a reward moadel, The state-transition
madel is shown as a decision tree, and the reward model associates the distinctive
features of the goal boxes with the rewards 1o e found o each,  (The rewards
associated with states 5y, 5., and 5, are also part of the reward maodel, but here
they are sero and are pot shown.) A model-based agent can decide which way Lo
Lurn ab each state by using the meelel bo simulate possible action chodces o lind a
path vielding the highest return. In this case the return is the roward obtained from
Lhee oibeomme st (he end of the path, Here with a sufliciently accarate maodel, Cthe rad
would select L and then R to obtain reward of 4. Comparing the predicted returns
of simulated paths is o simple form of planning, which can be dome in a varciely of
waye as discussed in Chapler 5.

For a model-Tree agent 1o change its bebavior when its environment changes how it
responids bo actions, the agent has to acguire new expericnes in the changed environ-
il during which it can update its policy and/or valoe Dinction, In the model-Tres
atrategy shown in Panel (b)) of Figure 135, for example, i§ooe of the goal boxes wene
by somehow shilt to delivering a different. reward, the rat would have {o iraverse the
e, possibly many times, o expericnes the new reward upon reaching that goal
box, while updating either its policy or ils action-value function (or both) based on
Lhis experienoe, The key poiot s that Tor s model-free agent 1o change the action its
policy specifies [or a state, or to change an action value associated with a state, it has
Lir ack— posgildy many Limes— i that state amd experience (02 acLions” conseuences,

A moidel-based agent can accommodate changes in ils environment without this
kind of ‘personal experienes” with the states amd actions allected by the change,
A change in its model automatically (through planning) changes its policy. While
pew expericnes inoan altered coviromment 5 one way that o maoxdel can change, it
i5 nob the only way, Just observing the environment, or observing the activities of
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Figure 13.5: Model-based and model-Iree sirategies to solve a hvpothetical sequential
action-selection problem. {a) A rat navigates a mase with distinctive goal boxes, each
associabod with a reward having the value shown, (B A model-lree steatlegy relies
on stored (cached) action values for all the state-action pairs oblained over many
lesrning trials, These are estimabes of the relurn to be obtained i§ that action is
taken from that state. To make decisions the rat just has to select st cach state the
action with the largest action value Tor that state, (¢} In a maxdel-Tased steategy, the
rat learns an enwironmental model, consizting of knowledge of state-action-next state
Lransitions and a rewand model consisting of koowledge of ihe the reward associaded
with each distinctive goal box. The rat can decide which way to turn at each state
by usimg the mode] fo gimulate possible action choices 1o [odd a path yielding the
highest return, Adapled Trom Figure | of Niv, Joel, and Davan (2006), permission
pending..
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other agents in the eovironment, & ecoough for a model-learning prooess Lo pevise
A maoddel tooaceount for these observadions,  Moreover, planning can determine (he
consequences of environmental changes that have nover boen linked together in the
agent’s own experience, For example, again referring to the mase bask of Figure 13,5,
the rat’s reward model will change if it learns 1o associate one of the goal boxes with
a different reward in circumestances that do oot ionvolve the action choloes reguired
by fimed that goal box in the maze. The planning process will bring knowledge of the
pew reward Lo Dear on maze running withool the peed for additional experienes in
the mase.

Exactly this logic is the bazsig of good desalwation erperiments with animals, Resulis
from these experiments provide insight into whether an animal has learned a habit
or il its behavior is under goal-divected control, Rewand-devaluation experiments ane
like latent-learning experiments in thal the reward signaling changes [rom one stage
L the next, but they are designed to provide finer-grained information about the
animal’s mode of bebavior, Aller an initial rewarded stage of learning, the reward
value of an outeome s decreased, including being shifted to zero or even (o & negative
winlue,

The first experiment of this type was conducted by Adams and Dickinson (1981).
They tradned alz via instromental conditioning until the rals energetically pressed
a lever for food pellets in a training chamber. The rats were then placed in the same
chamber with the Jever retracted and allowed pop-contingent Tood, meaning thad
pellets were made available to them independently of their actions. After 15-minutes
of this [roc-access to the food, rats in one group wore injected with the nassoa-
idicing poisen lihinm chloride, This was repeated Tor Chree seszions, in the last of
which none of the injected rats consumed any of the non-contingent pellets, indicating
Chat the reward value of the pellets had been decreased - they had Deoen desalued,
In the next stage taking place a day later, the rats were again placed in tho chambor
and given a session of extinction training, meaning that the response lever was back
in place but disconnected from the pellet dispenser so that pressing it did not release
pelicts, Finally, the lever was reconnectod (o the pellet dispenser to compare ow
tho rats in the two groups would reacquire lover pressing. The resulis were that the
ijected rats had significantly lower response rales than the non-injected rals vighl
Jeome the starl of the ectinction fieks, and anlike the nop-injected cats, they did not
reaciuire bever prossing in the last stage.

Adlaans amd Dickinson concluded that the injected rats associated lever pressing
and consequent nauses, and hence in the extinction trials they “koew”™ that the
congegquences of pressing Che lever would be something they did pol want, and so
they reduced their lever pressing right from the start. The important point is that
Lhey reducesd lever pressing without ever having experienced lever pressing directly
followed by being sick: no lever was present when they were made sick. They seemed
able bo combine koowledge of the outeome of & behavioral cholee {pressing the Jevel
will be lollowed by geiting a pellet] with the reward value of the outcome [pellets
are b beoavodded) and bepce could alter their bebavior aceordingly,  Nob every
pEvchalogist agrees with this “cognitive” account of experiments like this, and it is
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ool the only possible way Lo explain these resulis, bul the model-based planning
ecxpanation s widely accepled.

Mothing prevents an agent from using both model-free and model-based algo-
ritluns, and there are good reasons for doing thiz, We know Trom our own experience
that with enough repetition, goal-directed behavior tonds to turn into habitual be-
havior, Experiments show that this bappens for rals oo, Inoone recenl example
SEmith and Graybiel [20013) conducied a reward-devaluation experiment in which,
simplilying a bit, two groups of rals were trained (o rin s T-mase, each ral starting
at the start gate and turning right or left depending on an anditory cue. 15 they
[odlowed the cue correctly they found food reward al Che end of the arm, olberwise
there was no reward. HRats in one group were trained until they made the correct
turn about T5% of the time, while rats in ancther group the overtrained group
received additional training until they were coreect about 90% of the time, Aller
thiz training, the reward was devalued by allowing cach rat access (o the reward in
it2 home cage and then making 6 sick by an injection of ihivm obloride, Aller
devaluation, the rats were again placed at the start gate of the maze to see what
Cheey wondd do whien they heard the instroction coe, bul now there was oo reward
at the end of either arm. The rats that were not overtrained redoeed their running
o the devalued arm by about 50%,. Overtrained rats, on the other hand, continoed
running to the devalued arm as they had done before undergoing the devaluation
procedire, This resull suggests that while the nop-overtrained rals were acling in
a poal-dirccted manner sensitive (o their knowledge of the outeome of their actions,
the overtrained rats had developed a habit of running to the instructed arme: their
behavior had Decome insensitive o the reward devaduation,

Viewing this and other resulis like it from a computational perspective provides
insight a5 o why one might expect animals o bebave habitually in some eirenm-
stances, in a goal-dirccted way in othors, and why they shift from one mode of
conbiol Lo ancther as they continge to learn, While animals undoubtedly wse algo-
rithms that do not exactly match those we have presented in this book, one can gain
insight into animal behavior by considering the tradeolls that various reinforcement
learning algorithms imply.

An idea developed by computational neuroscientists Daw, Niv, and Dayan {2006) is
Lhal animals use both model-free and model-Tased processes, Each process proposcs
an action, and the action chosen for execution is the one proposed by the process
Judged to e the more Grostworthy of Che two as determined by measures of confidenee
that are maintained throughout learning. Early in learning the planning process of
a model-based syvslem s more trustworthy beeanse 0 chains topether shori-term
predictions which can become accurate with less experience than cached long-term
predicticns of the model-free process, But with contioaed experience, the model-fres
process becomes more tristworthy becanse planning is prone Lo making mistakes
due bo model inaccuracies and shori-culs peeessary o make planning leasille, soch
as various forms of tree-pruning. According to this idea one would expect a shilt
from goal-directed behavior to habitual bebavior as more cxpericnes aceamulates,
Oiher wdeps have been proposed Tor how animals arbiteste etween goal-directed
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and habitual control, and both behavioral and ooarcscienee rescarch conlinmes Lo
examine this and related guestions,

The distinction between model-free and model-based algorithms is proving io be
useiul for this research, Ooe can examine the computational implications of ese
alporithms in absiract sctlings that expose basic advantages and limitations of each
Lypes, This serves both o sugeest and (o sharpen guestions that guide the design
of experiments necessary for increasing pavehologisis' understanding of habitual and
goad-directed behavior,

13.7 Extrinsic and Intrinsic Motivation

Peychologisis distinguish between erlrinsic mofivation, which means doing some-
thing becanse of smne specilic rewanding outcome, amd deleinsic roliwlion, which
refors to doing something “for its own sake.” Intrinsic motivation leads organisms bo
engage in exploration, play, and other bebavior deiven Ty euriogity in the abesepes of
externally-supplicd rewards, Something like this distinetion exists for reinforcement
lesarning sysbems,

The vsual way to apply reinforcement. learning to problem solving is o provide the
agent with a reward gignal determined by the degree of suceess i bas in solving (he
problem. For example, in the tic-tac-toe illustration in Chapier 1, the agent receoives
a reward of 1 when b wing a game and olherwise receives a reward of 0, This way
of generating a reward signal makes the agent behave like an extrinsically motivated
animal. Beward signaling is sel up to get the agent to solve a particular problem.
This reward signal is like giving a shiny gticker 1o a stielent or a tasty treat tooa pel
when they perform well at something you want them to do.

In contrast 1o this are wayvs of generaling rewand signals that make an agent Tee
have more like it is intrinsically motivated. One example is the “exploration bonos"
described in Chapler 8, Instead of being tied tooa gpecilic task, (his kind of roward
signal encourages exploration in general, that is, oot of the context of any specific
Lask, Another example 12 the proposal by Schmidhober (19918, B for how something
like curicsity would result from defining reward sipgnals in a certain way, He proposed
a reinforcement learning agent Lthal conbains a module wsing supervised learning Lo
lesrn o model af the agent’s eovironment. Prediction errors both dreive maodel learn-
ing anid penerate roward signals that the reinforcement. learning module uses to learn
a policy [or directing the agent’s actions, In particular, positive reward signals are
generabed to the extent that prediction errors decrease over time. This means that
Lhee agent will prefer experiences that epable i bo improve iis eovironment moded,
which implies that it will iry to avoid rogions of the state space whore loarning to
predict is diflicult or where (0 bas alvesdy learned Lo make accurate predictions, As a
consequence, the preferences of this “curious agent”™ will continue to change as it im-
proves ks predictive model, atlemping (o remain in regions where this im provement
is most rapid. Owme might say that the agont is intrinsically motivated to officiently
learn an environment model. Here, again, this is nol a particular task posed by an
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oulside entity il rather a general one that, in seme sense, the agent is posing Tor
itsell,

Reinforcement learning algorithms “don’t care” how reward signals are penerated.
They do ot hawe to be the resalt of something in the agent’s external eovicomment
that approves of, or disapproves of, the agent’s behavior. Theyv can depend on a
wide range of information maintained by the device whose behavior the agent is con-
trolling, including memories of past sensations, actions, and rewards; representations
of poals and the state of progress in achieving them; amd even the ageot’s current
policy, value linction cstimate, and environment. model.

