
Python

Tutorial Lecture for CSE 415
Introduction to Artificial Intelligence

1

Why Python for AI?
• For many years, we used Lisp, because it handled lists

and trees really well, had garbage collection, and didn’t
require type declarations.

• Lisp and its variants finally went out of vogue, and for a
while, we allowed any old language, usually Java or
C++. This did not work well. The programs were big and
more difficult to write.

• A few years ago, the AI faculty started converting to
Python. It has the object-oriented capabilities of Java
and C++ with the simplicity for working with list and
tree structures that Lisp had with a pretty nice, easy-to-
use syntax. I learned it with very little work.

2

Getting Started
• Download and install Python 2.7 from www.python.org

on your computer or use it from a lab in the library.
They have both 2.7 and 3.2. We will use 2.7, as it is fine
for AI search programs.

• Read “Python as a Second Language,” a tutorial that
Prof. Tanimoto wrote for CSE 415 students (see web
page)

• You can also look at the hands-on tutorial provided for
majors courses at:

http://courses.cs.washington.edu/courses/cse473/13au/p
acman/intro/tutorial.html

3

http://www.python.org/
http://courses.cs.washington.edu/courses/cse473/13au/pacman/intro/tutorial.html
http://courses.cs.washington.edu/courses/cse473/13au/pacman/intro/tutorial.html

Python Data Types
• int 105
• float 3.14159
• str “Selection:”, ‘a string’
• bool True, False
• list [‘apple’, ‘banana’, ‘orange’]
• tuple (3.2, 4.5, 6.3)
• dict {‘one’: 1, ‘two’: 2}
• function lambda x:2*x
• builtin_function_ math.sqrt
 or_method

4

Interacting with Python

5

$ python
Python 2.7.5 (default, Nov 12 2013, 16:18:42)
[GCC 4.8.2 20131017 (Red Hat 4.8.2-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 5 + 7
12
>>> x = 5 + 7
>>> x
12
>>> print('x = '+str(x))
x = 12
>>> x = 'apple'
>>> x + x
'appleapple'
>>> print('x is an '+x)
x is an apple

Defining Functions

6

>>> def sqr(x):
... return x*x
...
>>> sqr(5)
25
>>> sqr(75)
5625
>>> sqr(3.14)
9.8596
>>> sqr('notanumber')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in sqr
TypeError: can't multiply sequence by non-int of type 'str'

1. You have to indent the lines of the function
2. When typing interactively, CNTL-D escapes

Nice trace for execution errors.

 Defining a Recursive Function

7

>>> def factorial(n):
... if n < 1:
... return 0
... if n == 1:
... return 1
... return n * factorial(n-1)
...
>>>
>>> factorial(3)
6
>>> factorial(10)
3628800
>>> factorial(-1)
0

Bad Version:
>>>def fact(n):
 if n==1:
 return 1
 else:
 return n * fact(n-1)

 File "<stdin>", line 5, in fact
 ...
 File "<stdin>", line 5, in fact
 File "<stdin>", line 5, in fact
RuntimeError: maximum recursion
 depth exceeded

Scopes of Bindings:
In general, declare global variables to save worry,

required if you change them.

8

Global y not needed here and
we have two different z’s.

>>> x = 5
>>> y = 6
>>> z = 7
>>> def fee(x):
... z = x + y
... return z
...
>>> r = fee(2)
>>> r
8

Global y used here to change y
inside the function.

>>> def foo(x):
... global y
... z = x + y
... y = y + 1
... return z
...
>>> q = foo(2)
>>> q
8
>>> y
7

Lists

• We use lists heavily in AI.
• Lisp lists had two parts:

– car (the head or first element of the list)
– cdr (the tail or remainder of the list)

• Python is MUCH more versatile.
• Lists are like arrays in that you can refer to any

element and yet you can also work with the
head and tail and much more.

9

Lists

10

>>> mylist = ['a', 'b', 'c']
>>> mylist[0]
'a‘
>>> mylist[1]
'b'
>>> mylist[1:]
['b', 'c']
>>> mylist[2:]
['c']
>>> mylist[-1]
'c‘
>>> mylist.insert(3,'d')
>>> mylist
['a', 'b', 'c', 'd']

car (or head)

cdr (or tail)

append

How do you insert at the beginning?

Slices of Lists

11

>>> mylist
['a', 'b', 'c', 'd']
>>> len(mylist)
4
>>> mylist[0:len(mylist)]
['a', 'b', 'c', 'd']
>>> mylist[0:len(mylist):2]
['a', 'c']
>>> mylist[::-1]
['d', 'c', 'b', 'a']
>>> mylist[1:]
?

go through mylist by ones

go through mylist my twos

go through mylist in reverse

Iterating through Lists

12

>>> for e in mylist:
... print('element is '+e)
...
element is a
element is b
element is c
element is d

>>> count = 0
>>> while count < len(mylist):
... print(mylist[count])
... count += 1
...
a
b
c
d

Strings

13

Strings work a lot like lists!

>>> mystring = 'abcd'
>>> mystring
'abcd'
>>> mystring[0]
'a'
>>> mystring[0:2]
'ab'
>>> mystring[-1]
'd'
>>> mystring[::-1]
'dcba'

Dictionaries

14

Dictionaries give us look-up table capabilities.
>>> translate = {}
>>> translate['I'] = 'Ich'
>>> translate['go'] = 'gehe'
>>> translate['to'] = 'zu'
>>> translate['doctor'] = 'Artz'
>>> translate['the'] = 'der'
>>> print(translate['I'])
Ich

How can we print the translation of
I go to the doctor?

Is it correct German?

Functional Programming

• Functions can be values that are assigned to
variables or put in lists.

• They can be arguments to or returned by
functions.

• They can be created dynamically at run time
and applied to arguments.

• They don’t have to have names.
• This is like the lambda capability of Lisp

15

Example of Function Creation

16

>>> def make_adder(y):
... return lambda x: x + y
...
>>> f4 = make_adder(4)
>>> f4(5)
9
>>> f7 = make_adder(7)
>>> f7(5)
12

This is actually pretty tame. One can construct strings
and make them into functions, too.

What does this mean?

Object-Oriented Programming

17

Unlike Lisp, Python is an object-oriented language, so
you can program much as you did in Java.

• class Coord:
• "2D Point Coordinates"
• def __init__(self, x=0, y=0):
• self.x = x
• self.y = y
• #
def describe(self):
 return '('+str(self.x)+','+str(self.y)+')'

def euclid(self,p2):
 return ((self.x-p2.x)**2+(self.y-p2.y)**2)**0.5

18

>>> p1 = Coord(3,5)
>>> p2 = Coord(2,7)
>>> p1.describe()
'(3,5)'
>>> p2.describe()
'(2,7)'
>>> p1.euclid(p2)
2.23606797749979
>>> p2.euclid(p1)
2.23606797749979

Using the Coord Object

Writing Methods

19

class Coord:
 "2D Point Coordinates"
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

Write a method to add together
two points and return
a new point p3 = the sum of them

def add(self, p2):

	Python
	Why Python for AI?
	Getting Started
	Python Data Types
	Interacting with Python
	Defining Functions
		Defining a Recursive Function
	Scopes of Bindings:�In general, declare global variables to save worry, �required if you change them.
	Lists
	Lists
	Slices of Lists
	Iterating through Lists
	Strings
	Dictionaries
	Functional Programming
	Example of Function Creation
	Object-Oriented Programming
	Slide Number 18
	Writing Methods