Peychologists view Intrinsically motivated bebavior as an essential pact of an ani-
mal's developmental prooess. The benefits an animal derives from intrinsically mo-
Livale] bebavior unfold over the Jong term of s lifetime, When young animals,
including humans, play ampd explore, they are learning skills they will nesd in many
different contexts throughout their lives. The same is true for reinforcement. learning
svalems that ace expecied o [nee many dillerent problems over extended periods
of time. Considerable research is being devoled (o developing analops of intrinsie
e ivadjon for reinforcement learning agenis, some of which we cite in Section 13,9
bl

13.8  Summary

Our goal in this chapier has been to discuss correspondences bebween reinforcement
learning and the experimental study of animal learning in pavchology, We emphasized
al the outsel that reinforeement learning a8 described in this ook g potl intended
Lo model details of animal behavior. [t is an abstract computational framework
Lhal explores idealized situations [rom the perspective of artificial intelligenee and
engineering. Bul many of the basic reinforcement learning algorithms were inspired
by pavehiological theories, and in some cases, these algorithms have in et Tormed
the basis of animal learning models, This chapter describes the most conspicuous of
Lhese correspondences,

The distinetion in reinforcoment learning between algorithmes for prediction and
algorithms for control pacallels animal learning theory’s distinetion belween classi-
cal, or Pavlovian, conditioning and instromental conditioning.  The key dilference
botween instrumental and classical conditioning oxporiments is that in the formeor
Lhe reinforcing stimulus s conbingent upon the animal’s bebavior, whereas in the
latter it i5 not. Learning to predict via a TD algorithm corresponds to classical con-
ditiening, and we deseritsed the T model of clessiod conditiontig as one nstance in
which reinforcement loarning principles account for some details of animal learning
behavior, This model geperalizes the influential Bescoral-Wagner model by includd-
ing the temporal dimension where events within individual trials influence learning,
and it provides an aceount of secondary conditioning, where predictors of reinforcing
stimuli become reinforcing thomselves. [t also is the basis of an influential view of
the activity of dopamine peurons in the brain, something we take up in Chapler 141,
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Learning by trial amd error 5 al the base of the conteel aspect of reinforoement
learning, We gave some details about Thorpdike’s experiments with cats and other
animals that led to his Law of Effect, which we discussed here and in Chapter 1.
We podnted oul that in reinforeement learning exploration peed nol be limited b
“blind groping”; irials can be generated by sophisticated methods using innate and
previously learned knowledge as long as there is some exploration, The sels A(s)
speciflying the actions available in a state &, cormespond to the an animal’s repertoire
of responses ooa given situation, what Thorndike called “instinetual impulzes,” We
discussed the training method B, F. Skinner called shaping in which reward coniin-
gencies are progressively altersd (o train an animal (o secoessively approximate o
desired behavior., Shaping is not only indispensable for animal training, it is also an
elfective tool for training reinforcement learning agentz. There is also a connection
L the idea of an animal’s motivalional state, which influences whal an animal will
approach or avoid and what it learns from the experience. Both the state of & re-
inforcement learning agenl’s eovironment and the agent’s actions influence reward
signaling, and the state can include information analogous fo an animal's motiva-
Licnal stale,

The reinforcement learning algorithms presented in this book include two basic
mechanisms [or addressing the problem of delayed reinforeement; eligibility traces
and value lunetions learned via TD algorithms. Both mechanizms have antecedents
in theories of animal learning, Eligihility traces are similar to stimiulug traces of early
theories, and walue functions correspond to the role of secondary reinforcement. in
providing nearly immediate evaluative feedback.

The next correspondence the chapler addressed §s that Telween reinforoement
learning’s enwvironmend models what and peychologists sometimes call “cognitive
maps" Experiments in the mid 200h century challenged the then prevadling 5 R
view of animal learning by purporting to demonstrate lafend learning: learning in
Lhe absenee of ewards or penalties a cognitive map which (he animal laber uses Lo
guide its behavior when rewards or penalties are introduced. Environment models
in reinforcement learning are like cognitive maps in that they can be learned by so-
porvised learning methods without the need for reward signals, and then thov can
b sl Lo plan bebavior in order Lo oblain reward,

Beinforeement learning’s distinction between maodel-free and  sesdel-fosed  algo-
rithms corresponds to the distinction in psychology between habilual and gosl-divecied
behavior, Model-free algorithms make decisions by accessing information that has
been cached in a policy or an action-value inction, whereas model-based methods
select actions as the resull of planniog abiead vsing a maodel of the agent’s environ-
ment. Croal-devaluation experimenis provide information about whether an animal’s
behavior i habitual or under goal-directed control, Beinforeement learning theory
has helped clarilv thinking about these issnes.

The linal correspondence addressed in this chapler centers on psychologists” dis-
tinction between exirinsic molivation, which refers to doing something to achiove
sne specilic rewarding ouleome, amd dudvinsie mobivadion, which refers Lo doing
sonething “for s own gake,” A distinction like this exists for reinforecment Jearning
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avalems, Exploralion bonuses and reward sigoals linked (o improvements in an envi-
ronmental maoslel are examples of reward signals that make an agent bebave as i it
wore intrinsically motivated to explore or to model its environment. Unlike reward
signals based on the suecess, or lack thereol, in performing o specilic task, these kinds
of signals encourage behavior that is wselul for many different tasks the agent may
encounter during its “lifetime” Psychologists view Intrinsically motivated behavior
as ersontbial to an animal’s development, and the same reasoning is relevant to elforis
L develop artilicial learning systems thal are expocled 1o operate over long poriods
of time in varying situations.

13.9 Conclusion

In this chapier we discussed how some concepts and algorithms from reinforecement
leswrning correspond (o theories of animal learning from peychology, We emphasized
that reinforcement learning as developed hore explores idealized situations from the
perspective of an artilicial intelligenes researcher or engioeer— ol from Uhe perspec-
tive of an animal learning researcher. As a type of machine learning, the goal of
reinforcement learning s not (o replicate animal behavior Tt to design and ander-
stand effective learning algorithms.  Animal learning clearly informs much of owr
perspective, bul we have been selective in conpecling with psychologieal studies of
animal learning. We placed priority on aspects of animal learning that relate in clear
ways 1o methods for solving prediction and control problems. As a resalt of this
seloctivity, we did not venture into many of the behavioral details and controversies
that have oceupied the attention of animal learning rescarchers. As research in com-
putational reinforcement. learning contimees, it is likely that Dorther developoent and
refinement, of theory and algorithms will be inspired by some of these details, bt
only to the extent that their computational significance ecomes apparenl.

Despite this purposeful detachment from psychology, reinforcement learning as de-
velopes] hiere is giving back 1o psvchology, The TD moadel of classical conditioning is
one instance where computational principles led to a theory of some details of animal
behavior (hat olher theories have considerable dilliculty explaining. The examina-
tion of habitual and goal-directed behavior in terms of model-free and model-based
reinforeement learning algorithms is another ease where computational principles
[rom reinforcement learning are informing psychological theories. There are other
instances— Loo numerous Lo have covered here  where reinforcement learning has
suggesied resh wavs o think about animal decision making and learning.

We have not been surprised by the fruitful two-way flow of ideas belween rein-
forecment learning and psychology, OF all the paradigms of machine learming, re-
inforcoment learning addresses problems that are tho most like those that animals
hawe Lo face in their oatucal eovironments, Withowt a dould, the supervised and
unsupervised learning paradigms are abstractions of important. aspects of animal
learning, but they do ool encompass Uhie whole problem of learning how to interac
with a dyvnamic environment in order to achiove goals. For its part, reinforcement
learning also does nol encompass this whole problem, but it includes some of s
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easenbial elements that are missing rom olther paradigms, Reinforecment earnings
fecus om these cszential elements of animals” oataral problems s the madn eason
behind the many correspondences we have discussed in this chapter. If the problems
Lhat animals fee are well modeled as stochastic segquentisd decigion problems - as we
think they are it would be surprising il effective algorithmes bore no relationship Lo
Ll methods that bave evolved epabling animals to deal with the problems they Faee
over their lifetines.

As o final commment, we pode thal the correspondences between reinforcement learn-
ing and animal learning described in this chaptor conter on behavior observed in
Iaboratory settings rather than in the “wild” of an animal’s satural eosicoonment,
Bost of animal learning theory addresses data from laboratory experiments becanse
this setting allows intricate control of conditions and relative case of observation,
Learning principles uncovered in the laboratory hold in natucal setlings ag well, bl
ethologists and behavioral ceologists focus on ecological and evolutionary aspects
of ehavior; how animals relate 1o ope apother and Lo their physical surroundings,
and how their behavior contributes to evolutionary fitness. Many features of our
Lreatment of reinforeement learming also correspomnd 1o the perspective and methiods
of ethology and behavioral ecology. Optimization, MDPz, and dypamic program-
o figure promineot]y in these elds, aod our emphasis on agent interaction with
dynamic environments connects to the study of agent behavior in complex “ecolo-
gies,” We do ol scddiess agent-agent interaction becanse we do ool eover mulbi-agent
reinforcement. learning in this book, but this area has connections 1o how animals
interact with one another. Furthermore, reinforcement learning should by no means
b interpreted as dismissing evolulionary perspectives, Nothing abowt reinforcement
learning implics a fobula mosa view of loarning and bohavior. Indeed, experience with
engineering applications has highlighted the importance of building inlo reinforee
ment learning systems knowledge that is analogous to what evolution provides Lo
animals.

Bibliographical and Historical Remarks

Shal (2012]) discusses conpections ebween psychology and reinforcement leprning in
a review that is & wselal companion of this chapter,

The idea built into the Bescorla-Wagner model that learning ocours when animals
are surprised iz derived oo Kamin (1969, Oither maodels of classical comditioning
include the models of Klopf [1988), Grossberg (1975), Mackintosh [1975), Moore
and Stickney (1980], and Pearce and Hall (1980], Courville, Daw, and Tourclzky
(20015} present a Bavesian perspective of classical conditioning, and Gershman and
Niv (2000) review experimental amd theoretical research relating Bayesian stractore
learning o classical conditioning.  An excollent. overview of computational modols
of classical conditioning is provided Dy Schumajuk (2008],

Blocking in classical conditioning was first reportod by Kamin [1968) and is com-
monly known as Kamin blocking. Moore and Schmajulk (2008) provide an exeellent
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summary of the blocking phepomenon, the research i stimulated, and s lasting
influwence on animal Jearning theory,

An early version of the TD model of classical conditioning appeared in Sutton and
Barto (1951 ], which also inclhsded the early model’s prediction Chat temporal primacy
overrides blocking, later shown by Kehoe, Scheurs, and Graham (1957} to ocour in
Lhe rabbil pictitating membrane preparation. Sotton and Barto (1981) conbains the
earliest recognition of the near identity between the Bescorla-Wagner model and the
Least-Mean-Sguare (LMS), or Widrow-Holll, learning rule {Widrow and Holl, 196407,
This early model was revised following Sutton’s development of the TD algorithm
(Suiton, 1984, 1988) and was [irst presented as the TD model in Sution aod Barto
(1987} and more completely in Sutton and Barto [ 190].

Additional exploration of the T mode] and its possilde pearal implementation
was comducted by Moore and eolleagues {Moore, Desmond, Berthier, Blazis, Saiton,
and Barto, 1986; Moore and Blazis, 1989; Moore, Choi, and Brunsell, 1995; Moore,
Dlarks, Castagna, and Polewan, 2001),  Klopl's (1988)  drive-reinforcement. Cheory
of classical conditioning extends the TD model to address additional experimental
details, such as the S-shape of acquisition curves, Lodvig, Subbon, and Kelwe (2012)
evaluated the performance of the TD model in previously unexplored tasks involving
classical conditioning amd examined the inflwence: of varkas stimualus representations,
inclnding the microstimulus representation that they introduced carlier {Ludvig, Sut-
Loy, and Kehoe, 2008), In some of these publications T s taken do mean Tiome
Derivative instead of Temporal Difference.

Section L7 includes comments on the history of trial-and-error learning and the
Law of Elfect, Pelerson's essay on Skinner's discovery of shaping highlights ihe
influenee this discovery had on his subsequent research {Peterson, 2004). Selfridge,
Sutton, and Barto (1985 ) illusteated the ellfectiveness of shaping in the pole-balancing
reinforcement learning task, Because a long pole is easier to balance than a short
pole, Lheir system started with a long pole whose lengih was incrementally desreased
while learning took place until it was the shorter length required by the task. Owerall
learning Lime was signilicantly less than when the pole leogih was [ixed al this shorter
length throughout learning. Other examples of shaping in reinforcement learning are
provided by Mahadevan and Connell (1992), Matarie (1954), Dorigo aond Colombetie
(1994}, Saksida, Ravmond, and Towretzky (1997 ), and Randley and Alstrem {1995),
Mg (20003) and Ng, Harada, and Fuossell (199 use the term shaping in a sconse
asmewhal dillerent from Skinoer's, [ocussing nol on successive approximation bl
on the problem of bhow to alter the reward signal without altering the set of optimal
policies,

Spence, Hull’s student. and collaborator at Yale, elaborated the role of secondary
reinforecment in addressing the problem of delaved reinforeement (Spence, 1947 ),
Learning over very long delavs under conditions that rmle out secondary reinforce-
ety 88 in Laste-aversion conditioning with delays ap to several hooes, led o interfer-
ence Lheories, deseribed by Hevusky and Garela (1970). According to these theories
crodit can be assigned o actions taken very Tar in the past i there were no, or few,
pelevant intervening stimuli or actions to interfere with the process,  Boaskes and



3.9, CONCLUSION 25

Costa (2014) thoroughly review data related to the delayv-ol-reinforcement. peobilemn,
particularly data supporting interferenee theorices, Johanson, Killeen, Ruassell, Tripp,
Wickens, Tannock, Williams, and Sagvoldenct (20090) discuss interference theories
in the eontext of & hypothesis that attention deficit by peractivity disorder ( ADHIDY)
resulis from disruption of the ability to assign credit for delayed reinforcement. Seo,
Barraclough, and Lee (2007) report that the activity of nearons in the prelrontal
cortices of rhesus monkeys is modulated by previous action choices, leading them bo
sugeest thal working memory i invelved in bandling delayed reinforoement

Thistlethwaite (1951) is an extensive review of latent learning experiments up to
Chee time of its publication. Ljuong (1998} provides an overview of model learning,
or svatem identification, technigues in engineering, and Gopoik, Glymowr, Sobel,
Selnls, Koshnir, and Danks (2004 ) discuss a Bayesian theory about how children
leswrn miowdels,

Connecting habitual and goal-directed behavior respectively to model-free and
mcklel-based reinforcement learning wag [irst proposed by Daw, Niv, and Dayan
(2005). Dolan and Dayan (2013) provide a comprehensive roview of four generations
of experimental research relabed (o Chis ssue and dizcuss bow §G can move foreard
on the basis of the model-lfree/ model-based distinetion. Dickinson {1980, 1985) and
Dickinson and Balleine (2002) discuss in detail experimental evidenee related o Chis
distinetion. Donahoe and Burgos (2000 alternatively argue that model-free prooesses
can account for Che results of goal revaluation experiments,

In addition to discussing habitual and goal-directed modes of bebavioral control,
Davan {2008 uses the term Pavlovian control to refer to bebavior programmed by
evolution Lo deal with particular appetitive or aversive outeomes, He also introduces
the term opisodic control to refer to a primitive process of simply repeating sequences
of actions that bave been successlul in the past, Dayan and Berridge (20014} argoe
that classical conditioning involves model-based processes.  Rangel, Camerer, and
Dontague (2008) review many ol the outstanding msues involving habitual, goal-
directed, and Pavlovian modes of control.

Dickinzson amd Balleine (2002) discoss the relationship between learming and ol i-
valion, revealing the complex nature of the interaction. Though focussing on mouro-
scienoe, Wise [200M) provides an overview of reinforcement learning and i3 relation
Lo motivation. Daw and Shohamy (2008], while also addressing neuroscience issues,
link motivation and learning to aspects of reinforcement learning theory, Niv, Joel,
and Dayan (2006) proposed that mobivation can be thought of as the mapping thad
assipgns numerical reward signals to objects or evenis observed in an animal’s exter-
nal eovironment,  As input toothis mapping, an animal’s motivaticnal stale s an
ndex' of different. ways of assigning reward signals to expericnces. MeClure, Daw,
and Montagoe (2003) sugegest thal meepdive solience in the theory of Berridge and
Robinson [1WIE) is the expected future reward, that is, that it is given by a value
Mametion,

MeClure et al. {300 present a theory of behavioral vigor in which the time taken
for an animal to gelect an action depends on the distribution of action-values: an
animal will Tehave more vigorously to the extent that possible actions have high
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wialues; Low vigor is the resull of an absence of actions with high values. Niv, Daw,
and Dayan (20056)  wse continuous-time MDPs (o suggest a pormabive account of
behavioral vigor where decisions involve choosing an action together with a latency
with which it is executed, See also MNiv ol al. (2007},

The influence of internal state on valuation is discussed by Bangel ot al. (2008) and
Davan amnd Berridge (2004), In reviewing wo pewroscienee stadies of the influenes
of internal state on dopamine signaling, Burke, Dreher, Seymour, and Tobler (3114
rention the influence of linancial status and expectations on valuation, referring b
Bernoulli’'s 1738 paper that laid the foundation for wiility theory (Bernoalli, 15954, is
an English translation] amnd to prospect theory | Kahoeman and Tversky, 1979],

Ryan and Deci (2000) provide a psychological introdoction to intringsic motiva-
thon, Barto, Singh, and Chentanes (2004) and Singh, Barto, and Chentanes (2004)
introdees] the term intrinsically motivaded reinforcement learning in he context of
hierarchical reinforcement learning.  The first instance we know of that would be
characterized a8 inlrinsically motivated reinforeement learning ig Schmidhuber's pro-
posal for endowing an agent with a kind of curiosity (Schmidhuaber, 1%1a, 19%691h;
Sclhunidbaber, Storck, amd Hocheeiter, 1994; Storck, Hochreller, and Schmidiober,
195, Schmidbuber, 200%). This s an active arca of research with a growing liter-
ature, Baldsssarre and Mirolli (2003] is a collsction thal widely eowvers the bopde,
including a chapter by Barto (2013) that explicitly discusses intringic motivation in
Lhe coptext of reinforcement learning,  Among other potalde expositions of (hese
ideas are those of Oudeyer and Kaplan [2007a, 2007h].

Singh, Lewis, Barto, and Sorg (20010] provide an evolutionary perspective on in-
Lrinsie molivation by considering what kinds of reward signaling confer analogs of
high evolutionary filness to agonts whose learning is guided by those reward fune-
thons (@ee also Singh, Lewis, and Barto, 2000), Sorg, Singh, and Lewis (2000) and
Sorg (2001) used this approach to argue that good reward [unctions for reinforce-
menl learning svstems can mitigate a varicly boands amder which the svstem misi
operate. The arpnment implics that the designer of & reinforoement. learning svstom
should pol pecessarily make his or her own objective the objective of the learning
avalom.
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Chapter 15

Applications and Case Studies

In ihis linal chapber we present a few case studies of eeinforcement learning, Several of
these are substantial applications of potential economic significance. (e, Samucl’s
checkers player, s primacily of historical interest, Our presentations ace intended
L illustrabe some of the trade-ofls and issues that arise o real applications.  For
example, we emphasize how domain knowledge is incorporated into the formulation
and solution of the problem. We alse highlight the representation issoes thal are so
often eritical to suceessiul applications. The algorithms used in some of these case
sbudies are substantially more complex than those we have preseoted o Che rest of he
book. Applications of reinforcement. learning are still far from routine and typically
requice as miech art as science, Making applications casier and more steaight foreard
is one of the goals of current. rescarch in reinforcement learning,.

15.1 TD-Gammon

e of the most impressive applications of reinforcement learning (o date is that by
Crerry Tesauro to the game of backgammon [Tesaoro, 1992, 1999, 1995). Tesann’s
program, 1 0-Gemmeen, regquired itk backgammon knowlesdge, ved leacoed to play
extremely well, near the level of the world's strongest grandmasters. The learning
algorithm in TD-Gammoen was asteadghtforward combination of the TIMA) algoritlnm
and nonlinear linetion approximation using & muliilayer peacal network tradmed by
backpropagating TD orrors.

Backgmmmon 15 a major game in the sense that i i plaved throughout the world,
with mumerous tournaments and regular world championship matches, It is in part
a game of chanee, and i i8 a popular vehicle for waging signilicant sums of money,
There are probably more professional backgammon plavers than there are profes-
sional chess players, The game 5 plaved with 1 white and 15 Black pieos on a
board of 24 locations, called points. Figure 15.1 shows a typical position early in the
game, seen from Lhe pecspective of the white player,

In this figure, white has just molled the dice and obtainod a 5 and a 2. This means
that he can move one of his pieces 5 steps and one {possibly the same piece) 2 steps.

265
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]

white pleces mave
e L counterclockwisea

-
.

black pieces
move clockwiss

T2 3 4 31 =&

Figure 15.1; A backgammon position

For example, he could move two pieces from the 12 poind, one to the 17 point, and
one Lo the 14 point, White's objective is 1o advanee all of his pieces inbo the lasi
quadrant. {points 1924} and then off the board. The lirst plaver to remove all his
pieces wins, Ooe complication i3 that the pieces interact as they pass each other
poing in different directions. For example, if it were black's move in Figure 15.1,
he could wae the dice roll of 2 oomove s piore from the 24 poiol Lo the 22 poiot,
“hitting” the white picce there. Pieces that have been hit are placed on the “har” in
Ll mmigledle of the oard {(where we already see one previoosly hit black pieoe), Trom
whenee they reenter the race from the start. However, if there are diwo pieces on a
point, then the opponent cannot move to that point; the pieces are protected from
being hit, Thus, white cannol use his 5 2 dice oll to move either of his pleces on
the 1 point, because their possible resulting points are occupied by groups of black
pioces, Forming contigoows ocks of oocupied points o block the opponent is one
of the elementary siratogics of the game.

Backgammon mvolves several Tucther complications, Dal the above description
gives the basic idea. With 30 pieces and 2 possible locations (26, counting the
b s ofl-the-Twoard ) it should Be clear thad the pumber of possible backgammon
positions is enormous, far more than the number of memory elements one could
have o any physically realizable compuier, The oomber of moves possible Trom
each position 15 also large, For a dyvpical diee roll there might Tae 20 different ways
of plaving. In considering future moves, such as the response of the opponent, one
st eonsider the possible diee rolls as well, The resull i that the game trec has an
effoctive branching factor of about A0, This is far too large Lo permit effective use
of the eonventional hearistie search methods that hasve proved so ellective in games
like chess and checkors.

On the other band, the game is a good match bo the capabilities of TIF learning
methods.  Although the game is highly stochastic, a complete description of the
games stale 5 available ab all times, The game evalves over a0 sequence of moves
and positions until finally ending in & win for one player or the other, onding the
game. The outeome can be interpreted as a final reward to be predicted. On the
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other band, the theoretical resulis we have deseribyesd so far cannot be useldly applied
L this task, The pumber of states s 2o Jarge thad a lookup table cannot b wsed,
and the opponent i5 a souree of uneertainty and Lime variation.

TD-Gammon used o nonlinear form of TD{A), The estimated value, @8}, of any
atate (board position) s was meant to estimate the probahbility of winning starting
[rom stabe s, To achicve thiz, rewands were defiped a8 sero for all time steps exeepl
those on which the game is won, To implement the value fonction, TD-Gammon
used o standard moltilayer pewral petwork, much as shown in Figure 15,2, [The
real network had two additional units in its final layer to estimate the probability of
each player's winning in a spoecial way ealled & “gammon”™ or “haeckgammon,” ) The
network consisted of & layer of input units, a laver of hidden units, and a lnal oobpoet
wnit, The inpat Lo Che pelwork was a representation of a backgammeon position, and
Lhee cutpl was an estimale of the valee of thal position,

In the first version of TD-Gammon, TD-Gammon 0.0, backgammon positions were
represented to the network ina relatively direst way Chat involved lictle backgamimon
knowledge. It did, however, involve substantial knowledge of how nowral networks
work amd how information is best presented to them. 10 s instructive (o pobe (e
exact reprosentation Tesauro chose, There were a total of 198 inpul unils o the
network, For each point an the backgammon board, fooue noils indieated the number
of white pieces on the point. If there were no white pieces, then all four units took
on Che value sero, 15 there was one pdece, then e fest unit ook on the value 1, 10
there were fwo pieees, then both the first and the second unit were 1. I there were
three or more pieces on the point, then all of the first three units wore 1. 1T there
were more Lhan theee pieces, the fourth unit alse came on, (o a degree indicating
the number of additional pieces beyvond three. Letting n denote the total number of
prieees oo Bhe prdnd, 00 = 3, Chen the foacth anit took on Che valee (n—3) /2, With
four units for white and four for black at cach of the 24 poinis, that made a tobal
of 192 units, Two additional unils epeoded the pumber of white and black pieces
on the bar (cach took the value n/2, where nois the number of pieces on the bar),
and two more eocoded the pumber of black amd white pieces already sucoessinlly

predicted probability
of winning, i 5., &)

TOy error
TR | T |

hidden wnits (40-50)

backgammon position {198 input units)

Figure 15.2; The neural network used in TD-Cammen
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remaovid from the board (these took the value /15, where nis the number of pieces
already boene ofl ), Fioally, two units indicated in a binary Tashion whether it was
white's or black's turn to move. The general logic behind these choices shonld be
clear, Basically, Tesauro tried to represent the position in s stepdghiforward way,
making little attempt to minimize the number of units. He provided one unit for
each conceptually distinet possibility that seemed likely 1o be relevant, and be sealed
thom to roughly the same range, in this case betwoon (1 and 1.

Ciiven a representation of & backgammon position, the network compatesd its esti-
mated value in the standard way., Cormesponding to cach conpection from an inpot
unit tooa hidden unit was g real-valoed weight, Sigoals om each inpoal il were
multiplied by their corresponding welghis and summed at the hidden unit. The
oty el ), of hidden unit § was a poolinear sigmobd fuoetion of the weighted sum:

. |
e (E "J"JI") R rTe Tt

where x; is the value of the ith input unit and wy; is the weight of its connection Lo
Lhee fih Dicddeden wndt (all ihe weights in the petwork together make up (he parameter
vector @), The output of the sigmodd s alwavs between 0 amd 1, and has a natural
interprefation as a probahbility based on & summation of evidenee., The computation
[rom hidden units Lo the culpul unit was eotirely analogous. Each connection from
a hidden unit to the output unit had a separate weight. The ouwtpot unit formed the
welghted sum amd then passed it through (he same sigmoid ponlipearity,

TD-Gammon nsed the gradient-descent form of the TD{A) algorithm deseribed in
Section 52, with the gradients computed by the error backpropagation algorithm
(Bumelhart, Hinton, and Williams, 1986). Hecall that the general update rule for
Lhis case iz

Bepr = B+ o | Ry + 90500 — ""[Shﬁ'r]] €, (15.1)

whers 8 is Uhe vector of all modiliable parameters (in this case, the weights of the
network ) and ey s a vector of eligibility traces, one for each component of @, updated
h.'l"

e = vAey 1 + VilS,),

with gy = 0, The gradient in this equation can T compated elliciently Ty ihe
backpropagation proomdure. For the backgammon application, in which v = 1 and
Ll reward §2 alwavs zero exoepl upon winoing, the TD ereor portion of the learning
rule is usually just 95 1,8) — (5 #), as suggestoed in Figure 15.2.

To apply the learning rule we pecd a gowrce of backgammon games.  Tesanroe
obtained an unending sequence of games by playing his learning backgammon player
againsl ilscll, To choose its moves, TD-Gammon considered esch of the 20 or so
ways it could play its dice roll and the eorresponding positions that would resuli.
The resulting positions are affersioles as discussed in Section 6.6. The neiwork was
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consulied to estimate each of their values, The move was then 2elected that would
leswd o the position with the highest estimated value, Continuing in this way, with
TD-Gammon making the moves for both sides, it was possible 1o easily generate
large numbers of backgammon games, Each game was (reated as an episode, with
the sequence of positions acting as the states, 5,57, 52, . ... Tesauro applied the
pomlinear TTY rule (15,1} Dully incrementally, that is, aller cach individoal move,

The weights of the petwork were set initially to small random values. The initial
eviluations were thus eotirely arliteary, Since the moves were selected on Che basis of
these evaluations, the initial moves were inevitably poor, and the initial games often
Lastes] hunedresds or thousands of moves belore one side or the othier won, almost by
accident. After a few dosen pames however, performance improved rapidly.

Aller playing about 300,000 games against ilsell, TD-Gammon L0 az described
abowe learned Lo play approximately as well as the best previcos backgammon eem-
puter programs. This was a striking result because all the previows high-performance
computer programs had used extensive backgammon knowledge, For example, the
reigning champion program at the time was, arguably, Newrogammaon, another pro-
gram writien by Tesauro that used a peural petwork bul pol TD Jearning,  Neo-
rogammon’s network was trained on a large training corpus of exemplary moves
provided Ty backgammon experts, and, in addition, stared with a sel of features
specially crafted for backgammon. Mewrogammon was a highly tuned, highly effec-
Live backgammon program thal decisively won the World Backgaamon Olvingpiad
in 19549, TD-Gammon 0.0 on the other hand, was constructed with essentially sero
backgammon knowledge, That it was able to do as well as Nourogammon and all
other approaches is siriking testimony o the potential of sell-play learning methods,

The tournameont. sueeess of TD-Gammon 000 with zero backpammon knowlodge
suggesied an obvious maodilication: add the specialized backgammon featires bl
keep the sell-play TD learning method. This producesd TD-Gammon 1.0, TD-
Gamman 10 was elearly substantially bedter than all previons backgammon pro-
prams and found serions competition only among human experts. Later versions of
Lhe program, TD-Gammon 2,0 (40 hidden anits) and TD-Gammoen 2.1 (20 hidden
units], were angmented with a selective two-ply search procedure. To select moves,
Lhesie programs looked aliead oot just 1o the positions that scould immediately resali,
bt alzo 1o the opponent’s possible dice rolls and moves, Assaming Che opponent
alwavs took the move that appearcd immediately best for him, the expecied value
of each candidate move was computed and the best was selected, To save computer
tiree, the second ply of search was conducted only for candidate moves that wore
ranked highly aller the [irst ply, aboul four or live moves on average, Two-ply 2earch
alfected only the moves selected; the learning process proceeded exactly as belore.
The: most recent version of the program, TD-CGammon 3.0, uses 160 hidden anits
and a selective three-ply search. TD-Gammon illustrates the combination of learned
walue lunctions and decide-time search a8 in hearistic search methods, Inomore re-
cent work, Tesauro and Galperin (19IT) have begun exploring irajectory sampling
methirls a8 an alternabive woe search,

Tespuro was able Lo play his programs in a sigoilicant pumber of games againsi
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Program | Hidden | Training O pponenls Results
Units Games
TD-Cram (0.4 Al 0 (10K) other programs Lied for best
Th-Gam 1.4 k1] 0,0 Robertie, Magriel, .. [ —13 pta /51 gamoes
TD-Cram 240 Al SO0 | various Grandmasters | —7 pts /38 games
TD-CGam 2.1 bl LS00, 001 Robertie —1 pt /40 games
Th-Gam 3.4 k1] 1, S0 Kazaros +6 pts /20 games

Table 15.1: Summary of TD-Cammon Resialis

world-class human players. A summary of the resulls 8 given in Table 15,1, Basged
on these results and analyses by backgammon grandmasters (Robortie, 1002; seo
Tespuro, 1995 ), TD-Gammon 3.0 appeears bo be al, or very pear, (he playing strength
of the best human plavers in the world. It may already be the world champion. These
programs have already changed the way Cthe Teest hman players play the gams, For
example, TD-Gammon learned (o play certain opening positions differently than was
Lhee convention among Lhe best uman players, Based on TD-Gammon's success and
further analysis, the best human plavers now play these positions as TD-Gammon
does [ Tespura, 19695],

15.2 Samuel’s Checkers Player

An important precursor to Tosauro’s TD-Gammon was the seminal work of Arther
Saanuel (1959, 1967) in constructing programs for learning to play checkers, Same]
was one of the lrst o make effective use of beuristic search methods and of what
wie wolthd now eall temporal-dilferenee learning. His cheskers players are instrscbive
ease studies in addition to being of historical interest. We emphasize the relationship
of Samel’s methods (o modern reinforeement learning methods and try 1o convey
some of Samuel’s motivation for using them.

Saamuel [irst wrole a checkers-plaving progeaam for the IBM 701 in 1952, His first
learning program was completed in 1955 and was demonstrated on television in 1956,
Later versions of the program achieved good, thowgh nol expert, playing skill, Samuoe]
was atiracted o game-plaving as o domain for studyving machine learning becaose
games are less complicated than problems “taken from life”™ while still allowing fruithl
abudy of how hewristic procedures and learning can e wsed together, He chose to
atndy checkers instead of chess becanse its relative simplicity made it possible Lo
[pcus more sirongly on learning,

Samucl’s programs played by performing a lookahead search from each current
position, They used what we pow call bewristic search methods o determine how Lo
expand the search tree and when to stop searching. The terminal board positions of
each search were evaluated, or “seored,” by aovalue Dinetion, or “scocing polyvoomial,”
nsing linear inction approximation. In this and other respects Samuel’s work scoms
Lo have beon inspired by the suprestions of Shannon (1950). In particular, Samucl’s
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program was based on Shannon's minimax procediore o lind the best move Trom (e
current position, Working backward through the search teee Teom he scored terminal
positions, cach position was given the score of the position that would result from the
st move, assuming thal the machine would always tey Lo maximise the score, while
the opponent would always try Lo minimize it. Samuel called this the bcked-up soore
of the position, When the minimax procedure reached the search tree’s coob—Che
current. position— it yielded the best move under the assumption that the opponent
wolllld be wsing the same evaluation criterion, shilled (o s point of view, Some
versions of Samuel’s programs used sophisticated search control methods analogows
Lo whiat are koown as “alpha-beta™ cutodls (eg., see Pearl, 1984),

Samuel used two main learning methods, the simplest of which he called rode learn-
g, IL consisted simply of saving a deseription of each Doard position encountered
during play logether with its acked-up salue determined by Che minimax procedone,
The result was that if a position that had already been encountered were Lo ocour
again as a lerminal pogition of a search Gree, the depih of he search was ellectively
amplified sinee this position's stored value cached the results of one or more searches
conducted earlier, One mitial problem was thal the program was ool enconraged
Lo move along the most direct path to a win, Samuel gave it a “a sense of direc-
Lion™ Dy decreasing a position’™s value a small amount each tme (0 was Tacked up
a level (called a ply) during the minimax analysis. “If the program s now [aced
with & choice of bhoard positions whese scores difler only by the ply number, i1 will
antomatically make the most advantageous choice, choosing a low-ply alternative if
winning and a high-ply alternative if losing” (Samuel, 19589, p. 80). Samuoe] found this
discounting-like technigue essentind W successlol learning, Rote learning prodoeed
alow but continuous improvement that was most oifoctive for opening and endgame
plav., His prograan became a “betier-than-average noviee” afler learning [rom many
games against isell, a variety of human opponents, and from book games in a su-
porvised learning mode,

Rote learning and other aspects of Samuel's work strongly suggest the essential idea
of temporal-diilferenee Jearning —that the value of a state should egual the valoe of
likely following statos. Samuel came closest Lo this idea in his second learning method,
his “learning by geperalization” procedoce for modilying the parameters of the valoe
Manction,  Samecl™s method was the same in concept a8 that used muach later by
Tesanro in TD-Gammon. He played his program many games against another version
of iteell and performed a backup operation alter each move, The bdea of Samoel’s
backup is suggested by the diagram in Figure 15.3. Each open circle represenis a
position where the progeam moves pext, an oa-reore position, amd each solid eirele
reprosents a position where the opponent. moves next. A backup was made to the
wialue of ecach on-move position aller a move by each side, resulting in a second on-
mowve position. The backup was toward the minimax value of & search launched from
Ll gecond on-move position. Thos, the overall effect was that of & backoap consisting
of one [l move of real evenis and then a search over possible evenis, as sugrested
by Figure 15,3, Samucl’s actual algorithm was significantly more comples than this
[or computational reasons, but Chis was the basic dea,
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actual events

hypothelical events

backup

Figure 15.3: The backup diagram for Samuels cleckers plaver.

Saannel did oot include explicit rewards, Tnstead, be lxed the weight of the mest
important feature, the piece advaniage feature, which messured the number of picces
Lhe program bad relative o bow many s opponent had, giving higher weight bo
kings, and including refinemenis so that £ was betier to trade pieces when winning
than when losing, Thus, the goad of Samoel’s program was (o improve 08 pieoe
advantage, which in checkers is highly correlated with winning,

Howeewer, Samuel’s learning method may have been missing an essential part of o
sonnd temporal-difference algorithm. Temporal-difference learning can be viewed as
a way of making a value function consistent with itsell, and this we can clearly see
in Samuel’s method, Bul also peeded is o way of Lying the value Tunction bo the Groe
value of the states. We have enforeed this via rewards and by discounting or giving a
[oeed value 1o the terminal state, Bul Sameel™s method included oo rewands aond oo
special troatment of the terminal positions of games. As Samuel himsell pointed ot
his valwe Iinetion eould bave become consistent merely by giving a constant valoe
Lo all positions. He hoped to discourage such solutions by giving his picce-advantage
Lerm a large, mooumodiliable seight, Bul although this may decrease the Dlikslihood
of finding useless evaluation functions, it does not prohibit them. For example, a
constant Tunction could sl be attained by setbing the modiliabde weighis s a8 Lo
cancel the eilfect of the ponmodifiable ooe,

Since Samuel's learning procedure was nob constrained to find vselul evaluation
[anctions, it should have been possible Tor it to become worse with expericnes,  In
fact, Samuel reporbed obsorving this during extensive self-play training sessions. To
gt the prograan improving again, Samuel bad to iotervene and 2ol the weight with
the largest absolute value back to sero. His inlerpretation was that this drastic
intervention jarred the program out of local oplima, bal apother possibility s thad
it jarred the program oot of evaluation unetions that were consistent but had lictle
L o wilh winning or losing Lhe game,

Dospite those potential probloms, Samuel’s checkers player using the generaliza-
tion learning method approached “better-than-average™ play. Fairly good amatear



154 THE ACROBOT 277

opponents characterized it ag “tricky bul beatalde”™ (Samoel, 1959), In contrast Lo
Lhee pobe-learning version, (his version was able Lo develop a good middle game B
remained weak in opening and endgame play. This program also included an ability
Lo geacch hrowgh seds of featuces Lo fiond Chose that were most uselul in forming the
value function. A later version (Samuel, 1967) included refinements in its scarch
procedure, such as alpha-beba proning, extensive use of o supervised learping mode
called “book learning,” and hierarchical lookup tables called signature tables {Gril-
[itk, 1566} to represent the value function instead of livear linction approsioation,
This version learned to play much better than the 1959 program, though still not
aloa master level, Samoel's checkers-playing progeam was widely recognized as o
significant. achievement in artificial intelligence and machine learning.

15.3 The Acrobot

Reinforoement learning has been applisd Lo a wide vacicty of phivsical control tasks
(e.g., for a colloction of robotics applications, seo Connell and Mahadevan, 198:).
O such sk is the aerebaed, a bwo-link, underactuabed obol roughly analogous (o a
gymnast swinging on a high bar (Figure 15.4). The first joint (corresponding to the
gyvmnast’s hands on Che bar) cannotl exert torgue, bl the second joint (corresponding
to the gymnast bonding at the waist) can. The system has four continuous state
variables: two joind positions and two joinl velecities, The eguations of motion are
given in Figure 15.5. This svsiem has been widely studied by conirol engineers
(o.g., Spong, 194] and machine-learning researchers (e, Dejong amnd Spong, 19694
Boone, 1997),

One objective for controlling the acrobot is to swing the tip (the “feet™ ) above the
[irst joint by an amount egual booone of the links o minioom Gme, In this task, the
torque applied at the second joint is limited {o three choices: positive torgue of &
(o] magmitude, negative ocgue of the same magnitade, or oo torgee, A reward of
—1 is given on all time steps until the goal s reached, which ends the episode. No

Goal: Raise tip above line

Torgue
applied

P

Figure 15.4: The acrobaot,
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Figure 155 The equations of motions of the simulated acrobot. A thme step of 0005 secomds
wis s o the stomlation, with actions chosen after every four time stepa. The tosguee
applicd at the second joint is denoted by € {+1, — 1,0}, There were no constraints on the
joint positions, but the angular velocities were limited to & €[4, 47] and & © [-8, %5]
The constants were my o~ g o 1 (masses of the links), Iy ~ & 1 [{lengths of links),
Fooo by o LG (lengths to conter of mass of links), Iy © J2 o 1 (moments of inertia of links),
and g~ B8 [gravity].

discounting 18 used {7y = 1). Thus, the optimal value, »,(2), of any state, s, is the
rinimiem Lime 1o reach the goal (an integer number of 2leps) starting [rom s,
Sutton (1996G) addressed the acrobot swing-up task in an on-line, modelfree con-
text. Although the acrobot was simulated, the simulator was not available for use
by the agent /eontroller in any way., The training and interaction were just as il a
real, physical acrobot had been used. Each episode began with both links of the ac-
rolecd hianging straight down and at rest, Torguees were appliced by the reinforcement
learning agent until the goal was reachod, which always happoned eventually. Then
Lhee acrobol was restored (o s initial rest position and a new episode was Degun.

The learning algorithm used was Sarea(A) with linear funetion approximation, tile
coding, amd replacing iraces as in Figuee 3.8, Wilh a small, discrete action sed,
it. is natural to use a separate set of tilings for ecach action. The next choice is of
Lhe eontinuons variables with which to represent the state, A clever designer would
protably represent the stale in terms of the apgular position apd velocity of the
center of mass and of the second link, which might make the solution simpler and
consistent with broad generalizstion. Bul sinee this was Just a test problem, & more
naive, direct representation was used in torms of the positions and velocities of the
links: H.,I'S-I'L.,Eu. anel I‘l.':g. The two angles are restricted o oa lmited cange by the
physics of the acrobot (see Figure 15.5) and the two angles are naturally restricted
o [0, 2xr]. Thus, the state space in this task s a bounded rectangular region in four
dimensions.

This leaves the question of what tlings o use, There are many pessildlities, as
discusssd in Chaptor 9. One is to use a complete grid, slicing the four-dimensional
space along all dimensions, and thus into many small four-dimensional tiles. Alterna-
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Lively, one eould slice along only one of the dimensions, making by perplanar siripes,
In this case one has o pick which dimension to slice along.  And of course in all
cases one has bo pick the width of the slices, the number of tilings of each kind, and,
il there are multiple tilings, bow o ol them, Ooee conld also slioe along pairs or
triplets of dimensions to get other tilings. For example, if one expected the vwlocitios
of the two links 1o ioleract strongly in Cheir effect on value, then one might make
many Lilings that sliced along both of these dimensions. If one thought the region
arouml sero velosily was particularly eritical, then the sliees could be more closely
apaced there.

Sution wsed tilings that sheed in a variely of simple ways, Each of the four di-
mensions was divided into six equal intervals. A seventh interval was added to the
aogular velocities so that Glings could e ofllzed by a raodomn fractien of an inder-
val in all dimensions (see Chapler 9, subsection “Tile Coding™ ). OF the total of 458
Lilimgs, 12 sliced along all four dimensions as discussed above, dividing the space inbo
G T whx T = 1764 tiles each, Anoiher 12 tilings sliced along theee dimensions (3
randomly offset tilings each for each of the 4 sets of three dimensions), and another
12 slieed along two dimensions (2 tlngs Tor each of the 6 se01s of two dimensions,
Finally, a set of 12 tilings depended each on only one dimension (3 tilings for cach
of the 4 dimensions), This resulted in a total of approximately 25, 000 Liles Tor each
action. This number 5 small enough that hashing was not necessary, All tilings were
offzet Ty o random fraction of an interval o all relevant dimensions,

The remaining parameters of the learning algorithm wore a0 = 0.2/48, A = 0.4,
€ = (0, and & = (. The nse of a greedy policy (£ = ) seemed preferable on this
Lask because long sequences of correct actions are necded Lo do well, One exploralory
action could spoil a whole sequence of good actions. Exploration was ensured instead
by starting the action values oplimistically, ab the low value of 0, As diseussed in

1000
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Figure 15.6: Learning curves for SarsalA) on the sorobot task,
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Figure 15.7: A tvpical learned behavior of the acrobot. Each group B a series of comsecutbve
positions, the thicker line being the first, TUhe arrow indicates the torgue applied at the second
joint,

Section 2,7 and Example 9.2, this makes the agent continually disappointes] with
whatever rewards it initially experiences, driving it o keep irying new things.

Figure 156 shows learning curves for the acrobol task and the learning algoritlhm
described above. Mote from the single-run curve that single opisodes wore sometimeos
extremely long, On these episodes, the acrobol was usually spinning repeatedly
at the second joint while the first joint changed only slightly from vertical down.
Although this often happened for many time steps, it always evenbually eoded as the
action values were driven lower. All runs ended with an efficient policy for solving
the problem, wsually lasting about 75 steps. A typical fnal solution is shown in
Figure 157, First the acrobaol pumps back and forth several Gimes svimmetcically,
with the second link always down. Then, onee enough energy has been added to the
gvalem, the second link is swing upright amd stabbed to the goal heighl.

15.4 Elevator Dispatching

Whailing [or an clevalor s a gilustion with which we are all [niliar, We press
a button and then wail for an elevator to arrive traveling in the right direction.
We may have toowail a long Gimee 0T there are oo many passengers o nob enongh
elevators. Just how long we wail depends on the dispatching stratesy the elevators
use Lo deeide where o go, For example, i passengers on several foors have reguesied
pickups, which should be served first? I there are no pickup requesis, how should
Ll elevators distribote themselves o awadl the pext reqguest? Elevador dispatching
i a goml example of a stochastic optimal control problem of economic importance
that is too large to solve by classical technigues such as dynamic programming.
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Crives amd Barto (1996; Crites, 1996) stodied the application of reinforcement
lesrning bechnigues to the fowr-elevador, ten-lloor system shown in Figure 158, Along
Lhe right-hand side are pickup requests and an indication of how long each has heen
waiting, Each elevabor has a position, direction, and spesd, plus a sel of butions
Lo indicate where passengers want to get off. Boughly quantizing the continuows
variables, Crites and Barto estimated that the system has over 1092 states, This large
atate sob rules out classical dynamic programming methods such as value iteration.
Even il one state could be backed up every microsecond i would still reguire over
LM vears to complete just one sweep through the state space.

In practice, modern elevator dispatchers are desigood heoaristically and evalusted
on simulated buildings. The simulators are qguite sophisticated and detailed. The
physics of each elevalor car s maosdeled in coptioeous Gme with continuows stale
variahles, Passenger arrivals are mawleled as discrele, stochastic evenls, with arrival
rates varying frequently over the course of & simulated day. Not surprisingly, the
Limmes of greatest teadlic and greatest challenge (o the dispatching algorithm are the
morning and evening rush hours. Dispatchers are generally designed primarily for
Lheesie aliflicult periods,

The performance of elevator dispatchers is measured in several different wavs, all
wilh respect Looan average passenger enlering the system, The average smalong Lime 18
how long the passenger waits before geiting on an elevator, and the average sysiem
Liee b5 how long the passenger wails belore being droppexd off al the destination
[loor. Another frequently encountered statistic is the percentage of passengers whose
waiting time excecds G0 secconds. The objective that Crites and Barto focused on
i5 the aversge sgeared wailing Hme, This objective is commonly used Doecanse it
tends Lo keep the waiting times low while also encouraging fairness in serving all the
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Figure 15.8:; Four clovators in s ten-story building.
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[T TS,

Crites and Barto applied a vorsion of one-step Q-learning augmented in several
ways Lo Lake advantage of special features of the problem. The most important of
Lhese concermws] the formulation of the actions. First, cach elevator made s own
decisions independently of the others. Second, a number of constrainis were placed
on Lhe decizions. Ao elevalor carrying passengers eould pob pass by o loor i any
of its passengers wanted to get off there, nor could it reverse direction until all of
ils passengers wanbing Lo go in s cocrent direction had reached their loors, In
addition, a car was nol allowed to stop at a loor unless someone wanted to got
on or ol there, and i could ol stop (o pick up passengers al a loor 0 another
elevator was already stopped there, Finally, given a choice between moving up or
down, the elevator was consteained alwavs oo move up [otherwise eveniog rosh howr
Lrallis would tend io push all the elevadors down o the lobhy), These last (hree
constraints wore explicitly included to provide some prior knowledge and make the
protdem easier, The net vesult of all these constrainis was that each elevator hud Lo
make few and simple decisions. The only decision that had to be made was whether
or i Lo slop al a loor that was being approasched and that had passengers wailing
Lix be picked up. At all other times, no choices needed 1o be made.

That each elevalor made chodees only infregquently permitied a secoml simplilica-
tion of the problem. As [ar as the learning agent was concerned, the system made
discrete jumps [om ope Lme al which i0 had o make a decizion to the pext, When
a continuous-Ltime decision problem s treated as a discrete-time system in this way
it is known as a semi-Maerkov decision procoss. To a lange extent, such procosses can
b trepded just like any other Markov decision process Ty taking the reward on each
discrete transition as the integral of the reward over the corresponding continwous-
Limme imberval, The notion of etuarn generalizes naturally Trom s discounted som of
future rowards to a discounted dniegral of future rowards:

o o
Gi=Y R becomes  Gi= [ e PRy,

P il
whers By on the lelt s the usual immediate reward in discrebe Gime and 8 on the
cight is the instaniancons reward al contiouons time © 4+ 7. In the elevator problem
the continwous-time reward is the negative of the sum of the squared wailing times
of all wailing passengers, The parameter 7 > 0 plays a role similar o that of the
discount-rate parameter v € |0, 1).

The basic wles of the extension of Q-learning Lo semi-Markov decision problems
can now bo explained. Suppose the systom is in state 5 and takes action A at time £,
and then the pext decision is required ab time f2 in state 5%, Aler this diserete-cvent
transition, the semi-Markov O-learning backup for a tabular actiop-value lunction,
02, wonld bes

iz .
(8, A) + (S, Al +a U e~ BTt B dr 4 e Bl min (8, a) — OIS, 4)| -
i Le]

1

MNote how e #1210 gots as a variable discount factor that depends on the amount



154, ELEVATOR DISPATCHING 283

of time between events, This method is due bo Beadike aod Dol { 19495),

One complication is that the roward as defined — the nogative sum of the squared
waiting times —is pol something that would pormally be known while an actual
elevator was running, This is because in o real clevatlor system cne does nol know
how many people are wailing at a floor, only how long it bas been sinee the button
requesting a pickap on Chat [oor was pressed. O course this information s known
in a simulator, and Crites and DBarto used it to obtain their best resulis. They
also exprerimented with another techobgee that used only information that would
be known in an on-line learning situation with a real set of elovators. In this case
one can wse how long sinee each button bas been pushed together with an estimate
of the arrival rate to compute an erpected summed squared waiting time for ecach
floor, Using this in the reward measure proved nearly as cillective as using the actoal
summed souares] wadling time,

For lunction approximation, a nonlinear neural network trained by backpropaga-
Lion was used Lo represent the action=value Tunction, Crites and Baro experimented
with a wide varicty of wavs of representing states 1o the network. After much explo-
ration, their best resulis were obiained using petworks with 47 inpat anits, 20 hidden
units, and two output units, one for each action. The way the state was encoded by
Lhee it units was [ound to be eritical to the ellectiveness of the learning. The 47
input units were as follows:

# 15 units: Twao units encoded information about each of the nine hall butions
for down pickup reguests, A real-valued unit eoncoded Che elapsed Gime 05 (he
buiton had been pushed, and a binary unit was on il the button had ot been
pruashied,

o 16 units; A unit for each possible location and direction for the car whose
decizion was required, Exactly ope of these units was on al any given Lme,

e 10 units; The Iocation of the other elevators superimposed over the 10 doores,
Each clevator had a “footprint” that depended on its direction and spoed. For
cxpmple, a stoppasl elevalor cased activation ooly on the unil corresponding
Lo its current [oor, but a moving clevator cansed activation on several units
correspomling to the loors i was approaching, with the highest activations on
the closest floors. No information was provided about which one of the other
cars was ab a particular location.

# 1 unit: This unit was on il the clevator whose decision was roguired was at the
highest [oor with & passenger walling,

# | unit: This unit was on il the elevator whose decision was reguired was at the
flesor with the passenger whoe had been wailing ler the longest amount of Gme,

o 1 umit; Bias unit was always on.

Two architoctures woro used. Im RL1, each elovator was given ite own action-
value lunction and its own pewral network., In BL2, there was only one network
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and one action-value petion, with the experienees of all Tour elevators contrilling
Lo lesrning in the one pelwork,  In bolh cases, each clevalor made s decisions
independently of the other elevators, but shared a single reward signal with them.
This introduced additional stochasticily as [ar as each clevalor was comcerned Tecanse
its reward depended in part on the actions of the other elevators, which it could
ol eantrol, In the architecture in which cach elevator had iis own action-value
function, it was possible for different elevators to learn different, specialized strategios
(although in et they tended o learn Che same steategyv), On the other haod,
the architecture with a common action-value funetion could learn faster because it
lesrped simulbaneously [rom the experiences of all elevabors, Tradning tme was an
issne here, even though the svstem was trained in simulation. The reinforeement
learning methods were trained for about four days of computer time on a 1K) mips
processer [eorresponding Lo abwoul G000 bours of simulated tme), While this s a
considerable amount of computation, it is negligible compared with what would be
requiced Ty any conventional dynamic programming algorithm,

The networks were frained by simulating a greal many evening rush hours while
making dispatching decisions using the developing, learned action-value inetions,
Crites and Barto used the Gibbs softmax proceduro to select actions as doserilsed in
Section 2.3, reducing the “temperature” gradually over iradniog, A temperatare of
zero was used during test runs on which the performance of the learned dispatchers
wis assessed.

Figure 15.9 shows the performance of several dispatchers during a simulated evening
rish howr, what researchers call doum-peak traffic. The dispatcheors include methods
similar to those commonly used in the industey, a varely of hearistie methods, so-
phisticated research algorithms that repeatedly run complex optimization algorithms
op-line {Bao et al, 199), and dispatchers learned Ty using the two reinforeement
learning architectures. By all of the performance measures, the reinforooment learn-
ing dispatchers compare [vorably with the others, Although the opiimal policy Tor
this problem is unknown, and the state of the art is difficult 1o pin down becanse de-
Ladls of commercial dispatching strategics are proprictary, these learned dispatchers
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Figure 159 Comparison of elevator dispatchers. The SECTOR dispatcher = similar to what
5 wsed o many actual elevator gystems, The RLL and RL2 dispatcless were constrcted
thirough relnforcement learning.
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appeared Lo perform very well,

15.5 Dynamic Channel Allocation

An imporiant problem in the operation of a cellular telephone system 8 how Lo
elliciently use the available bandwidih to provide good serviee bo as many cusiomers
as possible. This problem is becoming critical with the rapid growth in the use of
cellular telephones, Here we describe a study die b0 Singh and Bertzekas (1997) in
which they applicd reinforcement. learning to this problem.

Blobile telephone systems take advantage of the Tact that a communication channel
a band of requencies —can be used simultancously by many callers i these callers
e spaced physically Tar epough apact thad their calls do pob inferfere with each an-
other. The minimum distance at which there is no interference is called the chanmel
retese constrod, Ina cellular telephone system, the service arca s divided inbo a
nimber of regions called cells. In each cell is a base station that handles all the calls
e within the cell, The tolal available bapdwidih is divided permanently ot
a mumber of channels. Channels must then be allocated to colls and 1o calls made
within oells without violating the channel reuse constraint. Thore are a groat many
ways 1o do this, some of which are better than others o terms of how reliably they
make channels available (0 new calls, or to calls that are “handed off™ from one cell
Lo another as the caller crosses a cell boundary, 1T no channel s available Tor a new
or a handed-off call, tho eall is lost, or Mocked. Singh and Borisckas considored the
protlem of allecating channels so thal the pumber of blocked calls is minimized.,

A simple example provides some intuition about the neture of the problom. Tmag-
ine A situation with threee cells sharing iwo channels, The three cells are arranged
in a line where no two adjacent cells can wse the same channel withoul violating the
chanmel reuse constrainl, ITthe left eell i3 serving a call on channel 1 while the righi
cell s serving ancther call on channel 2, a8 in the lelt disgram below, then any new
call arriving in the middle cell must be blocked.

OGORNOOCO

Obwiously, it would e better for both the lell and the right cells 1o use channel 1
for their calls. Then a new call in the middle cell could be assigned channel 2, as in
Chee rightt dingram, without violating the channel rease constrainl, Such interact ions
and possible optimizations are typical of the channel assignment problem. In largor
and more realistic cases with many oells, channels, and calls, and upcertainty abogi
when and where new calls will arrive or existing calls will have 1o be handed off, the
prollem of allocating channels o minimize blocking can become extremely complex,

The simplest approach is to permanently assign channels to cells in such a way
Lhat the chanmnel rease constradnt can never be violated even i all channels of all cells
are wsod simultaneously. This is callod a fived assignment mothod. In a dynamic
asgigrmend method, in contrast, all chanpels are potentially available to all cells and
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are pssigned (o cells dyvoamically as calls accive, I this s dope cight, 6 can take
advantage of temporary changes in the spatial and temporal disteilation of calls in
order Lo serve more uscrs. For example, when calls are concentrated in a low cells,
Lhese cells ean be assigned more chanoels withoul increasing the blocking rabe i the
lightly used cells.

The channel assignment problem can be oroolated sz a semi-Markov decision
process much as the elevator dispatching problem was in the previous seclion. A
abate in the semi-MDP formolation has two components, The lirst is the conligura-
tion of the ontire cellular system that gives for each cell the wsage state (oceupied
or unoceupied ) of each chanped for that cell, A tvpical cellular system with 49 cells
and T channels has a staggering 7T0% configpurations, ruling oot the use of conven-
Lional dypamic programming methods, The other state component s an indicator
of what kind of evenl camsed o state transition: arcival, depactare, or handofl, This
state component determines what kinds of actions are possible. When a call arrives,
Lhe possilde actions are booassign i a [ree channel or o ock 6 il no channels are
available. When a call departs, that is, when a caller bangs up, the system is allowed
Lo reassign Cthe channels inowuse in thial cell in an attempt o create a bettor configi-
ration. At time ¢ the immediate reward, 8y, is the number of calls taking place at
Lhiat time, and the retorn is

m =
G - f TRy dr,
il

where 3 = (1 playvs a role similar to that of the discount-rate parameter . Maximizing
thi expoctation of this return is the same as minimizing the expected {discountod)
o of calls Blocked over an infinite horizon.

This is ancther problem groatly simplified if treated in terms of allorstates [Sec-
Lion 6.6}, For each stale and action, the immedigde resull iz 8 new configuration, an
afterstate. A value lnction is learned over just these configurations. To select among
Lhve possible actions, the resulting configuration was determined amd evaluated, The
action was then selected that would lead to the configuration of highest estimated
vialue, For exammple, when a pew call arrived al g cell, it could be assigned 1o any
of the free channels, if there were any: otherwise, it had to be blocked. The new
conliguration thal would resull Teom each assignment was easy Lo compube Tsecaise
it was always a simple deterministic consegquence of the assigonment. When a call
terminated, the newly released channel became available for reassigning to any of
Lhee ongoing calls. In this case, the actions of reassigning each ongoing call in the eell
to the nowly releasod channel wore considered. An action was then solected leading
Lor the configuration with the highest cstimated value,

Linear lunction approximation was used for the value inction: the estimatod value
of a configuration was a weighted sum of eatures, Conliguralions were fepresented
by two sels of features: an availability feature for each cell and a packing feature for
each eell-channel pair. For aony configuration, the avallability feature or a oell gave
the mumber of additional ealls it could accopt without conflict if the rost of the colls
were [roeen in the current conliguration. For any given conliguration, the packing
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[eatiee for a cell channe] pair gave Che numbser of times that channe] was being used
in that configuration within a four-cell radios of that cell. All of these features were
normalized to lie between —1 and 1. A semi-Markov version of linear TD{1) was
used Lo update the weighis,

Singh and Beortsckas compared three channe] allocation methods using a simula-
Lo of a 7= T cellular array with 70 channels, The diannel reuse consirainl was
that calls had to be 3 cells apart 1o be allowed to use the same channel. Calls ar-
rivedd ab cells randomly according to Poissen distribations possildy having different
means for different cells, and call durations were determinesd randomly by an expo-
nentiad distribuation with a mean of theee minotes, The methods compared were 5
fiwed assignment method (FA), a dynamic allocation method called “horrowing with
dircctiooal channel locking™ (BIMCL), and the reinforcement learning method (RL),
BICL {Ehang and Ym, F5959) was the best dynamic channe] allocation methosd they
found in the literature. € s a beuristic method that assigns channels to cells as in
FA, bul channels can be borrowed [rom neighboring cells when peeded, T orders (he
channels in cach cell and wuses this ordering to determine which channels to borrow
and how calls are dynamically reassigned channels within a cell,

Figure 15.10 shows the blocking probahbilities of these methods for mean arrival
rates of 150, 200, and 350 callshour as well as for a case in which dilferent eells
had different mean arrival rates. The reinforcement. learning method learned on-line.
The data shown are for its asymplobic performance, ol in lel learning was capid,
The RL method blocked calls less frequently than did the other methods for all
arrival rates and soon after starting to learn. Note that the difforences between the
methowds decreased as the call arcival rate increased, This is to be expectod becaise
as the system gels saturated with calls there are fewer opportunities for & dynamic
allocation method (o set up Bvorable usage patterns, In practice, however, Qb s
the porformance of the unsaturated system that is most important. For marketing
reasons, cellular telephone svslems are built with encugh capacity that more than
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Figure 15.10: Performance of FA, BDOCL, and RL channel allocation methods for different
e call arrival rates.
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10% Blocking is rare,

MNic and Haykin [156G) also studied the application of reinforecment learning to
dynamic channel allocation. They ormulated the problem somewhat differently
than Singh and Bertsckas did, Iostead of Grying (o minimize the probaldlity of
blocking a call direcily, their svsiem tried to minimize a more indirect measure of
avalem performance, Cosl owas assigned oo patteros of chanoe] wse depending on
the distances between calls using the same channels. Patterns in which channels
were being used by multiple calls that were close Lo each other were Twvored over
patterns in which channel-sharing calls were far apart. Nie and Havkin compared
Lheir svstem with a method called MAXAVAIL [(Sivarajan, MeEliece, and Ketclom,
1), considered to be one of the best dynamic channel allocation methods. For
each new call, it selects the channe] that maximizes the total pumber of channels
avadlabile in the entive gystem, Nie and Haykin showed that the Blocking probalslity
achieved by their einforcoment learning system was closely comparable (o that of
MAXAVAIL under a varicty of conditions in a 49-cell, T0-channel simulation, A key
point, however, 15 that the allocation policy produced by reinforcement. learning can
b implemented on-line much more eiliciently than MAXAVAIL, which requires so
meh on-line computation that it is not feasible for large systems.

The stiwdies we described in this section are 8o recent Chat the many questions Lhey
raise have not yet been answered. We can see, though, that there can be different
ways Lo apply reinforoement learping (o the spoe real-world problem. In the near
future, we expect to see many refinements of these applications, as well as many new
applications of reinforcoment. learning to probloms arising in communication systoms.

15.6 Job-Shop Scheduling

Many jobs in industry and elsewhere require completing a collection of tasks while
salialying temporal and resource constraints. Temporal consteaints sy thatl some
tasks have Lo be finished before others can be started; resource constrainis sav that
bwir basks reguiring the same resowrce cannol be dooe simolbaneously {eg,, the same
machine cannod. do two tasks at onee). The objective is to create a schedule specifying
when each task 15 bo begin and what resources it will use that satizlies all the con-
straints while taking as litile overall Lime as possible. This is the job-shop schedoling
problem. In its general form, it is NP-complete, meaning that there is probably no
ellicient procedure for exactly honding shortest schodules for arbitrary instanoes of the
problem. Job-shop scheduling is usnally done using houristic algorithms that take
advantage of special properties of ecach specilic instanee,

Zhang and Dietterich (1995, 19096; Zhang, 1996) were motivated to apply reinforee-
il leprning to jolb-shop scheduling becanse the design of domain-specific, hearistic
algorithms can be expensive and time-consuming. Their goal was to show how re-
inforeement learming can e used o learn how bo guickly [nd constraint-salisfing
schodules of short duration in specific domains, thereby reducing the amount of hand
engineering required. They addressed the NASA space shutile payload processing
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protlem (S5PT), which requires seheduling the tasks required Tor installation and
Lesting of shuattle cargo bay payloads, An S5PP typically requives schedaling for two
Ly six shutile missions, cach reguiring between 34 and 164 fasks. An example of a
Lask is MISSION-SEQUEMNCE-TEST, which has a duration of T200 tlme units and
requires the following resources: iwo quality control officers, two technicians, one
ATE, one SPCDE, and one HITS, Seme resources are divided into pools, and if s
task needs more than one resource of a specilic tvpe, the resources must belong Lo
Lhee zamme pood, and the pool bas (o be the right one, For example, i s task needs two
quality control oflicers, they both bave to be in the pool of quality conirol officers
working cn the same shiflt st the rght site, T §s oot (oo baed to lind s conflict-fres
schedule for a job, one that meets all the temporal and resource constrainta, bt the
objective iz to find a conflict-free schedule with the shortest possible total duration,
which i much more dillieult,

How can vou do this using reinforeement learning? Job-shop scheduling is usually
[ormulated as a search in Che space of schedules, whal iz called a discrele, or combina-
torial, optimization problem. A tvpical solution method would sequentially generate
schediles, altempling o mprove each over s pesdecessor in terms of consteain
violations and duration (a hill-climbing, or local search, method). You could think
of this as & pooassociabive einforecment leprping problem of the type we discussed
in Chapter 2 with a very large number of possible actions: all the possible schedales!
But aside from the problem of havimg so many actions, any solution obbained this
way would just be a single schedule for a single job instance. In contrast, what
Zhang and Dictierich wanted their learning system to end up with was a policy that
could quickly lmd good schedules [or any 55T, They wanbed it to learn a skill for
job-shop scheduling in this specific domain.

For clues about how (o do this, they looked 1o an existing oplimization appreoach
to S5, in fact, the one actually in use by NASA at the time of their rescarch:
Lhee Dlerative repadr method deseloped by Zweben and Daon (1994), The starting
point for the search is a critical path schedule, a schedule that meets the temporal
constraints but ignores the resooree consteaints, This schedule can be constructed
efficiently by scheduling each task prior to lannch as late as the temporal constrainks
permit, and each task afler landing as early a8 these constrainis permit,. Resouree
poads are assigned randomly, Two tvpes of operators ave used toomaodily schedales,
They can be applied Lo any task that violates a resource constraint. A BEASSIGHN-
oo operator changes the pool assigned o one of Lthe task’s resources, This bype
of operator applies only i it can reassign a pool so that the resource requirement is
aatislied, A Move operator moves a task bo the licst eaclier or later Gme al which
its resouros noemds can be satisfied and uses the critical path method to reschedule
all of the task™s temporal dependents,

Al each step of the iterative ropair search, one operator is applied o the current
schedule, selected according to Che Tollowing rules, The earliest task with a resourese
constraint violation is found, and a REASRIGH-POOL operator is applied to this Lask if
possilde, 16 more than one applics, that s, i several different pool reassignments ane
possible, one 15 selecied al random. I oo REassiGN-TPooL operator applies, then a
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Move operator is selected al random based on s beuristic thal prefers shorl-distanee
maowes of Lasks having few temporal dependents and whose resource requircments
are close bo the task’s overallocation. After an operator is applied, the numbor of
consteainl vielations of the resulting schedole is determinesd, A simolated aooealing
procedure is used decide whether Lo accept or reject this new schedule, [F AV denotes
L puumber of constraint viclations removed by the repadr, then the oew schedole
is accepted with probability exp(—AV/T), where T 15 the current computational
Lemperature that s gradually decreasesd Chiroughout the search, 15 accepled, the new
schedule becomes the current schedule for the next Heration; otherwise, the algorithm
albempts to repair Che old schesdule again, which will vsually prodoce different resalis
due to the random decisions involved. Search stops when all constrainis arc satisfied.
Short schedules are obtained by running the algorithm several times and selecting
Lhee shortest of the resulting condlict-Tree achedules,

Zhang and Dictterich treated entire schedules as states in the sense of reinforeement
lesrning,  The actions were the applicable Reassiar-Fool apd MOovEe operators,
typically numbering about. 20. The problem was treated as episodic, cach episode
starting with the spme eritical path schesdule that the Merative repair algoritlm
would start with and ending when a schedule was found that did not violate any
copsteainl, The initial stabe—a critical padh schedule s denoted S The rewards
were designed Lo promote the quick construction of conflict-free schedules of short
duration, The system received a small pegative reward [(—0.001) on each step thad
resulted in a schedule that still violated a constraint. This encouraged the agent
to find conflict-free schedules quickly, that is, with a small sumber of repairs Lo
Sn. Encowraging the system to find short schedules is more diflicult becaase whad
it means for a schedule to be short dopends on the spocific S5PP instance. The
shortest schedule for a dillicult instance, one with a lob of tasks and copstraints, will
be longer than the shortest schedule for a simpler instance. Zhang and Dietterich
devisesd a lormula for a resowree dilation foctor (RDF), intended to be an instamnoe-
independent. measure of a schedule's duration. To account for an instance’s inlrinsic
difficulty, the formula makes use of & measure of the resource overallocation of 5.
Sinece longer schedules tend to produce larger RDFz, the negative of the RDF of the
linal condlict-lfree schedule was used as a reward ad Che end of each episode, Witk
Lhig reward [unction, if it takes N repadrs starting from s schedale s Lo obitain a lnal
conflict-free schedule, 5¢, the return from & is —RODF(Sp) — 000N — 1)

This reward [unction was desigoed Lo bry o make a aystem learn (o satisly the
two goals of finding conflici-free schedules of short duration and finding conflici-
[ree schedules guickly, But the reinforcement Iearning system really has only one
poal - maximizing expocted returnso the particular reward values determine how
a learning svsiem will tend o teade off (hese wo goals,  Setling the immesdiste
reward to the small value of —{LHI1 means that the learning system will regard one
repadr, one step in the scheduling process, as being worth 00000 units of RDF, 5o, for
example, if from some schedule it is possible to produce a conflict-free schedule with
one repair or with two, an optimal policy will take extra repair only if it promises &
redwction in final RDF of more than 0,001,
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Zhang and Dictierich used TIMA) G0 learn the value lunetion. Punetion appeoxi-
mation was by a multilayer newral network traionesd by backpropagating TTY crrors,
Actions were selectod by an s-greedy policy, with & decressing during learning, One-
step lookahead search was used Lo liod the greedy action. Their koowledge of (he
problem made it easy o predict the schedules that would result from each repair op-
eration. They experimented with a number of medifications (o this basic procedone
Lo improve its performance. One was to use the TD(A) algorithm ckwand after each
epismle, with the eligibility trace cxtending Lo Dntuee rpther than b past states, Their
resulis suggested that this was more accurate and efficient than foraard learning. In
updating the weights of the network, they also sometimes pecformed multiple weight
updates when the TD error was large. This is apparently equivalent to dynamically
varying the step-size parameter in an error-dependent way during learning,.

They alzo iried an ecperienee replay techoigue doe o Lin (1992), AL any paoin
in learning, the agent remembered the best episode up 1o that point. After every
[ epigodes, iU replayed (his remembered episode, learping Irom 0 as i 0L were o
new episode. At the start of training, they similarly allowed the system 1o learn
[rom episodes generpied by a good scheduler, apd these eould also e replagyed Tater
in learning. To make the lookahead search faster for large-scale problems, which
Ly pically had o beanching fetor of abowt 20, they wsed aovaciaot Chey called ravdom
sample greedy search that estimated the gresdy action by considering only random
samples of actions, increasing the sample stqe until a preset confidenee was reached
that the greedy action of the sample was the true greedy action. Finally, having
discovered that learning could be slowed considerably by excessive looping in the
scheduling process, Lhey made their system explicitly check Tor Ioops and alter action
soloctions whon a loop was detected. Although all of these technigues could improve
Lhe elliciency of learning, it s not clear bow crucial all of them were lor the success
of the system.

Zhang and Dietterich experimented with two diflferent petwork architectures, In
the first version of their system, each schedule was represented using a sel of 200
handerafied leatures. To define these features, they studied small scheduling prol-
lemns 1o find features that had some ability to prodict RDF. For oxamplo, experienee
with small problems showesd that only four of the resouree pools tended Lo cause al-
location problems, The mean and standand deviation of each of these pools”™ unmised
portions over the entire schedule were computed, resulting in 10 real-valued features.
Two other features were the EDF of the current sehedule and the percentage of iis
duration during which it violated resource constrainis. The petwork had 200 input
wnits, one for cach feature, a hidden Jayer of 40 sigmoidal anits, and an cobput Layer
of 8 sigmoidal units. The output units coded the value of a schedule wing a code
in which, roughly, the location of the activity peak over the 8 units represented the
value. Using the appropriate TIY error, the network weights were updated using error
backpropagation, with the moltiple weight-update technigue mentioned alove,

The second version of the system [ Zhang and Dietterich, 1996) usod a more com-
plicated time-delay peural petwork (TDNN ) borrowed Troan the leld of speech recog-
nition {Lang, Waibel, and Hinton, 1990, This version divided each schedole into
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a sequence of Mocks [maximal time intervalz during which asks and resouree as-
signments did pod change] and represented each Tock by a sed of fealures similar bo
those wsed in the first program. [t then scanned a set of “kernel” networks across
Lhe Mocks 1o create a sel of more absiract features, Sinee different scheduales uad
different numbers of blocks, another laver averaged these abstract features over each
Lhird of the blecks, Then a linal layver of 8 sigmoidal outpol units represented (e
schedule's value using the same code as in the first version of the system. In all, this
nebwork bad 1123 adjusiable weights,

A set of 100 artificial scheduling problems was constroeted and divided into subsets
used for trainimg, determining when o slop training (a validation set), and [inal
testing. During training they tested the system on the wvalidation set alter every
L) episodes and stopped training when performance on Che validation sel stopped
changing, which generally took abwut 10O episodes, They irained networks with
difforent values of A (0.2 and 0.7), with throe difforent training sets, and they saved
both thee linal set of weights and the set of weights producing the best performanes on
the validation set. Counting each set of weighis as a different network, this produced
12 networks, cach of which eorresponded Lo a dillerent scheduling algorithm,

Figure 15.11 shows how the mean performance of the 12 TDNN petworks [ Labeled
GI2TDN) compared with the performances of two versions of Sweben and Daun’s
iterative repair algorithm, one using the number of constraint violations as the func-
Lhoan Lo b mimimdzed by gimulabed annealing (TR-V) amnd the other using the RDF
measure [IR-BDF). The ligure also shows the performance of the first version of their
avatem that did not use & TDNMN (G12N]. The mean BDE of the best schedule found
by repeatedly runming an algorithm s plotted against the todal number of schedole
repairs (using a log scale). These results show that the learning system prodoeed
acheduling algorithms that peeded many fewer repaics bo lod conflict-Teee schedoles
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of the same guality as those found by the iterative repair algorithms. Figure 15,12
compares the computer time required by each scheduling algorithm to find schedules
of variows RIDFz, According to this measure of performance, the best (rade-oll Te-
tween computer time and schedule quality is produced by the pon-TDNN algorithm
(G12N), The TDNN algorithm (GL2TDN} sullered duwe 1o the time i ook Lo apply
the kernel-seanning process, but Zhang and Dietterich point out that there are many
ways 1o make 6 ran [aster,

These resulis do not unequivocally establish the utility of einforcoment learning
for job-shop scheduling or for other diflicult search problems,. Bul they do suggesi
that it is possible to use reinforcement. learning methods to learn how (o improve
Lhe efliciency of search. Zhang and Dietierich’s job-shop schoeduling system is the
first sucoessiul instance of which we are aware in which reinforcement. learning was
applied in plen-gpace, that is, in which states are complete plans [job-shop schedules
in this case], and actions are plan modilications, This i & more absteact application
of reinforcoment learning than we are used to thinking about. Note that in this ap-
plication the syatem learmned ol just Lo ellicient]ly create one good schedule, a skill
that would not be particularly wseful; it learned how to quickly find good schedules
[ o class of related schesluling problems, T s elear that Ehang aml Dhietierich went
throngh a lot of trial-and-error learning of their own in developing this example. But
remember thal this was a groundbreaking exploration of a new aspect of ceinforee-
ment learning. We expect that fubwre applications of this kind and complexity will
become more mouline a8 expericnoe accimulates,
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Chapter 16

Frontiers

In this book we have fried fo presend ceinforcement leprning ool as g collection of
individual methods, but as a coherent set, of ideas cutting across methods, Each idea
can b viewed as a dimension along which methods vary, The sel of such dimensions
apans a large space of possille methods, By exploring this space al (he level of
dimensions we hope (o oblain the broadest and most lasting understanding. In this
chapter we use the concepl of dimensions in method space o recapitulate the view
of reinforcemont. learning we bave doveloped in this book and to identify some of the
e imporiant gaps in o coverage of the eld,

16.1 The Unified View

All of the reinforcement. learning methods we have explored in this book have three
ke idens o common, Fiest, the objective of all of them is the estimation of valoe
functions. Second, all operate by backing up values along actusl or possible state tra-
jectories, Thivd, all Tollow the general steategy of generalized policy iteration (GPL,
meaning that they maintain an approximate value lunction and an approsimate pol-
iy, amd they continually try fo oprove cach on Che Bagis of Che other, These (hres
ideas that the methods have in common cirenmscribe the subject covered in this
bosok. We suggest that valwe hinctions, backups, and GPI are powerlul organising
principles poltentially relevant to any masdel of intelligenee,

Two of the most important dimensions along which the methods vary are shown in
Figure 16,1, These dimensions bave (o do owith the kiond of backup wsed to mprove
the value function. The horizoptal dimension is whether they are sample backups
(base] on a sample trajectory ] or ull backups (based on a distribution of possille
trajectories). Full backups of course reguire a model, whereas sample backops can be
dope cither with or without a mode] {apciher dimension of variation). The verbical
dimension corresponds o the depth of backups, that is, to the degree of boolstrap-
ping. Al three of the four eorpers of e space are the three primary methods for
ecatimating values: DP, TD, and Monte Carlo. Along the left edge of the space are
the sample-backup methods, ranging [rom one-step TD backups to ull-return Monte

205
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Figure 16.1: A slice of the space of reinforcement learning methods.

Carlo backups. Between these is a spectrum including methods based on n-step back-
ups and mixtures of n-step backups such as the A-backups implemented by eligibility
traces.

DP methods are shown in the extreme upper-right corner of the space because
they involve one-step full backups. The lower-right corner is the extreme case of full
backups so deep that they run all the way to terminal states (or, in a continuing task,
until discounting has reduced the contribution of any further rewards to a negligible
level). This is the case of exhaustive search. Intermediate methods along this di-
mension include heuristic search and related methods that search and backup up to
a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix [ull and sample
backups, as well as the possibility of methods that mix samples and distributions
within a single backup. The interior of the square is filled in to represent the space
of all such intermediate methods.

A third important dimension is that of function approximation. Function approxi-
mation can be viewed as an orthogonal spectrum of possibilities ranging from tabular
methods at one extreme through state aggregation, a variety of linear methods, and
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Lhen a diverse sel of ponlinesr methods, This third dimension might Tee visualized
a8 perpemndicular to the plane of the page in Figuee 16,1,

Anociher dimension that we heavily emphasized in this book is the binary distine-
tion between on-policy and of-policy methods. In the former case, the agent learns
the wvalue function for the policy it is currently following, whereas in the latter case
it learns the wadue oetion for the policy that 0 currently thinks is best, These
two policies are often different because of the peed to explore. The interaction be-
tween this dimension and the boctstrapping and Tunction approximation dimension
discusssd in Chapler 9 illusirates the advantages of analyzing the space of methods
in terms of dimensions, Even though this did iovolve an interaction etween (hres
dimensions, many other dimensions were found to be irrelevant, greatly simplifving
Lhe: analysis and increasing its signilicance,

In auddition to the Tour dimepsions just discossed, we bave deptilied a oomber of
others thronghout the book:

Definition of return Is the task episodic or continuing, discounted o aodisconnted !

Action values vs, state values vs, afterstate values What kind of values should
b estimabed? IT only stade values are cstimaded, then either a model or a sep-
arpde policy (as in actor-critic methods) is reguired for action selection.

Action selection/exploration How are actions selected to ensure a suitable trade-
ol Tt exploration and exploitation? We have considered only the simplesi
ways to do this: e-greedy and softmax action selection, and optimistic initial-
iation of valiws,

Svnchronous va, azvnchronous Are the backups [or all stales performes] simol-
taneously or one by one in some order?

Replacing v2, accumulating traces IT eligibility traces are used, which kind is
most appropriato?

Real vs, simulated Should one backup real experience or simulated experience?
Il boih, how much of each?

Location of backups Whal states or state action pairs should be backed up? Model-
free methods can choose only amaong the stales and staleaction pairs actually
encountered, but model-based methods can choose arbitrarily. There aro many
potent possibilities here,

Timing of backups Should backups be dope as part of selecting actions, or only
alterward?

DMMemory for backups How long should backed-up values be retained? Shoold they
be rotained permanenily, or only while computing an action selection, as in
houristic search?
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O course, these dimensions are peither exhagstive nor mutually exclusive, Tndividial
algorithms differ inomany other ways as well, and many algorithmes e in several places
along several dimensions. For example, Dyvna methods use both real and simolated
experience Lo alleet (he spme value linction, 10 ig also perfectly sensible (o mainbain
multiple value lunctions computed in dilferent ways or over different. state and action
representations, These dimensions do, howeser, constitube g coherent sel of ideas Tor
describing and exploring a wide space of possible methods.

16.2 State Estimation
16.3 Temporal Abstraction
16.4 Predictive Representations

16.5 Other Frontier Dimensions

BMuch research remains to be done within this space of reinforcement leprming meth-
ods.  For example, even for the tabular case no control method using multistep
backups has been proved bo converge 1o an optimal policy, Among planniong meth-
ods, basic ideas such as trajectory sampling and focusing sample backups are almost
completely unexplored, On closer inspection, parts of (he space will aodoaldedly
turn out to have far greater complexity and greater internal structure than is now
apparent. There are also other dimensions along which reinforeement learning can be
exlended, we have nol vel mentiones], that lead o a moch larger space of owethiods,
Here we identify some of these dimensions and note some of the open questions and
[rontiers thal have Been lelt owt of the preceding chaplers,

Omne of the most. important extensions of reinforcomont learning beyvond what we
hawe treated in this ook is to eliminste Che regquirement. that the stale represen-
tation have the Markov property. There are a number of interesting approaches bo
Lhe mon=-Markov case, Most sirive o construct [rom the given stabe signal and Qs
past values a new signal that is Markov, or more nearly Markov, For example, one
approach i based on (he theory of pactially observable MDPs (POMDIPs), POMDIP:
are finite MDPs in which the stale s ool observable, Tl another “sensation”™ sig-
nal stochastically rolated to the state is observablo. The thoory of POMDPs has
becn extensively studied Tor the case of complete knowledge of the dyvoamics of the
POMDP. In this case, Bayesian methods can be used Lo compute at cach time step
Lhve probability of the coviromment’s being in each state of the anderlving MDD, This
probability distribution can then be used as a new state signal for the original prob-
lem, The downside for the Bavesian POMDP approach is (s computational expense
and its strong reliance on complete environment models. Some of the recent work
pursuing this approach 15 by Littman, Cassamdra, amd Kaelbling {19495), Parr and
Russell (1945, and Chrisman {19923, If we are not willing 1o assume a complote
model of a POMDPs dynamics, then existing theory secms Lo offer littile guidance.
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MNevertheless, one can 2101 attempl o constract a Markov stale signal from the se-
guenee of sensations, Various statistical and ad boe methods along these lines have
been explored (e.g., Chrisman, 1992; McCallum, 1993, 1995; Lin and Mitchell, 1992;
Chapman and Kaellding, 1991; Moore, 1994; Rivest and Schapire, 1987, Colom-
beiti and Dorigo, 1984; Whitchead and Ballard, 1991; Hochreiter and Schmidhuber,
197,

All of the above methods involve constructing an improved stale representation
from the pon-Markoy one provided by the eovirmonment,  Apother approach is o
leave the state reprosentation unchanged and use methods that are not. too adversely
allected by ils being noo-Markoy (g, Singh, Jaskkola, and Jordan, 1994, 1995,
Jaakkola, Singh and Jordan, 1995).  In fact, most funetion approximation methods
can be viewed in this way, For example, state aggregation methods Tor Tunction
appraximation are in ellect equivalent 1o a non=Markoy representation in which all
metmbers of & sel of states are mapped inbo & common sensation. There are other
parallels between the ssoes of [unction approximation amd poo-Markoy  represen-
tations. In both cases the overall problem divides into two parts: eonstructing an
improvesd] represeniation, amd making do with the current representation, In both
cases Lhe “making do” part is relatively well understood, whereas the constructive
ot is unclear and wide open, AL Lhis point we can only guess as o whether or not
these parallels point o any common solution methods for the two problems.

Anciher important divection for extending reinforcement learning Teyond whad
wee have covered in this book s to incorporate ideas of modularity and hierarchy.
Introductory reinforcement learning is about learning value functions and ono-step
plels of the dyvoamics of the covironment. But much of whal people lear does not
secm o fall exactly inbo either of these categorics. For example, consider whatl we
Enow abowt tying our shoes, making a phoe call, or traveling 1o Loodon. Haviong
learned how to do such things, we are thon able to choose among thom and plan
a8 0 they were primitive actions, Whad we have learped o erder o do this are not
conventional value functions or one-step models. We are able to plan and learn at a
wiriely of levels and fexibly interrelate them, Much of owr learning appears mob Lo
bo about learning values directly, but about proparing us to guickly estimate valuos
Lster in response Lo pew siluations or new information, Considerable reinforoement
leswrning research bas been directed ab capluring such aldlities (e, Walkins, 19859,
Dayvan and Hinton, 19053 Singh, 1992, 19920; Ring, 199, Kaclbling, 1993h; Sutton,
1995,

Rescarchors have also explored ways of using the stmcture of particular tasks to
advantage, For example, many problems have stale representations thal are nato-
rally lists of variables, like the readings of multiple sensors or actions that are lists of
component actions, The independence or pear independence of sone variabldes Trom
others can sometimes be exploited to obiain more eificient special forms of reinforee-
rent learning algorithms, I s sometimes even possible o decompose s problem inbo
several independent subproblems that can be solved by separate learning agenis. A
reinforcement learning problem can wsually be structured in many dilferent ways,
soane reflecting natural aspecis of the problem, such as the existencs of physical sen-
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aors, and otbers being the result of explicit attempis o decompose (he peoldem inbo
simpler subyproldems, Possibilities Tor exploiting strocture in reinforoement Jearning
and related planning problems have been studied by many researchors {eog., Bontilior,
Dearden, and Goldszmidil, 1995; Dean and Lin, 1995), There are also related stod-
ies of multiagent or distributed reinforcement learning (e.g., Littman, 199 Markey,
1934; Crites amd Barto, 1996; Tan, 1993).

Finally, we want to emphasize that reinforcement learning is meant io be a general
approach o learning from interaction, It is geperal eonough ool 1o reguire special-
purpose teachers and domain knowledge, bt also general enough to utilize such
things il they are available, For example, it is ofien possible o accelersie rein-
forcement learning by giving adviee or hinta to the agent (Clouse and Utgoff, 1092;
Maclin and Shavlik, 1994) or by demonstrating instroctive ehavioral trajectorics
(Lin, 1992}, Ancther way 1o make lewrning easier, relatesd to “shaping” in psveliol-
oy, is Lo give the learning agent a series of relatively easy problems building up to
Lhe barder problem of altimate interest {eg, Sellvidge, Sutton, and Barte, 1985),
These methods, and others not. vet developed, have the potential to give the machine-
learning terms traindng amd fenclng new meanings Chat are closer o their meanings
for animal and human learning,
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